"include/ck/utility/print.hpp" did not exist on "fae086848240876984fe53340ca399fb14540571"
Commit 61677623 authored by zzg_666's avatar zzg_666
Browse files

update

parent 19261cee
FROM image.sourcefind.cn:5000/dcu/admin/base/pytorch:2.3.0-ubuntu22.04-dtk24.04.3-py3.10
\ No newline at end of file
FROM image.sourcefind.cn:5000/dcu/admin/base/pytorch:2.5.1-ubuntu22.04-dtk25.04.2-py3.10
......@@ -22,7 +22,7 @@
### Docker(方法一)
docker pull image.sourcefind.cn:5000/dcu/admin/base/pytorch:2.3.0-ubuntu22.04-dtk24.04.3-py3.10
docker pull image.sourcefind.cn:5000/dcu/admin/base/pytorch:2.5.1-ubuntu22.04-dtk25.04.2-py3.10
docker run --shm-size 100g --network=host --name=hunyuanvideo_i2v --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v 项目地址(绝对路径):/home/ -v /opt/hyhal:/opt/hyhal:ro -it <your IMAGE ID> bash
......@@ -53,17 +53,12 @@
1、关于本项目DCU显卡所需的特殊深度学习库可从光合开发者社区下载安装: https://developer.sourcefind.cn/tool/
```
DTK驱动:dtk24.04.3
DTK驱动:dtk25.04.2
python:python3.10
torch:2.3.0
torchvision:0.18.1
torchaudio:2.1.2
triton:2.1.0
flash-attn:2.6.1
deepspeed:0.14.2
apex:1.3.0
xformers:0.0.25
transformers:4.48.0
torch:2.5.1
torchvision:0.20.1
apex:1.5.0
transformers:4.39.3
```
2、其他非特殊库直接按照requirements.txt安装
......@@ -183,7 +178,7 @@ python3 sample_image2video.py \
### 精度
DCU与GPU精度一致,推理框架:transformers。
## 应用场景
......
# Download Pretrained Models
---
license: other
license_name: tencent-hunyuan-community
license_link: LICENSE
pipeline_tag: image-to-video
---
<!-- ## **HunyuanVideo** -->
[中文阅读](./README_zh.md)
<p align="center">
<img src="https://raw.githubusercontent.com/Tencent/HunyuanVideo-I2V/refs/heads/main/assets/logo.png" height=100>
</p>
# **HunyuanVideo-I2V** 🌅
-----
Following the great successful open-sourcing of our [HunyuanVideo](https://github.com/Tencent/HunyuanVideo), we proudly present the [HunyuanVideo-I2V](https://github.com/Tencent/HunyuanVideo-I2V), a new image-to-video generation framework to accelerate open-source community exploration!
This repo contains offical PyTorch model definitions, pre-trained weights and inference/sampling code. You can find more visualizations on our [project page](https://aivideo.hunyuan.tencent.com). Meanwhile, we have released the LoRA training code for customizable special effects, which can be used to create more interesting video effects.
> [**HunyuanVideo: A Systematic Framework For Large Video Generation Model**](https://arxiv.org/abs/2412.03603) <be>
## 🔥🔥🔥 News!!
* Mar 13, 2025: 🚀 We release the parallel inference code for HunyuanVideo-I2V powered by [xDiT](https://github.com/xdit-project/xDiT).
* Mar 07, 2025: 🔥 We have fixed the bug in our open-source version that caused ID changes. Please try the new model weights of [HunyuanVideo-I2V](https://huggingface.co/tencent/HunyuanVideo-I2V) to ensure full visual consistency in the first frame and produce higher quality videos.
* Mar 06, 2025: 👋 We release the inference code and model weights of HunyuanVideo-I2V. [Download](https://github.com/Tencent/HunyuanVideo-I2V/blob/main/ckpts/README.md).
## 📑 Open-source Plan
- HunyuanVideo-I2V (Image-to-Video Model)
- [x] Inference
- [x] Checkpoints
- [x] ComfyUI
- [x] Lora training scripts
- [x] Multi-gpus Sequence Parallel inference (Faster inference speed on more gpus)
- [ ] Diffusers
## Contents
- [**HunyuanVideo-I2V** 🌅](#hunyuanvideo-i2v-)
- [🔥🔥🔥 News!!](#-news)
- [📑 Open-source Plan](#-open-source-plan)
- [Contents](#contents)
- [**HunyuanVideo-I2V Overall Architecture**](#hunyuanvideo-i2v-overall-architecture)
- [📜 Requirements](#-requirements)
- [🛠️ Dependencies and Installation](#️-dependencies-and-installation)
- [Installation Guide for Linux](#installation-guide-for-linux)
- [🧱 Download Pretrained Models](#-download-pretrained-models)
- [🔑 Single-gpu Inference](#-single-gpu-inference)
- [Tips for Using Image-to-Video Models](#tips-for-using-image-to-video-models)
- [Using Command Line](#using-command-line)
- [More Configurations](#more-configurations)
- [🎉 Customizable I2V LoRA effects training](#-customizable-i2v-lora-effects-training)
- [Requirements](#requirements)
- [Environment](#environment)
- [Training data construction](#training-data-construction)
- [Training](#training)
- [Inference](#inference)
- [🚀 Parallel Inference on Multiple GPUs by xDiT](#-parallel-inference-on-multiple-gpus-by-xdit)
- [Using Command Line](#using-command-line-1)
- [🔗 BibTeX](#-bibtex)
- [Acknowledgements](#acknowledgements)
---
## **HunyuanVideo-I2V Overall Architecture**
Leveraging the advanced video generation capabilities of [HunyuanVideo](https://github.com/Tencent/HunyuanVideo), we have extended its application to image-to-video generation tasks. To achieve this, we employ a token replace technique to effectively reconstruct and incorporate reference image information into the video generation process.
Since we utilizes a pre-trained Multimodal Large Language Model (MLLM) with a Decoder-Only architecture as the text encoder, we can significantly enhance the model's ability to comprehend the semantic content of the input image and to seamlessly integrate information from both the image and its associated caption. Specifically, the input image is processed by the MLLM to generate semantic image tokens. These tokens are then concatenated with the video latent tokens, enabling comprehensive full-attention computation across the combined data.
The overall architecture of our system is designed to maximize the synergy between image and text modalities, ensuring a robust and coherent generation of video content from static images. This integration not only improves the fidelity of the generated videos but also enhances the model's ability to interpret and utilize complex multimodal inputs. The overall architecture is as follows.
<p align="center">
<img src="https://raw.githubusercontent.com/Tencent/HunyuanVideo-I2V/refs/heads/main/assets/backbone.png" style="max-width: 45%; height: auto;">
</p>
## 📜 Requirements
The following table shows the requirements for running HunyuanVideo-I2V model (batch size = 1) to generate videos:
| Model | Resolution | GPU Peak Memory |
|:----------------:|:-----------:|:----------------:|
| HunyuanVideo-I2V | 720p | 60GB |
All models are stored in `HunyuanVideo-I2V/ckpts` by default, and the file structure is as follows
* An NVIDIA GPU with CUDA support is required.
* The model is tested on a single 80G GPU.
* **Minimum**: The minimum GPU memory required is 60GB for 720p.
* **Recommended**: We recommend using a GPU with 80GB of memory for better generation quality.
* Tested operating system: Linux
## 🛠️ Dependencies and Installation
Begin by cloning the repository:
```shell
HunyuanVideo-I2V
├──ckpts
│ ├──README.md
│ ├──hunyuan-video-i2v-720p
│ │ ├──transformers
│ │ │ ├──mp_rank_00_model_states.pt
├ │ ├──vae
├ │ ├──lora
│ │ │ ├──embrace_kohaya_weights.safetensors
│ │ │ ├──hair_growth_kohaya_weights.safetensors
│ ├──text_encoder_i2v
│ ├──text_encoder_2
├──...
git clone https://github.com/tencent/HunyuanVideo-I2V
cd HunyuanVideo-I2V
```
## Download HunyuanVideo-I2V model
To download the HunyuanVideo-I2V model, first install the huggingface-cli. (Detailed instructions are available [here](https://huggingface.co/docs/huggingface_hub/guides/cli).)
### Installation Guide for Linux
We recommend CUDA versions 12.4 or 11.8 for the manual installation.
Conda's installation instructions are available [here](https://docs.anaconda.com/free/miniconda/index.html).
```shell
python -m pip install "huggingface_hub[cli]"
# 1. Create conda environment
conda create -n HunyuanVideo-I2V python==3.11.9
# 2. Activate the environment
conda activate HunyuanVideo-I2V
# 3. Install PyTorch and other dependencies using conda
# For CUDA 12.4
conda install pytorch==2.4.0 torchvision==0.19.0 torchaudio==2.4.0 pytorch-cuda=12.4 -c pytorch -c nvidia
# 4. Install pip dependencies
python -m pip install -r requirements.txt
# 5. Install flash attention v2 for acceleration (requires CUDA 11.8 or above)
python -m pip install ninja
python -m pip install git+https://github.com/Dao-AILab/flash-attention.git@v2.6.3
# 6. Install xDiT for parallel inference (It is recommended to use torch 2.4.0 and flash-attn 2.6.3)
python -m pip install xfuser==0.4.0
```
Then download the model using the following commands:
In case of running into float point exception(core dump) on the specific GPU type, you may try the following solutions:
```shell
# Switch to the directory named 'HunyuanVideo-I2V'
cd HunyuanVideo-I2V
# Use the huggingface-cli tool to download HunyuanVideo-I2V model in HunyuanVideo-I2V/ckpts dir.
# The download time may vary from 10 minutes to 1 hour depending on network conditions.
huggingface-cli download tencent/HunyuanVideo-I2V --local-dir ./ckpts
# Making sure you have installed CUDA 12.4, CUBLAS>=12.4.5.8, and CUDNN>=9.00 (or simply using our CUDA 12 docker image).
pip install nvidia-cublas-cu12==12.4.5.8
export LD_LIBRARY_PATH=/opt/conda/lib/python3.8/site-packages/nvidia/cublas/lib/
```
<details>
<summary>💡Tips for using huggingface-cli (network problem)</summary>
Additionally, HunyuanVideo-I2V also provides a pre-built Docker image. Use the following command to pull and run the docker image.
##### 1. Using HF-Mirror
```shell
# For CUDA 12.4 (updated to avoid float point exception)
docker pull hunyuanvideo/hunyuanvideo-i2v:cuda12
docker run -itd --gpus all --init --net=host --uts=host --ipc=host --name hunyuanvideo-i2v --security-opt=seccomp=unconfined --ulimit=stack=67108864 --ulimit=memlock=-1 --privileged hunyuanvideo/hunyuanvideo-i2v:cuda12
```
If you encounter slow download speeds in China, you can try a mirror to speed up the download process. For example,
```shell
HF_ENDPOINT=https://hf-mirror.com huggingface-cli download tencent/HunyuanVideo-I2V --local-dir ./ckpts
## 🧱 Download Pretrained Models
The details of download pretrained models are shown [here](ckpts/README.md).
## 🔑 Single-gpu Inference
Similar to [HunyuanVideo](https://github.com/Tencent/HunyuanVideo), HunyuanVideo-I2V supports high-resolution video generation, with resolution up to 720P and video length up to 129 frames (5 seconds).
### Tips for Using Image-to-Video Models
- **Use Concise Prompts**: To effectively guide the model's generation, keep your prompts short and to the point.
- **Include Key Elements**: A well-structured prompt should cover:
- **Main Subject**: Specify the primary focus of the video.
- **Action**: Describe the main movement or activity taking place.
- **Background (Optional)**: Set the scene for the video.
- **Camera Angle (Optional)**: Indicate the perspective or viewpoint.
- **Avoid Overly Detailed Prompts**: Lengthy or highly detailed prompts can lead to unnecessary transitions in the video output.
<!-- **For image-to-video models, we recommend using concise prompts to guide the model's generation process. A good prompt should include elements such as background, main subject, action, and camera angle. Overly long or excessively detailed prompts may introduce unnecessary transitions.** -->
### Using Command Line
<!-- ### Run a Gradio Server
```bash
python3 gradio_server.py --flow-reverse
# set SERVER_NAME and SERVER_PORT manually
# SERVER_NAME=0.0.0.0 SERVER_PORT=8081 python3 gradio_server.py --flow-reverse
``` -->
If you want to generate a more **stable** video, you can set `--i2v-stability` and `--flow-shift 7.0`. Execute the command as follows
```bash
cd HunyuanVideo-I2V
python3 sample_image2video.py \
--model HYVideo-T/2 \
--prompt "An Asian man with short hair in black tactical uniform and white clothes waves a firework stick." \
--i2v-mode \
--i2v-image-path ./assets/demo/i2v/imgs/0.jpg \
--i2v-resolution 720p \
--i2v-stability \
--infer-steps 50 \
--video-length 129 \
--flow-reverse \
--flow-shift 7.0 \
--seed 0 \
--embedded-cfg-scale 6.0 \
--use-cpu-offload \
--save-path ./results
```
If you want to generate a more **high-dynamic** video, you can **unset** `--i2v-stability` and `--flow-shift 17.0`. Execute the command as follows
```bash
cd HunyuanVideo-I2V
##### 2. Resume Download
python3 sample_image2video.py \
--model HYVideo-T/2 \
--prompt "An Asian man with short hair in black tactical uniform and white clothes waves a firework stick." \
--i2v-mode \
--i2v-image-path ./assets/demo/i2v/imgs/0.jpg \
--i2v-resolution 720p \
--infer-steps 50 \
--video-length 129 \
--flow-reverse \
--flow-shift 17.0 \
--embedded-cfg-scale 6.0 \
--seed 0 \
--use-cpu-offload \
--save-path ./results
```
### More Configurations
`huggingface-cli` supports resuming downloads. If the download is interrupted, you can just rerun the download
command to resume the download process.
We list some more useful configurations for easy usage:
Note: If an `No such file or directory: 'ckpts/.huggingface/.gitignore.lock'` like error occurs during the download
process, you can ignore the error and rerun the download command.
| Argument | Default | Description |
|:----------------------:|:----------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
| `--prompt` | None | The text prompt for video generation. |
| `--model` | HYVideo-T/2-cfgdistill | Here we use HYVideo-T/2 for I2V, HYVideo-T/2-cfgdistill is used for T2V mode. |
| `--i2v-mode` | False | Whether to open i2v mode. |
| `--i2v-image-path` | ./assets/demo/i2v/imgs/0.jpg | The reference image for video generation. |
| `--i2v-resolution` | 720p | The resolution for the generated video. |
| `--i2v-stability` | False | Whether to use stable mode for i2v inference. |
| `--video-length` | 129 | The length of the generated video. |
| `--infer-steps` | 50 | The number of steps for sampling. |
| `--flow-shift` | 7.0 | Shift factor for flow matching schedulers. We recommend 7 with `--i2v-stability` switch on for more stable video, 17 with `--i2v-stability` switch off for more dynamic video |
| `--flow-reverse` | False | If reverse, learning/sampling from t=1 -> t=0. |
| `--seed` | None | The random seed for generating video, if None, we init a random seed. |
| `--use-cpu-offload` | False | Use CPU offload for the model load to save more memory, necessary for high-res video generation. |
| `--save-path` | ./results | Path to save the generated video. |
</details>
---
## Download Text Encoder
## 🎉 Customizable I2V LoRA effects training
HunyuanVideo-I2V uses an MLLM model and a CLIP model as text encoder.
### Requirements
1. MLLM model (text_encoder_i2v folder)
The following table shows the requirements for training HunyuanVideo-I2V lora model (batch size = 1) to generate videos:
HunyuanVideo-I2V supports different MLLMs (including HunyuanMLLM and open-source MLLM models). At this stage, we have not yet released HunyuanMLLM. We recommend the user in community to use [llava-llama-3-8b](https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-transformers) provided by [Xtuer](https://huggingface.co/xtuner), which can be downloaded by the following command.
| Model | Resolution | GPU Peak Memory |
|:----------------:|:----------:|:---------------:|
| HunyuanVideo-I2V | 360p | 79GB |
Note that unlike [HunyuanVideo](https://github.com/Tencent/HunyuanVideo/tree/main), which only uses the language model parts of `llava-llama-3-8b-v1_1-transformers`, HunyuanVideo-I2V needs its full model to encode both prompts and images. Therefore, you only need to download the model without preprocessing.
* An NVIDIA GPU with CUDA support is required.
* The model is tested on a single 80G GPU.
* **Minimum**: The minimum GPU memory required is 79GB for 360p.
* **Recommended**: We recommend using a GPU with 80GB of memory for better generation quality.
* Tested operating system: Linux
* Note: You can train with 360p data and directly infer 720p videos
```shell
cd HunyuanVideo-I2V/ckpts
huggingface-cli download xtuner/llava-llama-3-8b-v1_1-transformers --local-dir ./text_encoder_i2v
### Environment
```
pip install -r requirements.txt
```
2. CLIP model (text_encoder_2 folder)
### Training data construction
Prompt description: The trigger word is written directly in the video caption. It is recommended to use a phrase or short sentence.
For example, AI hair growth effect (trigger): rapid_hair_growth, The hair of the characters in the video is growing rapidly. + original prompt
After having the training video and prompt pair, refer to [here] (hyvideo/hyvae_extract/README.md) for training data construction.
### Training
```
cd HunyuanVideo-I2V
sh scripts/run_train_image2video_lora.sh
```
We list some training specific configurations for easy usage:
| Argument | Default | Description |
|:----------------:|:-------------------------------------------------------------:|:-----------------------------------------------------------:|
| `SAVE_BASE` | . | Root path for saving experimental results. |
| `EXP_NAME` | i2v_lora | Path suffix for saving experimental results. |
| `DATA_JSONS_DIR` | ./assets/demo/i2v_lora/train_dataset/processed_data/json_path | Data jsons dir generated by hyvideo/hyvae_extract/start.sh. |
| `CHIEF_IP` | 127.0.0.1 | Master node IP of the machine. |
After training, you can find `pytorch_lora_kohaya_weights.safetensors` in `{SAVE_BASE}/log_EXP/*_{EXP_NAME}/checkpoints/global_step{*}/pytorch_lora_kohaya_weights.safetensors` and set it in `--lora-path` to perform inference.
### Inference
```bash
cd HunyuanVideo-I2V
python3 sample_image2video.py \
--model HYVideo-T/2 \
--prompt "Two people hugged tightly, In the video, two people are standing apart from each other. They then move closer to each other and begin to hug tightly. The hug is very affectionate, with the two people holding each other tightly and looking into each other's eyes. The interaction is very emotional and heartwarming, with the two people expressing their love and affection for each other." \
--i2v-mode \
--i2v-image-path ./assets/demo/i2v_lora/imgs/embrace.png \
--i2v-resolution 720p \
--i2v-stability \
--infer-steps 50 \
--video-length 129 \
--flow-reverse \
--flow-shift 5.0 \
--embedded-cfg-scale 6.0 \
--seed 0 \
--use-cpu-offload \
--save-path ./results \
--use-lora \
--lora-scale 1.0 \
--lora-path ./ckpts/hunyuan-video-i2v-720p/lora/embrace_kohaya_weights.safetensors
```
We list some lora specific configurations for easy usage:
| Argument | Default | Description |
|:-------------------:|:-------:|:----------------------------:|
| `--use-lora` | False | Whether to open lora mode. |
| `--lora-scale` | 1.0 | Fusion scale for lora model. |
| `--lora-path` | "" | Weight path for lora model. |
## 🚀 Parallel Inference on Multiple GPUs by xDiT
We use [CLIP](https://huggingface.co/openai/clip-vit-large-patch14) provided by [OpenAI](https://openai.com) as another text encoder, users in the community can download this model by the following command
[xDiT](https://github.com/xdit-project/xDiT) is a Scalable Inference Engine for Diffusion Transformers (DiTs) on multi-GPU Clusters.
It has successfully provided low-latency parallel inference solutions for a variety of DiTs models, including mochi-1, CogVideoX, Flux.1, SD3, etc. This repo adopted the [Unified Sequence Parallelism (USP)](https://arxiv.org/abs/2405.07719) APIs for parallel inference of the HunyuanVideo-I2V model.
### Using Command Line
For example, to generate a video with 8 GPUs, you can use the following command:
```bash
cd HunyuanVideo-I2V
torchrun --nproc_per_node=8 sample_image2video.py \
--model HYVideo-T/2 \
--prompt "An Asian man with short hair in black tactical uniform and white clothes waves a firework stick." \
--i2v-mode \
--i2v-image-path ./assets/demo/i2v/imgs/0.jpg \
--i2v-resolution 720p \
--i2v-stability \
--infer-steps 50 \
--video-length 129 \
--flow-reverse \
--flow-shift 7.0 \
--seed 0 \
--embedded-cfg-scale 6.0 \
--save-path ./results \
--ulysses-degree 8 \
--ring-degree 1 \
--video-size 1280 720 \
--xdit-adaptive-size
```
cd HunyuanVideo-I2V/ckpts
huggingface-cli download openai/clip-vit-large-patch14 --local-dir ./text_encoder_2
You can change the `--ulysses-degree` and `--ring-degree` to control the parallel configurations for the best performance.
Note that you need to set `--video-size` since xDiT's acceleration mechanism has requirements for the size of the video to be generated.
To prevent black padding after converting the original image height/width to the target height/width, you can use `--xdit-adaptive-size`.
The valid parallel configurations are shown in the following table.
<details>
<summary>Supported Parallel Configurations (Click to expand)</summary>
| --video-size | --video-length | --ulysses-degree x --ring-degree | --nproc_per_node |
|----------------------|----------------|----------------------------------|------------------|
| 1280 720 or 720 1280 | 129 | 8x1,4x2,2x4,1x8 | 8 |
| 1280 720 or 720 1280 | 129 | 1x5 | 5 |
| 1280 720 or 720 1280 | 129 | 4x1,2x2,1x4 | 4 |
| 1280 720 or 720 1280 | 129 | 3x1,1x3 | 3 |
| 1280 720 or 720 1280 | 129 | 2x1,1x2 | 2 |
| 1104 832 or 832 1104 | 129 | 4x1,2x2,1x4 | 4 |
| 1104 832 or 832 1104 | 129 | 3x1,1x3 | 3 |
| 1104 832 or 832 1104 | 129 | 2x1,1x2 | 2 |
| 960 960 | 129 | 6x1,3x2,2x3,1x6 | 6 |
| 960 960 | 129 | 4x1,2x2,1x4 | 4 |
| 960 960 | 129 | 3x1,1x3 | 3 |
| 960 960 | 129 | 1x2,2x1 | 2 |
| 960 544 or 544 960 | 129 | 6x1,3x2,2x3,1x6 | 6 |
| 960 544 or 544 960 | 129 | 4x1,2x2,1x4 | 4 |
| 960 544 or 544 960 | 129 | 3x1,1x3 | 3 |
| 960 544 or 544 960 | 129 | 1x2,2x1 | 2 |
| 832 624 or 624 832 | 129 | 4x1,2x2,1x4 | 4 |
| 624 832 or 624 832 | 129 | 3x1,1x3 | 3 |
| 832 624 or 624 832 | 129 | 2x1,1x2 | 2 |
| 720 720 | 129 | 1x5 | 5 |
| 720 720 | 129 | 3x1,1x3 | 3 |
</details>
<p align="center">
<table align="center">
<thead>
<tr>
<th colspan="4">Latency (Sec) for 1280x720 (129 frames 50 steps) on 8xGPU</th>
</tr>
<tr>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<th>1904.08</th>
<th>934.09 (2.04x)</th>
<th>514.08 (3.70x)</th>
<th>337.58 (5.64x)</th>
</tr>
</tbody>
</table>
</p>
## 🔗 BibTeX
If you find [HunyuanVideo](https://arxiv.org/abs/2412.03603) useful for your research and applications, please cite using this BibTeX:
```BibTeX
@misc{kong2024hunyuanvideo,
title={HunyuanVideo: A Systematic Framework For Large Video Generative Models},
author={Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li, Bo Wu, Jianwei Zhang, Kathrina Wu, Qin Lin, Aladdin Wang, Andong Wang, Changlin Li, Duojun Huang, Fang Yang, Hao Tan, Hongmei Wang, Jacob Song, Jiawang Bai, Jianbing Wu, Jinbao Xue, Joey Wang, Junkun Yuan, Kai Wang, Mengyang Liu, Pengyu Li, Shuai Li, Weiyan Wang, Wenqing Yu, Xinchi Deng, Yang Li, Yanxin Long, Yi Chen, Yutao Cui, Yuanbo Peng, Zhentao Yu, Zhiyu He, Zhiyong Xu, Zixiang Zhou, Zunnan Xu, Yangyu Tao, Qinglin Lu, Songtao Liu, Dax Zhou, Hongfa Wang, Yong Yang, Di Wang, Yuhong Liu, and Jie Jiang, along with Caesar Zhong},
year={2024},
archivePrefix={arXiv preprint arXiv:2412.03603},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2412.03603},
}
```
## Acknowledgements
We would like to thank the contributors to the [SD3](https://huggingface.co/stabilityai/stable-diffusion-3-medium), [FLUX](https://github.com/black-forest-labs/flux), [Llama](https://github.com/meta-llama/llama), [LLaVA](https://github.com/haotian-liu/LLaVA), [Xtuner](https://github.com/InternLM/xtuner), [diffusers](https://github.com/huggingface/diffusers) and [HuggingFace](https://huggingface.co) repositories, for their open research and exploration.
Additionally, we also thank the Tencent Hunyuan Multimodal team for their help with the text encoder.
<!-- ## Github Star History
<a href="https://star-history.com/#Tencent/HunyuanVideo&Date">
<picture>
<source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=Tencent/HunyuanVideo&type=Date&theme=dark" />
<source media="(prefers-color-scheme: light)" srcset="https://api.star-history.com/svg?repos=Tencent/HunyuanVideo&type=Date" />
<img alt="Star History Chart" src="https://api.star-history.com/svg?repos=Tencent/HunyuanVideo&type=Date" />
</picture>
</a> -->
#!/bin/bash
cp modified/config.py /usr/local/lib/python3.10/site-packages/xfuser/config/
cp modified/config.py /usr/local/lib/python3.10/dist-packages/xfuser/config/
cp modified/envs.py /usr/local/lib/python3.10/site-packages/xfuser/
cp modified/envs.py /usr/local/lib/python3.10/dist-packages/xfuser/
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment