# VGen ![figure1](source/VGen.jpg "figure1") VGen is an open-source video synthesis codebase developed by the Tongyi Lab of Alibaba Group, featuring state-of-the-art video generative models. This repository includes implementations of the following methods: - [I2VGen-xl: High-quality image-to-video synthesis via cascaded diffusion models](https://i2vgen-xl.github.io) - [VideoComposer: Compositional Video Synthesis with Motion Controllability](https://videocomposer.github.io) - [Hierarchical Spatio-temporal Decoupling for Text-to-Video Generation](https://higen-t2v.github.io) - [A Recipe for Scaling up Text-to-Video Generation with Text-free Videos](https://tf-t2v.github.io) - [InstructVideo: Instructing Video Diffusion Models with Human Feedback](https://instructvideo.github.io) - [DreamVideo: Composing Your Dream Videos with Customized Subject and Motion](https://dreamvideo-t2v.github.io) - [VideoLCM: Video Latent Consistency Model](https://arxiv.org/abs/2312.09109) - [Modelscope text-to-video technical report](https://arxiv.org/abs/2308.06571) VGen can produce high-quality videos from the input text, images, desired motion, desired subjects, and even the feedback signals provided. It also offers a variety of commonly used video generation tools such as visualization, sampling, training, inference, join training using images and videos, acceleration, and more. [![Open in Spaces](https://huggingface.co/datasets/huggingface/badges/resolve/main/open-in-hf-spaces-sm-dark.svg)](https://huggingface.co/spaces/damo-vilab/I2VGen-XL) [![Paper page](https://huggingface.co/datasets/huggingface/badges/resolve/main/paper-page-sm-dark.svg)](https://huggingface.co/papers/2311.04145) [![Open in Spaces](https://huggingface.co/datasets/huggingface/badges/resolve/main/open-a-discussion-sm-dark.svg)](https://huggingface.co/spaces/damo-vilab/I2VGen-XL/discussions) [![YouTube](https://badges.aleen42.com/src/youtube.svg)](https://youtu.be/XUi0y7dxqEQ) [![Replicate](https://replicate.com/cjwbw/i2vgen-xl/badge)](https://replicate.com/cjwbw/i2vgen-xl/) ## 🔥News!!! - __[2024.03]__ We release the code and model of HiGen!! - __[2024.01]__ The gradio demo of I2VGen-XL has been completed in [HuggingFace](https://huggingface.co/spaces/damo-vilab/I2VGen-XL), thanks to our colleague @[Wenmeng Zhou](https://github.com/wenmengzhou) and @[AK](https://twitter.com/_akhaliq) for the support, and welcome to try it out. - __[2024.01]__ We support running the gradio app locally, thanks to our colleague @[Wenmeng Zhou](https://github.com/wenmengzhou) for the support and @[AK](https://twitter.com/_akhaliq) for the suggestion, and welcome to have a try. - __[2024.01]__ Thanks @[Chenxi](https://chenxwh.github.io) for supporting the running of i2vgen-xl on [![Replicate](https://replicate.com/cjwbw/i2vgen-xl/badge)](https://replicate.com/cjwbw/i2vgen-xl/). Feel free to give it a try. - __[2024.01]__ The gradio demo of I2VGen-XL has been completed in [Modelscope](https://modelscope.cn/studios/damo/I2VGen-XL/summary), and welcome to try it out. - __[2023.12]__ We have open-sourced the code and models for [DreamTalk](https://github.com/ali-vilab/dreamtalk), which can produce high-quality talking head videos across diverse speaking styles using diffusion models. - __[2023.12]__ We release [TF-T2V](https://tf-t2v.github.io) that can scale up existing video generation techniques using text-free videos, significantly enhancing the performance of both [Modelscope-T2V](https://arxiv.org/abs/2308.06571) and [VideoComposer](https://videocomposer.github.io) at the same time. - __[2023.12]__ We updated the codebase to support higher versions of xformer (0.0.22), torch2.0+, and removed the dependency on flash_attn. - __[2023.12]__ We release [InstructVideo](https://instructvideo.github.io/) that can accept human feedback signals to improve VLDM - __[2023.12]__ We release the diffusion based expressive talking head generation [DreamTalk](https://dreamtalk-project.github.io) - __[2023.12]__ We release the high-efficiency video generation method [VideoLCM](https://arxiv.org/abs/2312.09109) - __[2023.12]__ We release the code and model of [I2VGen-XL](https://i2vgen-xl.github.io) and the [ModelScope T2V](https://arxiv.org/abs/2308.06571) - __[2023.12]__ We release the T2V method [HiGen](https://higen-t2v.github.io) and customizing T2V method [DreamVideo](https://dreamvideo-t2v.github.io). - __[2023.12]__ We write an [introduction document](doc/introduction.pdf) for VGen and compare I2VGen-XL with SVD. - __[2023.11]__ We release a high-quality I2VGen-XL model, please refer to the [Webpage](https://i2vgen-xl.github.io) ## TODO - [x] Release the technical papers and webpage of [I2VGen-XL](doc/i2vgen-xl.md) - [x] Release the code and pretrained models that can generate 1280x720 videos - [x] Release the code and models of [DreamTalk](https://github.com/ali-vilab/dreamtalk) that can generate expressive talking head - [ ] Release the code and pretrained models of [HumanDiff]() - [ ] Release models optimized specifically for the human body and faces - [ ] Updated version can fully maintain the ID and capture large and accurate motions simultaneously - [ ] Release other methods and the corresponding models ## Preparation The main features of VGen are as follows: - Expandability, allowing for easy management of your own experiments. - Completeness, encompassing all common components for video generation. - Excellent performance, featuring powerful pre-trained models in multiple tasks. ### Installation ``` conda create -n vgen python=3.8 conda activate vgen pip install torch==1.12.0+cu113 torchvision==0.13.0+cu113 torchaudio==0.12.0 --extra-index-url https://download.pytorch.org/whl/cu113 pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple ``` You also need to ensure that your system has installed the `ffmpeg` command. If it is not installed, you can install it using the following command: ``` sudo apt-get update && apt-get install ffmpeg libsm6 libxext6 -y ``` ### Datasets We have provided a **demo dataset** that includes images and videos, along with their lists in ``data``. *Please note that the demo images used here are for testing purposes and were not included in the training.* ### Clone the code ``` git clone https://github.com/ali-vilab/VGen.git cd VGen ``` ## Getting Started with VGen ### (1) Train your text-to-video model Executing the following command to enable distributed training is as easy as that. ``` python train_net.py --cfg configs/t2v_train.yaml ``` In the `t2v_train.yaml` configuration file, you can specify the data, adjust the video-to-image ratio using `frame_lens`, and validate your ideas with different Diffusion settings, and so on. - Before the training, you can download any of our open-source models for initialization. Our codebase supports custom initialization and `grad_scale` settings, all of which are included in the `Pretrain` item in yaml file. - During the training, you can view the saved models and intermediate inference results in the `workspace/experiments/t2v_train`directory. After the training is completed, you can perform inference on the model using the following command. ``` python inference.py --cfg configs/t2v_infer.yaml ``` Then you can find the videos you generated in the `workspace/experiments/test_img_01` directory. For specific configurations such as data, models, seed, etc., please refer to the `t2v_infer.yaml` file. *If you want to directly load our previously open-sourced [Modelscope T2V model](https://huggingface.co/damo-vilab/modelscope-damo-text-to-video-synthesis/tree/main), please refer to [this link](https://github.com/damo-vilab/i2vgen-xl/issues/31).* ### (2) Run the I2VGen-XL model (i) Download model and test data: ``` !pip install modelscope from modelscope.hub.snapshot_download import snapshot_download model_dir = snapshot_download('damo/I2VGen-XL', cache_dir='models/', revision='v1.0.0') ``` or you can also download it through HuggingFace (https://huggingface.co/damo-vilab/i2vgen-xl): ``` # Make sure you have git-lfs installed (https://git-lfs.com) git lfs install git clone https://huggingface.co/damo-vilab/i2vgen-xl ``` (ii) Run the following command: ``` python inference.py --cfg configs/i2vgen_xl_infer.yaml ``` or you can run: ``` python inference.py --cfg configs/i2vgen_xl_infer.yaml test_list_path data/test_list_for_i2vgen.txt test_model models/i2vgen_xl_00854500.pth ``` The `test_list_path` represents the input image path and its corresponding caption. Please refer to the specific format and suggestions within demo file `data/test_list_for_i2vgen.txt`. `test_model` is the path for loading the model. In a few minutes, you can retrieve the high-definition video you wish to create from the `workspace/experiments/test_list_for_i2vgen` directory. At present, we find that the current model performs inadequately on **anime images** and **images with a black background** due to the lack of relevant training data. We are consistently working to optimize it. (iii) Run the gradio app locally: ``` python gradio_app.py ``` (iv) Run the model on ModelScope and HuggingFace: - [Modelscope](https://modelscope.cn/studios/damo/I2VGen-XL/summary) - [HuggingFace](https://huggingface.co/spaces/damo-vilab/I2VGen-XL) Due to the compression of our video quality in GIF format, please click 'HRER' below to view the original video.

Input Image

Click HERE to view the generated video.

Input Image

Click HERE to view the generated video.

Input Image

Click HERE to view the generated video.

Input Image

Click HERE to view the generated video.

(ii) Run the following command: ``` python inference.py --cfg configs/i2vgen_xl_train.yaml ``` In a few minutes, you can retrieve the high-definition video you wish to create from the `workspace/experiments/test_img_01` directory. At present, we find that the current model performs inadequately on **anime images** and **images with a black background** due to the lack of relevant training data. We are consistently working to optimize it. ### (3) Run the HiGen model (i) Download model: ``` !pip install modelscope from modelscope.hub.snapshot_download import snapshot_download model_dir = snapshot_download('iic/HiGen', cache_dir='models/') ``` Then you might need the following command to move the checkpoints to the "models/" directory: ``` mv ./models/iic/HiGen/* ./models/ ``` (ii) Run the following command for text-to-video generation: ``` python inference.py --cfg configs/higen_infer.yaml ``` In a few minutes, you can retrieve the videos you wish to create from the `workspace/experiments/text_list_for_t2v_share` directory. Then you can execute the following command to perform super-resolution on the generated videos: ``` python inference.py --cfg configs/sr600_infer.yaml ``` Finally, you can retrieve the high-definition video from the `workspace/experiments/text_list_for_t2v_share` directory. Due to the compression of our video quality in GIF format, please click 'HERE' below to view the original video.

Click HERE to view the generated video.

Click HERE to view the generated video.

### (4) Other methods In preparation!! ## Customize your own approach Our codebase essentially supports all the commonly used components in video generation. You can manage your experiments flexibly by adding corresponding registration classes, including `ENGINE, MODEL, DATASETS, EMBEDDER, AUTO_ENCODER, VISUAL, DIFFUSION, PRETRAIN`, and can be compatible with all our open-source algorithms according to your own needs. If you have any questions, feel free to give us your feedback at any time. ## BibTeX If this repo is useful to you, please cite our corresponding technical paper. ```bibtex @article{2023videocomposer, title={VideoComposer: Compositional Video Synthesis with Motion Controllability}, author={Wang, Xiang and Yuan, Hangjie and Zhang, Shiwei and Chen, Dayou and Wang, Jiuniu, and Zhang, Yingya, and Shen, Yujun, and Zhao, Deli and Zhou, Jingren}, booktitle={arXiv preprint arXiv:2306.02018}, year={2023} } @article{2023i2vgenxl, title={I2VGen-XL: High-Quality Image-to-Video Synthesis via Cascaded Diffusion Models}, author={Zhang, Shiwei and Wang, Jiayu and Zhang, Yingya and Zhao, Kang and Yuan, Hangjie and Qing, Zhiwu and Wang, Xiang and Zhao, Deli and Zhou, Jingren}, booktitle={arXiv preprint arXiv:2311.04145}, year={2023} } @article{wang2023modelscope, title={Modelscope text-to-video technical report}, author={Wang, Jiuniu and Yuan, Hangjie and Chen, Dayou and Zhang, Yingya and Wang, Xiang and Zhang, Shiwei}, journal={arXiv preprint arXiv:2308.06571}, year={2023} } @article{dreamvideo, title={DreamVideo: Composing Your Dream Videos with Customized Subject and Motion}, author={Wei, Yujie and Zhang, Shiwei and Qing, Zhiwu and Yuan, Hangjie and Liu, Zhiheng and Liu, Yu and Zhang, Yingya and Zhou, Jingren and Shan, Hongming}, journal={arXiv preprint arXiv:2312.04433}, year={2023} } @article{qing2023higen, title={Hierarchical Spatio-temporal Decoupling for Text-to-Video Generation}, author={Qing, Zhiwu and Zhang, Shiwei and Wang, Jiayu and Wang, Xiang and Wei, Yujie and Zhang, Yingya and Gao, Changxin and Sang, Nong }, journal={arXiv preprint arXiv:2312.04483}, year={2023} } @article{wang2023videolcm, title={VideoLCM: Video Latent Consistency Model}, author={Wang, Xiang and Zhang, Shiwei and Zhang, Han and Liu, Yu and Zhang, Yingya and Gao, Changxin and Sang, Nong }, journal={arXiv preprint arXiv:2312.09109}, year={2023} } @article{ma2023dreamtalk, title={DreamTalk: When Expressive Talking Head Generation Meets Diffusion Probabilistic Models}, author={Ma, Yifeng and Zhang, Shiwei and Wang, Jiayu and Wang, Xiang and Zhang, Yingya and Deng Zhidong}, journal={arXiv preprint arXiv:2312.09767}, year={2023} } @article{2023InstructVideo, title={InstructVideo: Instructing Video Diffusion Models with Human Feedback}, author={Yuan, Hangjie and Zhang, Shiwei and Wang, Xiang and Wei, Yujie and Feng, Tao and Pan, Yining and Zhang, Yingya and Liu, Ziwei and Albanie, Samuel and Ni, Dong}, booktitle={arXiv preprint arXiv:2312.12490}, year={2023} } @article{TFT2V, title={A Recipe for Scaling up Text-to-Video Generation with Text-free Videos}, author={Wang, Xiang and Zhang, Shiwei and Yuan, Hangjie and Qing, Zhiwu and Gong, Biao and Zhang, Yingya and Shen, Yujun and Gao, Changxin and Sang, Nong}, journal={arXiv preprint arXiv:2312.15770}, year={2023} } ``` ## Acknowledgement We would like to express our gratitude for the contributions of several previous works to the development of VGen. This includes, but is not limited to [Composer](https://arxiv.org/abs/2302.09778), [ModelScopeT2V](https://modelscope.cn/models/damo/text-to-video-synthesis/summary), [Stable Diffusion](https://github.com/Stability-AI/stablediffusion), [OpenCLIP](https://github.com/mlfoundations/open_clip), [WebVid-10M](https://m-bain.github.io/webvid-dataset/), [LAION-400M](https://laion.ai/blog/laion-400-open-dataset/), [Pidinet](https://github.com/zhuoinoulu/pidinet) and [MiDaS](https://github.com/isl-org/MiDaS). We are committed to building upon these foundations in a way that respects their original contributions. ## Disclaimer This open-source model is trained with using [WebVid-10M](https://m-bain.github.io/webvid-dataset/) and [LAION-400M](https://laion.ai/blog/laion-400-open-dataset/) datasets and is intended for RESEARCH/NON-COMMERCIAL USE ONLY.