seed: 99 net: arch: inception_v3 # inception_v1, inception_v2, inception_v3 kwargs: num_classes: 1000 dataset: train: meta_file: data/imagenet/meta/train.txt image_dir: data/imagenet/train random_resize_crop: 299 colorjitter: [0.2, 0.2, 0.2, 0.1] mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] mirror: True test: meta_file: data/imagenet/meta/val.txt image_dir: data/imagenet/val resize: 331 center_crop: [299, 299] colorjitter: mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] mirror: False batch_size: 32 workers: 4 trainer: max_epoch: 160 test_freq: 1 log_freq: 100 optimizer: type: SGD kwargs: lr: 0.2 momentum: 0.9 weight_decay: 0.0001 lr_scheduler: warmup_epochs: 0 type: MultiStepLR kwargs: milestones: [30,60,90] gamma: 0.1 saver: pretrian_model: resume_model: save_dir: checkpoints/inception_v3 # save checkpoint locally # monitor: # type: pavi # _taskid: # continue training # kwargs: # project: default # change to your own pavi project # task: inception_v3 # model: inception_v3