Commit 37c8cebc authored by Sugon_ldc's avatar Sugon_ldc
Browse files

add new model

parents
Pipeline #318 failed with stages
in 0 seconds
cff-version: 1.2.0
message: "If you use this software, please cite it as below."
authors:
- name: "MMPose Contributors"
title: "OpenMMLab Pose Estimation Toolbox and Benchmark"
date-released: 2020-08-31
url: "https://github.com/open-mmlab/mmpose"
license: Apache-2.0
Copyright 2018-2020 Open-MMLab. All rights reserved.
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright 2018-2020 Open-MMLab.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
include requirements/*.txt
include mmpose/.mim/model-index.yml
recursive-include mmpose/.mim/configs *.py *.yml
recursive-include mmpose/.mim/tools *.py *.sh
recursive-include mmpose/.mim/demo *.py
<div align="center">
<img src="resources/mmpose-logo.png" width="450"/>
<div>&nbsp;</div>
<div align="center">
<b>OpenMMLab website</b>
<sup>
<a href="https://openmmlab.com">
<i>HOT</i>
</a>
</sup>
&nbsp;&nbsp;&nbsp;&nbsp;
<b>OpenMMLab platform</b>
<sup>
<a href="https://platform.openmmlab.com">
<i>TRY IT OUT</i>
</a>
</sup>
&nbsp;&nbsp;&nbsp;&nbsp;
<b>MMPose 1.0 Open Beta</b>
<sup>
<a href="https://mmpose.readthedocs.io/en/1.x/overview.html">
<i>JOIN</i>
</a>
</sup>
</div>
<div>&nbsp;</div>
[![Documentation](https://readthedocs.org/projects/mmpose/badge/?version=latest)](https://mmpose.readthedocs.io/en/latest/?badge=latest)
[![actions](https://github.com/open-mmlab/mmpose/workflows/build/badge.svg)](https://github.com/open-mmlab/mmpose/actions)
[![codecov](https://codecov.io/gh/open-mmlab/mmpose/branch/master/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmpose)
[![PyPI](https://img.shields.io/pypi/v/mmpose)](https://pypi.org/project/mmpose/)
[![LICENSE](https://img.shields.io/github/license/open-mmlab/mmpose.svg)](https://github.com/open-mmlab/mmpose/blob/master/LICENSE)
[![Average time to resolve an issue](https://isitmaintained.com/badge/resolution/open-mmlab/mmpose.svg)](https://github.com/open-mmlab/mmpose/issues)
[![Percentage of issues still open](https://isitmaintained.com/badge/open/open-mmlab/mmpose.svg)](https://github.com/open-mmlab/mmpose/issues)
[📘Documentation](https://mmpose.readthedocs.io/en/v0.29.0/) |
[🛠️Installation](https://mmpose.readthedocs.io/en/v0.29.0/install.html) |
[👀Model Zoo](https://mmpose.readthedocs.io/en/v0.29.0/modelzoo.html) |
[📜Papers](https://mmpose.readthedocs.io/en/v0.29.0/papers/algorithms.html) |
[🆕Update News](https://mmpose.readthedocs.io/en/v0.29.0/changelog.html) |
[🤔Reporting Issues](https://github.com/open-mmlab/mmpose/issues/new/choose)
</div>
<div align="center">
English | [简体中文](README_CN.md)
</div>
## Introduction
MMPose is an open-source toolbox for pose estimation based on PyTorch.
It is a part of the [OpenMMLab project](https://github.com/open-mmlab).
The master branch works with **PyTorch 1.5+**.
https://user-images.githubusercontent.com/15977946/124654387-0fd3c500-ded1-11eb-84f6-24eeddbf4d91.mp4
<details open>
<summary><b>Major Features</b></summary>
- **Support diverse tasks**
We support a wide spectrum of mainstream pose analysis tasks in current research community, including 2d multi-person human pose estimation, 2d hand pose estimation, 2d face landmark detection, 133 keypoint whole-body human pose estimation, 3d human mesh recovery, fashion landmark detection and animal pose estimation.
See [demo.md](demo/README.md) for more information.
- **Higher efficiency and higher accuracy**
MMPose implements multiple state-of-the-art (SOTA) deep learning models, including both top-down & bottom-up approaches. We achieve faster training speed and higher accuracy than other popular codebases, such as [HRNet](https://github.com/leoxiaobin/deep-high-resolution-net.pytorch).
See [benchmark.md](docs/en/benchmark.md) for more information.
- **Support for various datasets**
The toolbox directly supports multiple popular and representative datasets, COCO, AIC, MPII, MPII-TRB, OCHuman etc.
See [data_preparation.md](docs/en/data_preparation.md) for more information.
- **Well designed, tested and documented**
We decompose MMPose into different components and one can easily construct a customized
pose estimation framework by combining different modules.
We provide detailed documentation and API reference, as well as unittests.
</details>
## What's New
- 2022-10-14: MMPose [v0.29.0](https://github.com/open-mmlab/mmpose/releases/tag/v0.29.0) is released. Major updates include:
- Support [DEKR](https://arxiv.org/abs/2104.02300) (CVPR'2021). See the [model page](/configs/body/2d_kpt_sview_rgb_img/dekr/coco/hrnet_coco.md)
- Support [CID](https://openaccess.thecvf.com/content/CVPR2022/html/Wang_Contextual_Instance_Decoupling_for_Robust_Multi-Person_Pose_Estimation_CVPR_2022_paper.html) (CVPR'2022). See the [model page](/configs/body/2d_kpt_sview_rgb_img/cid/coco/hrnet_coco.md)
- 2022-09-01: **MMPose v1.0.0** beta has been released \[ [Code](https://github.com/open-mmlab/mmpose/tree/1.x) | [Docs](https://mmpose.readthedocs.io/en/1.x/) \]. Welcome to try it and your feedback will be greatly appreciated!
- 2022-02-28: MMPose model deployment is supported by [MMDeploy](https://github.com/open-mmlab/mmdeploy) v0.3.0
MMPose Webcam API is a simple yet powerful tool to develop interactive webcam applications with MMPose features.
- 2021-12-29: OpenMMLab Open Platform is online! Try our [pose estimation demo](https://platform.openmmlab.com/web-demo/demo/poseestimation)
## Installation
MMPose depends on [PyTorch](https://pytorch.org/) and [MMCV](https://github.com/open-mmlab/mmcv).
Below are quick steps for installation.
Please refer to [install.md](docs/en/install.md) for detailed installation guide.
```shell
conda create -n openmmlab python=3.8 pytorch=1.10 cudatoolkit=11.3 torchvision -c pytorch -y
conda activate openmmlab
pip3 install openmim
mim install mmcv-full
git clone https://github.com/open-mmlab/mmpose.git
cd mmpose
pip3 install -e .
```
## Getting Started
Please see [get_started.md](docs/en/get_started.md) for the basic usage of MMPose.
There are also tutorials:
- [learn about configs](docs/en/tutorials/0_config.md)
- [finetune model](docs/en/tutorials/1_finetune.md)
- [add new dataset](docs/en/tutorials/2_new_dataset.md)
- [customize data pipelines](docs/en/tutorials/3_data_pipeline.md)
- [add new modules](docs/en/tutorials/4_new_modules.md)
- [export a model to ONNX](docs/en/tutorials/5_export_model.md)
- [customize runtime settings](docs/en/tutorials/6_customize_runtime.md)
## Model Zoo
Results and models are available in the *README.md* of each method's config directory.
A summary can be found in the [Model Zoo](https://mmpose.readthedocs.io/en/latest/modelzoo.html) page.
<details open>
<summary><b>Supported algorithms:</b></summary>
- [x] [DeepPose](https://mmpose.readthedocs.io/en/latest/papers/algorithms.html#deeppose-cvpr-2014) (CVPR'2014)
- [x] [CPM](https://mmpose.readthedocs.io/en/latest/papers/backbones.html#cpm-cvpr-2016) (CVPR'2016)
- [x] [Hourglass](https://mmpose.readthedocs.io/en/latest/papers/backbones.html#hourglass-eccv-2016) (ECCV'2016)
- [x] [SimpleBaseline3D](https://mmpose.readthedocs.io/en/latest/papers/algorithms.html#simplebaseline3d-iccv-2017) (ICCV'2017)
- [x] [Associative Embedding](https://mmpose.readthedocs.io/en/latest/papers/algorithms.html#associative-embedding-nips-2017) (NeurIPS'2017)
- [x] [HMR](https://mmpose.readthedocs.io/en/latest/papers/algorithms.html#hmr-cvpr-2018) (CVPR'2018)
- [x] [SimpleBaseline2D](https://mmpose.readthedocs.io/en/latest/papers/algorithms.html#simplebaseline2d-eccv-2018) (ECCV'2018)
- [x] [HRNet](https://mmpose.readthedocs.io/en/latest/papers/backbones.html#hrnet-cvpr-2019) (CVPR'2019)
- [x] [VideoPose3D](https://mmpose.readthedocs.io/en/latest/papers/algorithms.html#videopose3d-cvpr-2019) (CVPR'2019)
- [x] [HRNetv2](https://mmpose.readthedocs.io/en/latest/papers/backbones.html#hrnetv2-tpami-2019) (TPAMI'2019)
- [x] [MSPN](https://mmpose.readthedocs.io/en/latest/papers/backbones.html#mspn-arxiv-2019) (ArXiv'2019)
- [x] [SCNet](https://mmpose.readthedocs.io/en/latest/papers/backbones.html#scnet-cvpr-2020) (CVPR'2020)
- [x] [HigherHRNet](https://mmpose.readthedocs.io/en/latest/papers/backbones.html#higherhrnet-cvpr-2020) (CVPR'2020)
- [x] [RSN](https://mmpose.readthedocs.io/en/latest/papers/backbones.html#rsn-eccv-2020) (ECCV'2020)
- [x] [InterNet](https://mmpose.readthedocs.io/en/latest/papers/algorithms.html#internet-eccv-2020) (ECCV'2020)
- [x] [VoxelPose](https://mmpose.readthedocs.io/en/latest/papers/algorithms.html#voxelpose-eccv-2020) (ECCV'2020)
- [x] [LiteHRNet](https://mmpose.readthedocs.io/en/latest/papers/backbones.html#litehrnet-cvpr-2021) (CVPR'2021)
- [x] [ViPNAS](https://mmpose.readthedocs.io/en/latest/papers/backbones.html#vipnas-cvpr-2021) (CVPR'2021)
- [x] [DEKR](https://mmpose.readthedocs.io/zh_CN/latest/papers/algorithms.html#dekr-cvpr-2021) (CVPR'2021)
- [x] [CID](https://mmpose.readthedocs.io/zh_CN/latest/papers/algorithms.html#cid-cvpr-2022) (CVPR'2022)
</details>
<details open>
<summary><b>Supported techniques:</b></summary>
- [x] [FPN](https://mmpose.readthedocs.io/en/latest/papers/techniques.html#fpn-cvpr-2017) (CVPR'2017)
- [x] [FP16](https://mmpose.readthedocs.io/en/latest/papers/techniques.html#fp16-arxiv-2017) (ArXiv'2017)
- [x] [Wingloss](https://mmpose.readthedocs.io/en/latest/papers/techniques.html#wingloss-cvpr-2018) (CVPR'2018)
- [x] [AdaptiveWingloss](https://mmpose.readthedocs.io/en/latest/papers/techniques.html#adaptivewingloss-iccv-2019) (ICCV'2019)
- [x] [DarkPose](https://mmpose.readthedocs.io/en/latest/papers/techniques.html#darkpose-cvpr-2020) (CVPR'2020)
- [x] [UDP](https://mmpose.readthedocs.io/en/latest/papers/techniques.html#udp-cvpr-2020) (CVPR'2020)
- [x] [Albumentations](https://mmpose.readthedocs.io/en/latest/papers/techniques.html#albumentations-information-2020) (Information'2020)
- [x] [SoftWingloss](https://mmpose.readthedocs.io/en/latest/papers/techniques.html#softwingloss-tip-2021) (TIP'2021)
- [x] [SmoothNet](/configs/_base_/filters/smoothnet_h36m.md) (arXiv'2021)
- [x] [RLE](https://mmpose.readthedocs.io/en/latest/papers/techniques.html#rle-iccv-2021) (ICCV'2021)
</details>
<details open>
<summary><b>Supported <a href="https://mmpose.readthedocs.io/en/latest/datasets.html">datasets</a>:</b></summary>
- [x] [AFLW](https://mmpose.readthedocs.io/en/latest/papers/datasets.html#aflw-iccvw-2011) \[[homepage](https://www.tugraz.at/institute/icg/research/team-bischof/lrs/downloads/aflw/)\] (ICCVW'2011)
- [x] [sub-JHMDB](https://mmpose.readthedocs.io/en/latest/papers/datasets.html#jhmdb-iccv-2013) \[[homepage](http://jhmdb.is.tue.mpg.de/dataset)\] (ICCV'2013)
- [x] [COFW](https://mmpose.readthedocs.io/en/latest/papers/datasets.html#cofw-iccv-2013) \[[homepage](http://www.vision.caltech.edu/xpburgos/ICCV13/)\] (ICCV'2013)
- [x] [MPII](https://mmpose.readthedocs.io/en/latest/papers/datasets.html#mpii-cvpr-2014) \[[homepage](http://human-pose.mpi-inf.mpg.de/)\] (CVPR'2014)
- [x] [Human3.6M](https://mmpose.readthedocs.io/en/latest/papers/datasets.html#human3-6m-tpami-2014) \[[homepage](http://vision.imar.ro/human3.6m/description.php)\] (TPAMI'2014)
- [x] [COCO](https://mmpose.readthedocs.io/en/latest/papers/datasets.html#coco-eccv-2014) \[[homepage](http://cocodataset.org/)\] (ECCV'2014)
- [x] [CMU Panoptic](https://mmpose.readthedocs.io/en/latest/papers/datasets.html#cmu-panoptic-iccv-2015) \[[homepage](http://domedb.perception.cs.cmu.edu/)\] (ICCV'2015)
- [x] [DeepFashion](https://mmpose.readthedocs.io/en/latest/papers/datasets.html#deepfashion-cvpr-2016) \[[homepage](http://mmlab.ie.cuhk.edu.hk/projects/DeepFashion/LandmarkDetection.html)\] (CVPR'2016)
- [x] [DeepFashion2](https://mmpose.readthedocs.io/en/latest/papers/datasets.html#deepfashion2-cvpr-2019) \[[homepage](https://github.com/switchablenorms/DeepFashion2)\] (CVPR'2019)
- [x] [300W](https://mmpose.readthedocs.io/en/latest/papers/datasets.html#300w-imavis-2016) \[[homepage](https://ibug.doc.ic.ac.uk/resources/300-W/)\] (IMAVIS'2016)
- [x] [RHD](https://mmpose.readthedocs.io/en/latest/papers/datasets.html#rhd-iccv-2017) \[[homepage](https://lmb.informatik.uni-freiburg.de/resources/datasets/RenderedHandposeDataset.en.html)\] (ICCV'2017)
- [x] [CMU Panoptic HandDB](https://mmpose.readthedocs.io/en/latest/papers/datasets.html#cmu-panoptic-handdb-cvpr-2017) \[[homepage](http://domedb.perception.cs.cmu.edu/handdb.html)\] (CVPR'2017)
- [x] [AI Challenger](https://mmpose.readthedocs.io/en/latest/papers/datasets.html#ai-challenger-arxiv-2017) \[[homepage](https://github.com/AIChallenger/AI_Challenger_2017)\] (ArXiv'2017)
- [x] [MHP](https://mmpose.readthedocs.io/en/latest/papers/datasets.html#mhp-acm-mm-2018) \[[homepage](https://lv-mhp.github.io/dataset)\] (ACM MM'2018)
- [x] [WFLW](https://mmpose.readthedocs.io/en/latest/papers/datasets.html#wflw-cvpr-2018) \[[homepage](https://wywu.github.io/projects/LAB/WFLW.html)\] (CVPR'2018)
- [x] [PoseTrack18](https://mmpose.readthedocs.io/en/latest/papers/datasets.html#posetrack18-cvpr-2018) \[[homepage](https://posetrack.net/users/download.php)\] (CVPR'2018)
- [x] [OCHuman](https://mmpose.readthedocs.io/en/latest/papers/datasets.html#ochuman-cvpr-2019) \[[homepage](https://github.com/liruilong940607/OCHumanApi)\] (CVPR'2019)
- [x] [CrowdPose](https://mmpose.readthedocs.io/en/latest/papers/datasets.html#crowdpose-cvpr-2019) \[[homepage](https://github.com/Jeff-sjtu/CrowdPose)\] (CVPR'2019)
- [x] [MPII-TRB](https://mmpose.readthedocs.io/en/latest/papers/datasets.html#mpii-trb-iccv-2019) \[[homepage](https://github.com/kennymckormick/Triplet-Representation-of-human-Body)\] (ICCV'2019)
- [x] [FreiHand](https://mmpose.readthedocs.io/en/latest/papers/datasets.html#freihand-iccv-2019) \[[homepage](https://lmb.informatik.uni-freiburg.de/projects/freihand/)\] (ICCV'2019)
- [x] [Animal-Pose](https://mmpose.readthedocs.io/en/latest/papers/datasets.html#animal-pose-iccv-2019) \[[homepage](https://sites.google.com/view/animal-pose/)\] (ICCV'2019)
- [x] [OneHand10K](https://mmpose.readthedocs.io/en/latest/papers/datasets.html#onehand10k-tcsvt-2019) \[[homepage](https://www.yangangwang.com/papers/WANG-MCC-2018-10.html)\] (TCSVT'2019)
- [x] [Vinegar Fly](https://mmpose.readthedocs.io/en/latest/papers/datasets.html#vinegar-fly-nature-methods-2019) \[[homepage](https://github.com/jgraving/DeepPoseKit-Data)\] (Nature Methods'2019)
- [x] [Desert Locust](https://mmpose.readthedocs.io/en/latest/papers/datasets.html#desert-locust-elife-2019) \[[homepage](https://github.com/jgraving/DeepPoseKit-Data)\] (Elife'2019)
- [x] [Grévy’s Zebra](https://mmpose.readthedocs.io/en/latest/papers/datasets.html#grevys-zebra-elife-2019) \[[homepage](https://github.com/jgraving/DeepPoseKit-Data)\] (Elife'2019)
- [x] [ATRW](https://mmpose.readthedocs.io/en/latest/papers/datasets.html#atrw-acm-mm-2020) \[[homepage](https://cvwc2019.github.io/challenge.html)\] (ACM MM'2020)
- [x] [Halpe](https://mmpose.readthedocs.io/en/latest/papers/datasets.html#halpe-cvpr-2020) \[[homepage](https://github.com/Fang-Haoshu/Halpe-FullBody/)\] (CVPR'2020)
- [x] [COCO-WholeBody](https://mmpose.readthedocs.io/en/latest/papers/datasets.html#coco-wholebody-eccv-2020) \[[homepage](https://github.com/jin-s13/COCO-WholeBody/)\] (ECCV'2020)
- [x] [MacaquePose](https://mmpose.readthedocs.io/en/latest/papers/datasets.html#macaquepose-biorxiv-2020) \[[homepage](http://www.pri.kyoto-u.ac.jp/datasets/macaquepose/index.html)\] (bioRxiv'2020)
- [x] [InterHand2.6M](https://mmpose.readthedocs.io/en/latest/papers/datasets.html#interhand2-6m-eccv-2020) \[[homepage](https://mks0601.github.io/InterHand2.6M/)\] (ECCV'2020)
- [x] [AP-10K](https://mmpose.readthedocs.io/en/latest/papers/datasets.html#ap-10k-neurips-2021) \[[homepage](https://github.com/AlexTheBad/AP-10K)\] (NeurIPS'2021)
- [x] [Horse-10](https://mmpose.readthedocs.io/en/latest/papers/datasets.html#horse-10-wacv-2021) \[[homepage](http://www.mackenziemathislab.org/horse10)\] (WACV'2021)
</details>
<details open>
<summary><b>Supported backbones:</b></summary>
- [x] [AlexNet](https://mmpose.readthedocs.io/en/latest/papers/backbones.html#alexnet-neurips-2012) (NeurIPS'2012)
- [x] [VGG](https://mmpose.readthedocs.io/en/latest/papers/backbones.html#vgg-iclr-2015) (ICLR'2015)
- [x] [ResNet](https://mmpose.readthedocs.io/en/latest/papers/backbones.html#resnet-cvpr-2016) (CVPR'2016)
- [x] [ResNext](https://mmpose.readthedocs.io/en/latest/papers/backbones.html#resnext-cvpr-2017) (CVPR'2017)
- [x] [SEResNet](https://mmpose.readthedocs.io/en/latest/papers/backbones.html#seresnet-cvpr-2018) (CVPR'2018)
- [x] [ShufflenetV1](https://mmpose.readthedocs.io/en/latest/papers/backbones.html#shufflenetv1-cvpr-2018) (CVPR'2018)
- [x] [ShufflenetV2](https://mmpose.readthedocs.io/en/latest/papers/backbones.html#shufflenetv2-eccv-2018) (ECCV'2018)
- [x] [MobilenetV2](https://mmpose.readthedocs.io/en/latest/papers/backbones.html#mobilenetv2-cvpr-2018) (CVPR'2018)
- [x] [ResNetV1D](https://mmpose.readthedocs.io/en/latest/papers/backbones.html#resnetv1d-cvpr-2019) (CVPR'2019)
- [x] [ResNeSt](https://mmpose.readthedocs.io/en/latest/papers/backbones.html#resnest-arxiv-2020) (ArXiv'2020)
- [x] [Swin](https://mmpose.readthedocs.io/en/latest/papers/backbones.html#swin-cvpr-2021) (CVPR'2021)
- [x] [HRFormer](https://mmpose.readthedocs.io/en/latest/papers/backbones.html#hrformer-nips-2021) (NIPS'2021)
- [x] [PVT](https://mmpose.readthedocs.io/en/latest/papers/backbones.html#pvt-iccv-2021) (ICCV'2021)
- [x] [PVTV2](https://mmpose.readthedocs.io/en/latest/papers/backbones.html#pvtv2-cvmj-2022) (CVMJ'2022)
</details>
### Model Request
We will keep up with the latest progress of the community, and support more popular algorithms and frameworks. If you have any feature requests, please feel free to leave a comment in [MMPose Roadmap](https://github.com/open-mmlab/mmpose/issues/9).
### Benchmark
#### Accuracy and Training Speed
MMPose achieves superior of training speed and accuracy on the standard keypoint detection benchmarks like COCO. See more details at [benchmark.md](docs/en/benchmark.md).
#### Inference Speed
We summarize the model complexity and inference speed of major models in MMPose, including FLOPs, parameter counts and inference speeds on both CPU and GPU devices with different batch sizes. Please refer to [inference_speed_summary.md](docs/en/inference_speed_summary.md) for more details.
## Data Preparation
Please refer to [data_preparation.md](docs/en/data_preparation.md) for a general knowledge of data preparation.
## FAQ
Please refer to [FAQ](docs/en/faq.md) for frequently asked questions.
## Contributing
We appreciate all contributions to improve MMPose. Please refer to [CONTRIBUTING.md](.github/CONTRIBUTING.md) for the contributing guideline.
## Acknowledgement
MMPose is an open source project that is contributed by researchers and engineers from various colleges and companies.
We appreciate all the contributors who implement their methods or add new features, as well as users who give valuable feedbacks.
We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to reimplement existing methods and develop their own new models.
## Citation
If you find this project useful in your research, please consider cite:
```bibtex
@misc{mmpose2020,
title={OpenMMLab Pose Estimation Toolbox and Benchmark},
author={MMPose Contributors},
howpublished = {\url{https://github.com/open-mmlab/mmpose}},
year={2020}
}
```
## License
This project is released under the [Apache 2.0 license](LICENSE).
## Projects in OpenMMLab
- [MMCV](https://github.com/open-mmlab/mmcv): OpenMMLab foundational library for computer vision.
- [MIM](https://github.com/open-mmlab/mim): MIM installs OpenMMLab packages.
- [MMClassification](https://github.com/open-mmlab/mmclassification): OpenMMLab image classification toolbox and benchmark.
- [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab detection toolbox and benchmark.
- [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab's next-generation platform for general 3D object detection.
- [MMYOLO](https://github.com/open-mmlab/mmyolo): OpenMMLab YOLO series toolbox and benchmark
- [MMRotate](https://github.com/open-mmlab/mmrotate): OpenMMLab rotated object detection toolbox and benchmark.
- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab semantic segmentation toolbox and benchmark.
- [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab text detection, recognition, and understanding toolbox.
- [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab pose estimation toolbox and benchmark.
- [MMHuman3D](https://github.com/open-mmlab/mmhuman3d): OpenMMLab 3D human parametric model toolbox and benchmark.
- [MMSelfSup](https://github.com/open-mmlab/mmselfsup): OpenMMLab self-supervised learning toolbox and benchmark.
- [MMRazor](https://github.com/open-mmlab/mmrazor): OpenMMLab model compression toolbox and benchmark.
- [MMFewShot](https://github.com/open-mmlab/mmfewshot): OpenMMLab fewshot learning toolbox and benchmark.
- [MMAction2](https://github.com/open-mmlab/mmaction2): OpenMMLab's next-generation action understanding toolbox and benchmark.
- [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab video perception toolbox and benchmark.
- [MMFlow](https://github.com/open-mmlab/mmflow): OpenMMLab optical flow toolbox and benchmark.
- [MMEditing](https://github.com/open-mmlab/mmediting): OpenMMLab image and video editing toolbox.
- [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab image and video generative models toolbox.
- [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab Model Deployment Framework.
<div align="center">
<img src="resources/mmpose-logo.png" width="450"/>
<div>&nbsp;</div>
<div align="center">
<b><font size="5">OpenMMLab 官网</font></b>
<sup>
<a href="https://openmmlab.com">
<i><font size="4">HOT</font></i>
</a>
</sup>
&nbsp;&nbsp;&nbsp;&nbsp;
<b><font size="5">OpenMMLab 开放平台</font></b>
<sup>
<a href="https://platform.openmmlab.com">
<i><font size="4">TRY IT OUT</font></i>
</a>
</sup>
&nbsp;&nbsp;&nbsp;&nbsp;
<b><font size="5">MMPose 1.0 公测</font></b>
<sup>
<a href="https://mmpose.readthedocs.io/en/1.x/overview.html">
<i><font size="4">JOIN</font></i>
</a>
</sup>
</div>
<div>&nbsp;</div>
[![Documentation](https://readthedocs.org/projects/mmpose/badge/?version=latest)](https://mmpose.readthedocs.io/en/latest/?badge=latest)
[![actions](https://github.com/open-mmlab/mmpose/workflows/build/badge.svg)](https://github.com/open-mmlab/mmpose/actions)
[![codecov](https://codecov.io/gh/open-mmlab/mmpose/branch/master/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmpose)
[![PyPI](https://img.shields.io/pypi/v/mmpose)](https://pypi.org/project/mmpose/)
[![LICENSE](https://img.shields.io/github/license/open-mmlab/mmpose.svg)](https://github.com/open-mmlab/mmpose/blob/master/LICENSE)
[![Average time to resolve an issue](https://isitmaintained.com/badge/resolution/open-mmlab/mmpose.svg)](https://github.com/open-mmlab/mmpose/issues)
[![Percentage of issues still open](https://isitmaintained.com/badge/open/open-mmlab/mmpose.svg)](https://github.com/open-mmlab/mmpose/issues)
[📘文档](https://mmpose.readthedocs.io/zh_CN/v0.29.0/) |
[🛠️安装](https://mmpose.readthedocs.io/zh_CN/v0.29.0/install.html) |
[👀模型库](https://mmpose.readthedocs.io/zh_CN/v0.29.0/modelzoo.html) |
[📜论文库](https://mmpose.readthedocs.io/zh_CN/v0.29.0/papers/algorithms.html) |
[🆕更新日志](https://mmpose.readthedocs.io/en/v0.29.0/changelog.html) |
[🤔报告问题](https://github.com/open-mmlab/mmpose/issues/new/choose)
</div>
<div align="center">
[English](README.md) | 简体中文
</div>
## 简介
MMPose 是一款基于 PyTorch 的姿态分析的开源工具箱,是 [OpenMMLab](http://openmmlab.org/) 项目的成员之一。
主分支代码目前支持 **PyTorch 1.5 以上**的版本。
https://user-images.githubusercontent.com/15977946/124654387-0fd3c500-ded1-11eb-84f6-24eeddbf4d91.mp4
<details open>
<summary><b>主要特性</b></summary>
- **支持多种人体姿态分析相关任务**
MMPose 支持当前学界广泛关注的主流姿态分析任务:主要包括 2D多人姿态估计、2D手部姿态估计、2D人脸关键点检测、133关键点的全身人体姿态估计、3D人体形状恢复、服饰关键点检测、动物关键点检测等。
具体请参考 [功能演示](demo/README.md)
- **更高的精度和更快的速度**
MMPose 复现了多种学界最先进的人体姿态分析模型,包括“自顶向下”和“自底向上”两大类算法。MMPose 相比于其他主流的代码库,具有更高的模型精度和训练速度。
具体请参考 [基准测试](docs/en/benchmark.md)(英文)。
- **支持多样的数据集**
MMPose 支持了很多主流数据集的准备和构建,如 COCO、AIC、MPII、MPII-TRB、OCHuman 等。 具体请参考 [数据集准备](docs/en/data_preparation.md)
- **模块化设计**
MMPose 将统一的人体姿态分析框架解耦成不同的模块组件,通过组合不同的模块组件,用户可以便捷地构建自定义的人体姿态分析模型。
- **详尽的单元测试和文档**
MMPose 提供了详尽的说明文档,API 接口说明,全面的单元测试,以供社区参考。
</details>
## 最新进展
- 2022-10-14: MMPose [v0.29.0](https://github.com/open-mmlab/mmpose/releases/tag/v0.29.0) 已经发布,主要更新包括:
- 新增算法 [DEKR](https://arxiv.org/abs/2104.02300) (CVPR'2021). 详情请见 [模型页面](/configs/body/2d_kpt_sview_rgb_img/dekr/coco/hrnet_coco.md)
- 新增算法 [CID](https://openaccess.thecvf.com/content/CVPR2022/html/Wang_Contextual_Instance_Decoupling_for_Robust_Multi-Person_Pose_Estimation_CVPR_2022_paper.html) (CVPR'2022). 详情请见 [模型页面](/configs/body/2d_kpt_sview_rgb_img/cid/coco/hrnet_coco.md)
- 2022-09-01: **MMPose v1.0.0** 公测版本已经发布 \[ [Code](https://github.com/open-mmlab/mmpose/tree/1.x) | [Docs](https://mmpose.readthedocs.io/en/1.x/) \],欢迎尝试并提出宝贵意见
- 2022-02-28: [MMDeploy](https://github.com/open-mmlab/mmdeploy) v0.3.0 支持 MMPose 模型部署
- 2021-12-29: OpenMMLab 开放平台已经正式上线! 欢迎试用基于 MMPose 的[姿态估计 Demo](https://platform.openmmlab.com/web-demo/demo/poseestimation)
## 安装
MMPose 依赖 [PyTorch](https://pytorch.org/)[MMCV](https://github.com/open-mmlab/mmcv),以下是安装的简要步骤。
更详细的安装指南请参考 [install.md](docs/zh_cn/install.md)
```shell
conda create -n openmmlab python=3.8 pytorch=1.10 cudatoolkit=11.3 torchvision -c pytorch -y
conda activate openmmlab
pip3 install openmim
mim install mmcv-full
git clone https://github.com/open-mmlab/mmpose.git
cd mmpose
pip3 install -e .
```
## 教程
请参考 [get_started.md](docs/zh_cn/get_started.md) 了解 MMPose 的基本使用。
MMPose 也提供了其他更详细的教程:
- [如何编写配置文件](docs/zh_cn/tutorials/0_config.md)
- [如何微调模型](docs/zh_cn/tutorials/1_finetune.md)
- [如何增加新数据集](docs/zh_cn/tutorials/2_new_dataset.md)
- [如何设计数据处理流程](docs/zh_cn/tutorials/3_data_pipeline.md)
- [如何增加新模块](docs/zh_cn/tutorials/4_new_modules.md)
- [如何导出模型为 onnx 格式](docs/zh_cn/tutorials/5_export_model.md)
- [如何自定义运行配置](docs/zh_cn/tutorials/6_customize_runtime.md)
- [如何使用摄像头应用接口(Webcam API)](docs/zh_cn/tutorials/7_webcam_api.md)
## 模型库
各个模型的结果和设置都可以在对应的 config(配置)目录下的 *README.md* 中查看。
整体的概况也可也在 [模型库](https://mmpose.readthedocs.io/zh_CN/latest/modelzoo.html) 页面中查看。
<details open>
<summary><b>支持的算法</b></summary>
- [x] [DeepPose](https://mmpose.readthedocs.io/zh_CN/latest/papers/algorithms.html#deeppose-cvpr-2014) (CVPR'2014)
- [x] [CPM](https://mmpose.readthedocs.io/zh_CN/latest/papers/backbones.html#cpm-cvpr-2016) (CVPR'2016)
- [x] [Hourglass](https://mmpose.readthedocs.io/zh_CN/latest/papers/backbones.html#hourglass-eccv-2016) (ECCV'2016)
- [x] [SimpleBaseline3D](https://mmpose.readthedocs.io/zh_CN/latest/papers/algorithms.html#simplebaseline3d-iccv-2017) (ICCV'2017)
- [x] [Associative Embedding](https://mmpose.readthedocs.io/zh_CN/latest/papers/algorithms.html#associative-embedding-nips-2017) (NeurIPS'2017)
- [x] [HMR](https://mmpose.readthedocs.io/zh_CN/latest/papers/algorithms.html#hmr-cvpr-2018) (CVPR'2018)
- [x] [SimpleBaseline2D](https://mmpose.readthedocs.io/zh_CN/latest/papers/algorithms.html#simplebaseline2d-eccv-2018) (ECCV'2018)
- [x] [HRNet](https://mmpose.readthedocs.io/zh_CN/latest/papers/backbones.html#hrnet-cvpr-2019) (CVPR'2019)
- [x] [VideoPose3D](https://mmpose.readthedocs.io/zh_CN/latest/papers/algorithms.html#videopose3d-cvpr-2019) (CVPR'2019)
- [x] [HRNetv2](https://mmpose.readthedocs.io/zh_CN/latest/papers/backbones.html#hrnetv2-tpami-2019) (TPAMI'2019)
- [x] [MSPN](https://mmpose.readthedocs.io/zh_CN/latest/papers/backbones.html#mspn-arxiv-2019) (ArXiv'2019)
- [x] [SCNet](https://mmpose.readthedocs.io/zh_CN/latest/papers/backbones.html#scnet-cvpr-2020) (CVPR'2020)
- [x] [HigherHRNet](https://mmpose.readthedocs.io/zh_CN/latest/papers/backbones.html#higherhrnet-cvpr-2020) (CVPR'2020)
- [x] [RSN](https://mmpose.readthedocs.io/zh_CN/latest/papers/backbones.html#rsn-eccv-2020) (ECCV'2020)
- [x] [InterNet](https://mmpose.readthedocs.io/zh_CN/latest/papers/algorithms.html#internet-eccv-2020) (ECCV'2020)
- [x] [VoxelPose](https://mmpose.readthedocs.io/zh_CN/latest/papers/algorithms.html#voxelpose-eccv-2020) (ECCV'2020)
- [x] [LiteHRNet](https://mmpose.readthedocs.io/zh_CN/latest/papers/backbones.html#litehrnet-cvpr-2021) (CVPR'2021)
- [x] [ViPNAS](https://mmpose.readthedocs.io/zh_CN/latest/papers/backbones.html#vipnas-cvpr-2021) (CVPR'2021)
- [x] [DEKR](https://mmpose.readthedocs.io/zh_CN/latest/papers/algorithms.html#dekr-cvpr-2021) (CVPR'2021)
- [x] [CID](https://mmpose.readthedocs.io/zh_CN/latest/papers/algorithms.html#cid-cvpr-2022) (CVPR'2022)
</details>
<details open>
<summary><b>支持的技术</b></summary>
- [x] [FPN](https://mmpose.readthedocs.io/zh_CN/latest/papers/techniques.html#fpn-cvpr-2017) (CVPR'2017)
- [x] [FP16](https://mmpose.readthedocs.io/zh_CN/latest/papers/techniques.html#fp16-arxiv-2017) (ArXiv'2017)
- [x] [Wingloss](https://mmpose.readthedocs.io/zh_CN/latest/papers/techniques.html#wingloss-cvpr-2018) (CVPR'2018)
- [x] [AdaptiveWingloss](https://mmpose.readthedocs.io/zh_CN/latest/papers/techniques.html#adaptivewingloss-iccv-2019) (ICCV'2019)
- [x] [DarkPose](https://mmpose.readthedocs.io/zh_CN/latest/papers/techniques.html#darkpose-cvpr-2020) (CVPR'2020)
- [x] [UDP](https://mmpose.readthedocs.io/zh_CN/latest/papers/techniques.html#udp-cvpr-2020) (CVPR'2020)
- [x] [Albumentations](https://mmpose.readthedocs.io/zh_CN/latest/papers/techniques.html#albumentations-information-2020) (Information'2020)
- [x] [SoftWingloss](https://mmpose.readthedocs.io/zh_CN/latest/papers/techniques.html#softwingloss-tip-2021) (TIP'2021)
- [x] [SmoothNet](/configs/_base_/filters/smoothnet_h36m.md) (arXiv'2021)
- [x] [RLE](https://mmpose.readthedocs.io/zh_CN/latest/papers/techniques.html#rle-iccv-2021) (ICCV'2021)
</details>
<details open>
<summary><b><a href="https://mmpose.readthedocs.io/zh_CN/latest/datasets.html">支持的数据集</a></b></summary>
- [x] [AFLW](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#aflw-iccvw-2011) \[[homepage](https://www.tugraz.at/institute/icg/research/team-bischof/lrs/downloads/aflw/)\] (ICCVW'2011)
- [x] [sub-JHMDB](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#jhmdb-iccv-2013) \[[homepage](http://jhmdb.is.tue.mpg.de/dataset)\] (ICCV'2013)
- [x] [COFW](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#cofw-iccv-2013) \[[homepage](http://www.vision.caltech.edu/xpburgos/ICCV13/)\] (ICCV'2013)
- [x] [MPII](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#mpii-cvpr-2014) \[[homepage](http://human-pose.mpi-inf.mpg.de/)\] (CVPR'2014)
- [x] [Human3.6M](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#human3-6m-tpami-2014) \[[homepage](http://vision.imar.ro/human3.6m/description.php)\] (TPAMI'2014)
- [x] [COCO](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#coco-eccv-2014) \[[homepage](http://cocodataset.org/)\] (ECCV'2014)
- [x] [CMU Panoptic](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#cmu-panoptic-iccv-2015) (ICCV'2015)
- [x] [DeepFashion](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#deepfashion-cvpr-2016) \[[homepage](http://mmlab.ie.cuhk.edu.hk/projects/DeepFashion/LandmarkDetection.html)\] (CVPR'2016)
- [x] [DeepFashion2](https://mmpose.readthedocs.io/en/latest/papers/datasets.html#deepfashion2-cvpr-2019) \[[homepage](https://github.com/switchablenorms/DeepFashion2)\] (CVPR'2019)
- [x] [300W](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#300w-imavis-2016) \[[homepage](https://ibug.doc.ic.ac.uk/resources/300-W/)\] (IMAVIS'2016)
- [x] [RHD](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#rhd-iccv-2017) \[[homepage](https://lmb.informatik.uni-freiburg.de/resources/datasets/RenderedHandposeDataset.en.html)\] (ICCV'2017)
- [x] [CMU Panoptic](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#cmu-panoptic-iccv-2015) \[[homepage](http://domedb.perception.cs.cmu.edu/)\] (ICCV'2015)
- [x] [AI Challenger](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#ai-challenger-arxiv-2017) \[[homepage](https://github.com/AIChallenger/AI_Challenger_2017)\] (ArXiv'2017)
- [x] [MHP](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#mhp-acm-mm-2018) \[[homepage](https://lv-mhp.github.io/dataset)\] (ACM MM'2018)
- [x] [WFLW](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#wflw-cvpr-2018) \[[homepage](https://wywu.github.io/projects/LAB/WFLW.html)\] (CVPR'2018)
- [x] [PoseTrack18](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#posetrack18-cvpr-2018) \[[homepage](https://posetrack.net/users/download.php)\] (CVPR'2018)
- [x] [OCHuman](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#ochuman-cvpr-2019) \[[homepage](https://github.com/liruilong940607/OCHumanApi)\] (CVPR'2019)
- [x] [CrowdPose](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#crowdpose-cvpr-2019) \[[homepage](https://github.com/Jeff-sjtu/CrowdPose)\] (CVPR'2019)
- [x] [MPII-TRB](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#mpii-trb-iccv-2019) \[[homepage](https://github.com/kennymckormick/Triplet-Representation-of-human-Body)\] (ICCV'2019)
- [x] [FreiHand](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#freihand-iccv-2019) \[[homepage](https://lmb.informatik.uni-freiburg.de/projects/freihand/)\] (ICCV'2019)
- [x] [Animal-Pose](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#animal-pose-iccv-2019) \[[homepage](https://sites.google.com/view/animal-pose/)\] (ICCV'2019)
- [x] [OneHand10K](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#onehand10k-tcsvt-2019) \[[homepage](https://www.yangangwang.com/papers/WANG-MCC-2018-10.html)\] (TCSVT'2019)
- [x] [Vinegar Fly](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#vinegar-fly-nature-methods-2019) \[[homepage](https://github.com/jgraving/DeepPoseKit-Data)\] (Nature Methods'2019)
- [x] [Desert Locust](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#desert-locust-elife-2019) \[[homepage](https://github.com/jgraving/DeepPoseKit-Data)\] (Elife'2019)
- [x] [Grévy’s Zebra](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#grevys-zebra-elife-2019) \[[homepage](https://github.com/jgraving/DeepPoseKit-Data)\] (Elife'2019)
- [x] [ATRW](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#atrw-acm-mm-2020) \[[homepage](https://cvwc2019.github.io/challenge.html)\] (ACM MM'2020)
- [x] [Halpe](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#halpe-cvpr-2020) \[[homepage](https://github.com/Fang-Haoshu/Halpe-FullBody/)\] (CVPR'2020)
- [x] [COCO-WholeBody](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#coco-wholebody-eccv-2020) \[[homepage](https://github.com/jin-s13/COCO-WholeBody/)\] (ECCV'2020)
- [x] [MacaquePose](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#macaquepose-biorxiv-2020) \[[homepage](http://www.pri.kyoto-u.ac.jp/datasets/macaquepose/index.html)\] (bioRxiv'2020)
- [x] [InterHand2.6M](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#interhand2-6m-eccv-2020) \[[homepage](https://mks0601.github.io/InterHand2.6M/)\] (ECCV'2020)
- [x] [AP-10K](https://mmpose.readthedocs.io/en/latest/papers/datasets.html#ap-10k-neurips-2021) \[[homepage](https://github.com/AlexTheBad/AP-10K)\] (NeurIPS'2021)
- [x] [Horse-10](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#horse-10-wacv-2021) \[[homepage](http://www.mackenziemathislab.org/horse10)\] (WACV'2021)
</details>
<details>
<summary><b>支持的骨干网络</b></summary>
- [x] [AlexNet](https://mmpose.readthedocs.io/zh_CN/latest/papers/backbones.html#alexnet-neurips-2012) (NeurIPS'2012)
- [x] [VGG](https://mmpose.readthedocs.io/zh_CN/latest/papers/backbones.html#vgg-iclr-2015) (ICLR'2015)
- [x] [ResNet](https://mmpose.readthedocs.io/zh_CN/latest/papers/backbones.html#resnet-cvpr-2016) (CVPR'2016)
- [x] [ResNext](https://mmpose.readthedocs.io/zh_CN/latest/papers/backbones.html#resnext-cvpr-2017) (CVPR'2017)
- [x] [SEResNet](https://mmpose.readthedocs.io/zh_CN/latest/papers/backbones.html#seresnet-cvpr-2018) (CVPR'2018)
- [x] [ShufflenetV1](https://mmpose.readthedocs.io/zh_CN/latest/papers/backbones.html#shufflenetv1-cvpr-2018) (CVPR'2018)
- [x] [ShufflenetV2](https://mmpose.readthedocs.io/zh_CN/latest/papers/backbones.html#shufflenetv2-eccv-2018) (ECCV'2018)
- [x] [MobilenetV2](https://mmpose.readthedocs.io/zh_CN/latest/papers/backbones.html#mobilenetv2-cvpr-2018) (CVPR'2018)
- [x] [ResNetV1D](https://mmpose.readthedocs.io/zh_CN/latest/papers/backbones.html#resnetv1d-cvpr-2019) (CVPR'2019)
- [x] [ResNeSt](https://mmpose.readthedocs.io/zh_CN/latest/papers/backbones.html#resnest-arxiv-2020) (ArXiv'2020)
- [x] [Swin](https://mmpose.readthedocs.io/en/latest/papers/backbones.html#swin-cvpr-2021) (CVPR'2021)
- [x] [HRFormer](https://mmpose.readthedocs.io/zh_CN/latest/papers/backbones.html#hrformer-nips-2021) (NIPS'2021)
- [x] [PVT](https://mmpose.readthedocs.io/zh_CN/latest/papers/backbones.html#pvt-iccv-2021) (ICCV'2021)
- [x] [PVTV2](https://mmpose.readthedocs.io/zh_CN/latest/papers/backbones.html#pvtv2-cvmj-2022) (CVMJ'2022)
</details>
### 模型需求
我们将跟进学界的最新进展,并支持更多算法和框架。如果您对 MMPose 有任何功能需求,请随时在 [MMPose Roadmap](https://github.com/open-mmlab/mmpose/issues/9) 中留言。
### 基准测试
#### 训练精度和速度
MMPose 在主流关键点检测基准 COCO 上达到了优越的模型精度和训练速度。
详细信息可见 [基准测试](docs/en/benchmark.md)(英文)
#### 推理速度
我们总结了 MMPose 中主要模型的复杂度信息和推理速度,包括模型的计算复杂度、参数数量,以及以不同的批处理大小在 CPU 和 GPU 上的推理速度。
详细信息可见 [模型推理速度](docs/zh_cn/inference_speed_summary.md)
## 数据准备
请参考 [data_preparation.md](docs/en/data_preparation.md)(英文) 进行数据集准备。
## 常见问题
请参考 [FAQ](docs/zh_cn/faq.md) 了解其他用户的常见问题。
## 参与贡献
我们非常欢迎用户对于 MMPose 做出的任何贡献,可以参考 [CONTRIBUTION.md](.github/CONTRIBUTING.md) 文件了解更多细节。
## 致谢
MMPose 是一款由不同学校和公司共同贡献的开源项目。我们感谢所有为项目提供算法复现和新功能支持的贡献者,以及提供宝贵反馈的用户。
我们希望该工具箱和基准测试可以为社区提供灵活的代码工具,供用户复现现有算法并开发自己的新模型,从而不断为开源社区提供贡献。
## 引用
如果您觉得 MMPose 对您的研究有所帮助,请考虑引用它:
```bibtex
@misc{mmpose2020,
title={OpenMMLab Pose Estimation Toolbox and Benchmark},
author={MMPose Contributors},
howpublished = {\url{https://github.com/open-mmlab/mmpose}},
year={2020}
}
```
## 许可证
该项目采用 [Apache 2.0 license](LICENSE) 开源协议。
## OpenMMLab的其他项目
- [MMCV](https://github.com/open-mmlab/mmcv): OpenMMLab 计算机视觉基础库
- [MIM](https://github.com/open-mmlab/mim): MIM 是 OpenMMlab 项目、算法、模型的统一入口
- [MMClassification](https://github.com/open-mmlab/mmclassification): OpenMMLab 图像分类工具箱
- [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab 目标检测工具箱
- [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab 新一代通用 3D 目标检测平台
- [MMYOLO](https://github.com/open-mmlab/mmyolo): OpenMMLab YOLO 系列工具箱和基准测试
- [MMRotate](https://github.com/open-mmlab/mmrotate): OpenMMLab 旋转框检测工具箱与测试基准
- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab 语义分割工具箱
- [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab 全流程文字检测识别理解工具包
- [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab 姿态估计工具箱
- [MMHuman3D](https://github.com/open-mmlab/mmhuman3d): OpenMMLab 人体参数化模型工具箱与测试基准
- [MMSelfSup](https://github.com/open-mmlab/mmselfsup): OpenMMLab 自监督学习工具箱与测试基准
- [MMRazor](https://github.com/open-mmlab/mmrazor): OpenMMLab 模型压缩工具箱与测试基准
- [MMFewShot](https://github.com/open-mmlab/mmfewshot): OpenMMLab 少样本学习工具箱与测试基准
- [MMAction2](https://github.com/open-mmlab/mmaction2): OpenMMLab 新一代视频理解工具箱
- [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab 一体化视频目标感知平台
- [MMFlow](https://github.com/open-mmlab/mmflow): OpenMMLab 光流估计工具箱与测试基准
- [MMEditing](https://github.com/open-mmlab/mmediting): OpenMMLab 图像视频编辑工具箱
- [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab 图片视频生成模型工具箱
- [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab 模型部署框架
## 欢迎加入 OpenMMLab 社区
扫描下方的二维码可关注 OpenMMLab 团队的 [知乎官方账号](https://www.zhihu.com/people/openmmlab),联络 OpenMMLab [官方微信小助手](https://user-images.githubusercontent.com/25839884/205872898-e2e6009d-c6bb-4d27-8d07-117e697a3da8.jpg)或加入 OpenMMLab 团队的 [官方交流 QQ 群](https://jq.qq.com/?_wv=1027&k=K0QI8ByU)
<div align="center">
<img src="https://user-images.githubusercontent.com/25839884/205870927-39f4946d-8751-4219-a4c0-740117558fd7.jpg" height="400"><img src="https://user-images.githubusercontent.com/25839884/205872898-e2e6009d-c6bb-4d27-8d07-117e697a3da8.jpg" height="400"><img src="https://user-images.githubusercontent.com/25839884/203904835-62392033-02d4-4c73-a68c-c9e4c1e2b07f.jpg
" height="400">
</div>
我们会在 OpenMMLab 社区为大家
- 📢 分享 AI 框架的前沿核心技术
- 💻 解读 PyTorch 常用模块源码
- 📰 发布 OpenMMLab 的相关新闻
- 🚀 介绍 OpenMMLab 开发的前沿算法
- 🏃 获取更高效的问题答疑和意见反馈
- 🔥 提供与各行各业开发者充分交流的平台
干货满满 📘,等你来撩 💗,OpenMMLab 社区期待您的加入 👬
dataset_info = dict(
dataset_name='300w',
paper_info=dict(
author='Sagonas, Christos and Antonakos, Epameinondas '
'and Tzimiropoulos, Georgios and Zafeiriou, Stefanos '
'and Pantic, Maja',
title='300 faces in-the-wild challenge: '
'Database and results',
container='Image and vision computing',
year='2016',
homepage='https://ibug.doc.ic.ac.uk/resources/300-W/',
),
keypoint_info={
0:
dict(
name='kpt-0', id=0, color=[255, 255, 255], type='', swap='kpt-16'),
1:
dict(
name='kpt-1', id=1, color=[255, 255, 255], type='', swap='kpt-15'),
2:
dict(
name='kpt-2', id=2, color=[255, 255, 255], type='', swap='kpt-14'),
3:
dict(
name='kpt-3', id=3, color=[255, 255, 255], type='', swap='kpt-13'),
4:
dict(
name='kpt-4', id=4, color=[255, 255, 255], type='', swap='kpt-12'),
5:
dict(
name='kpt-5', id=5, color=[255, 255, 255], type='', swap='kpt-11'),
6:
dict(
name='kpt-6', id=6, color=[255, 255, 255], type='', swap='kpt-10'),
7:
dict(name='kpt-7', id=7, color=[255, 255, 255], type='', swap='kpt-9'),
8:
dict(name='kpt-8', id=8, color=[255, 255, 255], type='', swap=''),
9:
dict(name='kpt-9', id=9, color=[255, 255, 255], type='', swap='kpt-7'),
10:
dict(
name='kpt-10', id=10, color=[255, 255, 255], type='',
swap='kpt-6'),
11:
dict(
name='kpt-11', id=11, color=[255, 255, 255], type='',
swap='kpt-5'),
12:
dict(
name='kpt-12', id=12, color=[255, 255, 255], type='',
swap='kpt-4'),
13:
dict(
name='kpt-13', id=13, color=[255, 255, 255], type='',
swap='kpt-3'),
14:
dict(
name='kpt-14', id=14, color=[255, 255, 255], type='',
swap='kpt-2'),
15:
dict(
name='kpt-15', id=15, color=[255, 255, 255], type='',
swap='kpt-1'),
16:
dict(
name='kpt-16', id=16, color=[255, 255, 255], type='',
swap='kpt-0'),
17:
dict(
name='kpt-17',
id=17,
color=[255, 255, 255],
type='',
swap='kpt-26'),
18:
dict(
name='kpt-18',
id=18,
color=[255, 255, 255],
type='',
swap='kpt-25'),
19:
dict(
name='kpt-19',
id=19,
color=[255, 255, 255],
type='',
swap='kpt-24'),
20:
dict(
name='kpt-20',
id=20,
color=[255, 255, 255],
type='',
swap='kpt-23'),
21:
dict(
name='kpt-21',
id=21,
color=[255, 255, 255],
type='',
swap='kpt-22'),
22:
dict(
name='kpt-22',
id=22,
color=[255, 255, 255],
type='',
swap='kpt-21'),
23:
dict(
name='kpt-23',
id=23,
color=[255, 255, 255],
type='',
swap='kpt-20'),
24:
dict(
name='kpt-24',
id=24,
color=[255, 255, 255],
type='',
swap='kpt-19'),
25:
dict(
name='kpt-25',
id=25,
color=[255, 255, 255],
type='',
swap='kpt-18'),
26:
dict(
name='kpt-26',
id=26,
color=[255, 255, 255],
type='',
swap='kpt-17'),
27:
dict(name='kpt-27', id=27, color=[255, 255, 255], type='', swap=''),
28:
dict(name='kpt-28', id=28, color=[255, 255, 255], type='', swap=''),
29:
dict(name='kpt-29', id=29, color=[255, 255, 255], type='', swap=''),
30:
dict(name='kpt-30', id=30, color=[255, 255, 255], type='', swap=''),
31:
dict(
name='kpt-31',
id=31,
color=[255, 255, 255],
type='',
swap='kpt-35'),
32:
dict(
name='kpt-32',
id=32,
color=[255, 255, 255],
type='',
swap='kpt-34'),
33:
dict(name='kpt-33', id=33, color=[255, 255, 255], type='', swap=''),
34:
dict(
name='kpt-34',
id=34,
color=[255, 255, 255],
type='',
swap='kpt-32'),
35:
dict(
name='kpt-35',
id=35,
color=[255, 255, 255],
type='',
swap='kpt-31'),
36:
dict(
name='kpt-36',
id=36,
color=[255, 255, 255],
type='',
swap='kpt-45'),
37:
dict(
name='kpt-37',
id=37,
color=[255, 255, 255],
type='',
swap='kpt-44'),
38:
dict(
name='kpt-38',
id=38,
color=[255, 255, 255],
type='',
swap='kpt-43'),
39:
dict(
name='kpt-39',
id=39,
color=[255, 255, 255],
type='',
swap='kpt-42'),
40:
dict(
name='kpt-40',
id=40,
color=[255, 255, 255],
type='',
swap='kpt-47'),
41:
dict(
name='kpt-41',
id=41,
color=[255, 255, 255],
type='',
swap='kpt-46'),
42:
dict(
name='kpt-42',
id=42,
color=[255, 255, 255],
type='',
swap='kpt-39'),
43:
dict(
name='kpt-43',
id=43,
color=[255, 255, 255],
type='',
swap='kpt-38'),
44:
dict(
name='kpt-44',
id=44,
color=[255, 255, 255],
type='',
swap='kpt-37'),
45:
dict(
name='kpt-45',
id=45,
color=[255, 255, 255],
type='',
swap='kpt-36'),
46:
dict(
name='kpt-46',
id=46,
color=[255, 255, 255],
type='',
swap='kpt-41'),
47:
dict(
name='kpt-47',
id=47,
color=[255, 255, 255],
type='',
swap='kpt-40'),
48:
dict(
name='kpt-48',
id=48,
color=[255, 255, 255],
type='',
swap='kpt-54'),
49:
dict(
name='kpt-49',
id=49,
color=[255, 255, 255],
type='',
swap='kpt-53'),
50:
dict(
name='kpt-50',
id=50,
color=[255, 255, 255],
type='',
swap='kpt-52'),
51:
dict(name='kpt-51', id=51, color=[255, 255, 255], type='', swap=''),
52:
dict(
name='kpt-52',
id=52,
color=[255, 255, 255],
type='',
swap='kpt-50'),
53:
dict(
name='kpt-53',
id=53,
color=[255, 255, 255],
type='',
swap='kpt-49'),
54:
dict(
name='kpt-54',
id=54,
color=[255, 255, 255],
type='',
swap='kpt-48'),
55:
dict(
name='kpt-55',
id=55,
color=[255, 255, 255],
type='',
swap='kpt-59'),
56:
dict(
name='kpt-56',
id=56,
color=[255, 255, 255],
type='',
swap='kpt-58'),
57:
dict(name='kpt-57', id=57, color=[255, 255, 255], type='', swap=''),
58:
dict(
name='kpt-58',
id=58,
color=[255, 255, 255],
type='',
swap='kpt-56'),
59:
dict(
name='kpt-59',
id=59,
color=[255, 255, 255],
type='',
swap='kpt-55'),
60:
dict(
name='kpt-60',
id=60,
color=[255, 255, 255],
type='',
swap='kpt-64'),
61:
dict(
name='kpt-61',
id=61,
color=[255, 255, 255],
type='',
swap='kpt-63'),
62:
dict(name='kpt-62', id=62, color=[255, 255, 255], type='', swap=''),
63:
dict(
name='kpt-63',
id=63,
color=[255, 255, 255],
type='',
swap='kpt-61'),
64:
dict(
name='kpt-64',
id=64,
color=[255, 255, 255],
type='',
swap='kpt-60'),
65:
dict(
name='kpt-65',
id=65,
color=[255, 255, 255],
type='',
swap='kpt-67'),
66:
dict(name='kpt-66', id=66, color=[255, 255, 255], type='', swap=''),
67:
dict(
name='kpt-67',
id=67,
color=[255, 255, 255],
type='',
swap='kpt-65'),
},
skeleton_info={},
joint_weights=[1.] * 68,
sigmas=[])
dataset_info = dict(
dataset_name='aflw',
paper_info=dict(
author='Koestinger, Martin and Wohlhart, Paul and '
'Roth, Peter M and Bischof, Horst',
title='Annotated facial landmarks in the wild: '
'A large-scale, real-world database for facial '
'landmark localization',
container='2011 IEEE international conference on computer '
'vision workshops (ICCV workshops)',
year='2011',
homepage='https://www.tugraz.at/institute/icg/research/'
'team-bischof/lrs/downloads/aflw/',
),
keypoint_info={
0:
dict(name='kpt-0', id=0, color=[255, 255, 255], type='', swap='kpt-5'),
1:
dict(name='kpt-1', id=1, color=[255, 255, 255], type='', swap='kpt-4'),
2:
dict(name='kpt-2', id=2, color=[255, 255, 255], type='', swap='kpt-3'),
3:
dict(name='kpt-3', id=3, color=[255, 255, 255], type='', swap='kpt-2'),
4:
dict(name='kpt-4', id=4, color=[255, 255, 255], type='', swap='kpt-1'),
5:
dict(name='kpt-5', id=5, color=[255, 255, 255], type='', swap='kpt-0'),
6:
dict(
name='kpt-6', id=6, color=[255, 255, 255], type='', swap='kpt-11'),
7:
dict(
name='kpt-7', id=7, color=[255, 255, 255], type='', swap='kpt-10'),
8:
dict(name='kpt-8', id=8, color=[255, 255, 255], type='', swap='kpt-9'),
9:
dict(name='kpt-9', id=9, color=[255, 255, 255], type='', swap='kpt-8'),
10:
dict(
name='kpt-10', id=10, color=[255, 255, 255], type='',
swap='kpt-7'),
11:
dict(
name='kpt-11', id=11, color=[255, 255, 255], type='',
swap='kpt-6'),
12:
dict(
name='kpt-12',
id=12,
color=[255, 255, 255],
type='',
swap='kpt-14'),
13:
dict(name='kpt-13', id=13, color=[255, 255, 255], type='', swap=''),
14:
dict(
name='kpt-14',
id=14,
color=[255, 255, 255],
type='',
swap='kpt-12'),
15:
dict(
name='kpt-15',
id=15,
color=[255, 255, 255],
type='',
swap='kpt-17'),
16:
dict(name='kpt-16', id=16, color=[255, 255, 255], type='', swap=''),
17:
dict(
name='kpt-17',
id=17,
color=[255, 255, 255],
type='',
swap='kpt-15'),
18:
dict(name='kpt-18', id=18, color=[255, 255, 255], type='', swap='')
},
skeleton_info={},
joint_weights=[1.] * 19,
sigmas=[])
dataset_info = dict(
dataset_name='aic',
paper_info=dict(
author='Wu, Jiahong and Zheng, He and Zhao, Bo and '
'Li, Yixin and Yan, Baoming and Liang, Rui and '
'Wang, Wenjia and Zhou, Shipei and Lin, Guosen and '
'Fu, Yanwei and others',
title='Ai challenger: A large-scale dataset for going '
'deeper in image understanding',
container='arXiv',
year='2017',
homepage='https://github.com/AIChallenger/AI_Challenger_2017',
),
keypoint_info={
0:
dict(
name='right_shoulder',
id=0,
color=[255, 128, 0],
type='upper',
swap='left_shoulder'),
1:
dict(
name='right_elbow',
id=1,
color=[255, 128, 0],
type='upper',
swap='left_elbow'),
2:
dict(
name='right_wrist',
id=2,
color=[255, 128, 0],
type='upper',
swap='left_wrist'),
3:
dict(
name='left_shoulder',
id=3,
color=[0, 255, 0],
type='upper',
swap='right_shoulder'),
4:
dict(
name='left_elbow',
id=4,
color=[0, 255, 0],
type='upper',
swap='right_elbow'),
5:
dict(
name='left_wrist',
id=5,
color=[0, 255, 0],
type='upper',
swap='right_wrist'),
6:
dict(
name='right_hip',
id=6,
color=[255, 128, 0],
type='lower',
swap='left_hip'),
7:
dict(
name='right_knee',
id=7,
color=[255, 128, 0],
type='lower',
swap='left_knee'),
8:
dict(
name='right_ankle',
id=8,
color=[255, 128, 0],
type='lower',
swap='left_ankle'),
9:
dict(
name='left_hip',
id=9,
color=[0, 255, 0],
type='lower',
swap='right_hip'),
10:
dict(
name='left_knee',
id=10,
color=[0, 255, 0],
type='lower',
swap='right_knee'),
11:
dict(
name='left_ankle',
id=11,
color=[0, 255, 0],
type='lower',
swap='right_ankle'),
12:
dict(
name='head_top',
id=12,
color=[51, 153, 255],
type='upper',
swap=''),
13:
dict(name='neck', id=13, color=[51, 153, 255], type='upper', swap='')
},
skeleton_info={
0:
dict(link=('right_wrist', 'right_elbow'), id=0, color=[255, 128, 0]),
1: dict(
link=('right_elbow', 'right_shoulder'), id=1, color=[255, 128, 0]),
2: dict(link=('right_shoulder', 'neck'), id=2, color=[51, 153, 255]),
3: dict(link=('neck', 'left_shoulder'), id=3, color=[51, 153, 255]),
4: dict(link=('left_shoulder', 'left_elbow'), id=4, color=[0, 255, 0]),
5: dict(link=('left_elbow', 'left_wrist'), id=5, color=[0, 255, 0]),
6: dict(link=('right_ankle', 'right_knee'), id=6, color=[255, 128, 0]),
7: dict(link=('right_knee', 'right_hip'), id=7, color=[255, 128, 0]),
8: dict(link=('right_hip', 'left_hip'), id=8, color=[51, 153, 255]),
9: dict(link=('left_hip', 'left_knee'), id=9, color=[0, 255, 0]),
10: dict(link=('left_knee', 'left_ankle'), id=10, color=[0, 255, 0]),
11: dict(link=('head_top', 'neck'), id=11, color=[51, 153, 255]),
12: dict(
link=('right_shoulder', 'right_hip'), id=12, color=[51, 153, 255]),
13:
dict(link=('left_shoulder', 'left_hip'), id=13, color=[51, 153, 255])
},
joint_weights=[
1., 1.2, 1.5, 1., 1.2, 1.5, 1., 1.2, 1.5, 1., 1.2, 1.5, 1., 1.
],
# 'https://github.com/AIChallenger/AI_Challenger_2017/blob/master/'
# 'Evaluation/keypoint_eval/keypoint_eval.py#L50'
# delta = 2 x sigma
sigmas=[
0.01388152, 0.01515228, 0.01057665, 0.01417709, 0.01497891, 0.01402144,
0.03909642, 0.03686941, 0.01981803, 0.03843971, 0.03412318, 0.02415081,
0.01291456, 0.01236173
])
dataset_info = dict(
dataset_name='animalpose',
paper_info=dict(
author='Cao, Jinkun and Tang, Hongyang and Fang, Hao-Shu and '
'Shen, Xiaoyong and Lu, Cewu and Tai, Yu-Wing',
title='Cross-Domain Adaptation for Animal Pose Estimation',
container='The IEEE International Conference on '
'Computer Vision (ICCV)',
year='2019',
homepage='https://sites.google.com/view/animal-pose/',
),
keypoint_info={
0:
dict(
name='L_Eye', id=0, color=[0, 255, 0], type='upper', swap='R_Eye'),
1:
dict(
name='R_Eye',
id=1,
color=[255, 128, 0],
type='upper',
swap='L_Eye'),
2:
dict(
name='L_EarBase',
id=2,
color=[0, 255, 0],
type='upper',
swap='R_EarBase'),
3:
dict(
name='R_EarBase',
id=3,
color=[255, 128, 0],
type='upper',
swap='L_EarBase'),
4:
dict(name='Nose', id=4, color=[51, 153, 255], type='upper', swap=''),
5:
dict(name='Throat', id=5, color=[51, 153, 255], type='upper', swap=''),
6:
dict(
name='TailBase', id=6, color=[51, 153, 255], type='lower',
swap=''),
7:
dict(
name='Withers', id=7, color=[51, 153, 255], type='upper', swap=''),
8:
dict(
name='L_F_Elbow',
id=8,
color=[0, 255, 0],
type='upper',
swap='R_F_Elbow'),
9:
dict(
name='R_F_Elbow',
id=9,
color=[255, 128, 0],
type='upper',
swap='L_F_Elbow'),
10:
dict(
name='L_B_Elbow',
id=10,
color=[0, 255, 0],
type='lower',
swap='R_B_Elbow'),
11:
dict(
name='R_B_Elbow',
id=11,
color=[255, 128, 0],
type='lower',
swap='L_B_Elbow'),
12:
dict(
name='L_F_Knee',
id=12,
color=[0, 255, 0],
type='upper',
swap='R_F_Knee'),
13:
dict(
name='R_F_Knee',
id=13,
color=[255, 128, 0],
type='upper',
swap='L_F_Knee'),
14:
dict(
name='L_B_Knee',
id=14,
color=[0, 255, 0],
type='lower',
swap='R_B_Knee'),
15:
dict(
name='R_B_Knee',
id=15,
color=[255, 128, 0],
type='lower',
swap='L_B_Knee'),
16:
dict(
name='L_F_Paw',
id=16,
color=[0, 255, 0],
type='upper',
swap='R_F_Paw'),
17:
dict(
name='R_F_Paw',
id=17,
color=[255, 128, 0],
type='upper',
swap='L_F_Paw'),
18:
dict(
name='L_B_Paw',
id=18,
color=[0, 255, 0],
type='lower',
swap='R_B_Paw'),
19:
dict(
name='R_B_Paw',
id=19,
color=[255, 128, 0],
type='lower',
swap='L_B_Paw')
},
skeleton_info={
0: dict(link=('L_Eye', 'R_Eye'), id=0, color=[51, 153, 255]),
1: dict(link=('L_Eye', 'L_EarBase'), id=1, color=[0, 255, 0]),
2: dict(link=('R_Eye', 'R_EarBase'), id=2, color=[255, 128, 0]),
3: dict(link=('L_Eye', 'Nose'), id=3, color=[0, 255, 0]),
4: dict(link=('R_Eye', 'Nose'), id=4, color=[255, 128, 0]),
5: dict(link=('Nose', 'Throat'), id=5, color=[51, 153, 255]),
6: dict(link=('Throat', 'Withers'), id=6, color=[51, 153, 255]),
7: dict(link=('TailBase', 'Withers'), id=7, color=[51, 153, 255]),
8: dict(link=('Throat', 'L_F_Elbow'), id=8, color=[0, 255, 0]),
9: dict(link=('L_F_Elbow', 'L_F_Knee'), id=9, color=[0, 255, 0]),
10: dict(link=('L_F_Knee', 'L_F_Paw'), id=10, color=[0, 255, 0]),
11: dict(link=('Throat', 'R_F_Elbow'), id=11, color=[255, 128, 0]),
12: dict(link=('R_F_Elbow', 'R_F_Knee'), id=12, color=[255, 128, 0]),
13: dict(link=('R_F_Knee', 'R_F_Paw'), id=13, color=[255, 128, 0]),
14: dict(link=('TailBase', 'L_B_Elbow'), id=14, color=[0, 255, 0]),
15: dict(link=('L_B_Elbow', 'L_B_Knee'), id=15, color=[0, 255, 0]),
16: dict(link=('L_B_Knee', 'L_B_Paw'), id=16, color=[0, 255, 0]),
17: dict(link=('TailBase', 'R_B_Elbow'), id=17, color=[255, 128, 0]),
18: dict(link=('R_B_Elbow', 'R_B_Knee'), id=18, color=[255, 128, 0]),
19: dict(link=('R_B_Knee', 'R_B_Paw'), id=19, color=[255, 128, 0])
},
joint_weights=[
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.2, 1.2, 1.2, 1.2,
1.5, 1.5, 1.5, 1.5
],
# Note: The original paper did not provide enough information about
# the sigmas. We modified from 'https://github.com/cocodataset/'
# 'cocoapi/blob/master/PythonAPI/pycocotools/cocoeval.py#L523'
sigmas=[
0.025, 0.025, 0.026, 0.035, 0.035, 0.10, 0.10, 0.10, 0.107, 0.107,
0.107, 0.107, 0.087, 0.087, 0.087, 0.087, 0.089, 0.089, 0.089, 0.089
])
dataset_info = dict(
dataset_name='ap10k',
paper_info=dict(
author='Yu, Hang and Xu, Yufei and Zhang, Jing and '
'Zhao, Wei and Guan, Ziyu and Tao, Dacheng',
title='AP-10K: A Benchmark for Animal Pose Estimation in the Wild',
container='35th Conference on Neural Information Processing Systems '
'(NeurIPS 2021) Track on Datasets and Bench-marks.',
year='2021',
homepage='https://github.com/AlexTheBad/AP-10K',
),
keypoint_info={
0:
dict(
name='L_Eye', id=0, color=[0, 255, 0], type='upper', swap='R_Eye'),
1:
dict(
name='R_Eye',
id=1,
color=[255, 128, 0],
type='upper',
swap='L_Eye'),
2:
dict(name='Nose', id=2, color=[51, 153, 255], type='upper', swap=''),
3:
dict(name='Neck', id=3, color=[51, 153, 255], type='upper', swap=''),
4:
dict(
name='Root of tail',
id=4,
color=[51, 153, 255],
type='lower',
swap=''),
5:
dict(
name='L_Shoulder',
id=5,
color=[51, 153, 255],
type='upper',
swap='R_Shoulder'),
6:
dict(
name='L_Elbow',
id=6,
color=[51, 153, 255],
type='upper',
swap='R_Elbow'),
7:
dict(
name='L_F_Paw',
id=7,
color=[0, 255, 0],
type='upper',
swap='R_F_Paw'),
8:
dict(
name='R_Shoulder',
id=8,
color=[0, 255, 0],
type='upper',
swap='L_Shoulder'),
9:
dict(
name='R_Elbow',
id=9,
color=[255, 128, 0],
type='upper',
swap='L_Elbow'),
10:
dict(
name='R_F_Paw',
id=10,
color=[0, 255, 0],
type='lower',
swap='L_F_Paw'),
11:
dict(
name='L_Hip',
id=11,
color=[255, 128, 0],
type='lower',
swap='R_Hip'),
12:
dict(
name='L_Knee',
id=12,
color=[255, 128, 0],
type='lower',
swap='R_Knee'),
13:
dict(
name='L_B_Paw',
id=13,
color=[0, 255, 0],
type='lower',
swap='R_B_Paw'),
14:
dict(
name='R_Hip', id=14, color=[0, 255, 0], type='lower',
swap='L_Hip'),
15:
dict(
name='R_Knee',
id=15,
color=[0, 255, 0],
type='lower',
swap='L_Knee'),
16:
dict(
name='R_B_Paw',
id=16,
color=[0, 255, 0],
type='lower',
swap='L_B_Paw'),
},
skeleton_info={
0: dict(link=('L_Eye', 'R_Eye'), id=0, color=[0, 0, 255]),
1: dict(link=('L_Eye', 'Nose'), id=1, color=[0, 0, 255]),
2: dict(link=('R_Eye', 'Nose'), id=2, color=[0, 0, 255]),
3: dict(link=('Nose', 'Neck'), id=3, color=[0, 255, 0]),
4: dict(link=('Neck', 'Root of tail'), id=4, color=[0, 255, 0]),
5: dict(link=('Neck', 'L_Shoulder'), id=5, color=[0, 255, 255]),
6: dict(link=('L_Shoulder', 'L_Elbow'), id=6, color=[0, 255, 255]),
7: dict(link=('L_Elbow', 'L_F_Paw'), id=6, color=[0, 255, 255]),
8: dict(link=('Neck', 'R_Shoulder'), id=7, color=[6, 156, 250]),
9: dict(link=('R_Shoulder', 'R_Elbow'), id=8, color=[6, 156, 250]),
10: dict(link=('R_Elbow', 'R_F_Paw'), id=9, color=[6, 156, 250]),
11: dict(link=('Root of tail', 'L_Hip'), id=10, color=[0, 255, 255]),
12: dict(link=('L_Hip', 'L_Knee'), id=11, color=[0, 255, 255]),
13: dict(link=('L_Knee', 'L_B_Paw'), id=12, color=[0, 255, 255]),
14: dict(link=('Root of tail', 'R_Hip'), id=13, color=[6, 156, 250]),
15: dict(link=('R_Hip', 'R_Knee'), id=14, color=[6, 156, 250]),
16: dict(link=('R_Knee', 'R_B_Paw'), id=15, color=[6, 156, 250]),
},
joint_weights=[
1., 1., 1., 1., 1., 1., 1., 1.2, 1.2, 1.5, 1.5, 1., 1., 1.2, 1.2, 1.5,
1.5
],
sigmas=[
0.025, 0.025, 0.026, 0.035, 0.035, 0.079, 0.072, 0.062, 0.079, 0.072,
0.062, 0.107, 0.087, 0.089, 0.107, 0.087, 0.089
])
dataset_info = dict(
dataset_name='atrw',
paper_info=dict(
author='Li, Shuyuan and Li, Jianguo and Tang, Hanlin '
'and Qian, Rui and Lin, Weiyao',
title='ATRW: A Benchmark for Amur Tiger '
'Re-identification in the Wild',
container='Proceedings of the 28th ACM '
'International Conference on Multimedia',
year='2020',
homepage='https://cvwc2019.github.io/challenge.html',
),
keypoint_info={
0:
dict(
name='left_ear',
id=0,
color=[51, 153, 255],
type='upper',
swap='right_ear'),
1:
dict(
name='right_ear',
id=1,
color=[51, 153, 255],
type='upper',
swap='left_ear'),
2:
dict(name='nose', id=2, color=[51, 153, 255], type='upper', swap=''),
3:
dict(
name='right_shoulder',
id=3,
color=[255, 128, 0],
type='upper',
swap='left_shoulder'),
4:
dict(
name='right_front_paw',
id=4,
color=[255, 128, 0],
type='upper',
swap='left_front_paw'),
5:
dict(
name='left_shoulder',
id=5,
color=[0, 255, 0],
type='upper',
swap='right_shoulder'),
6:
dict(
name='left_front_paw',
id=6,
color=[0, 255, 0],
type='upper',
swap='right_front_paw'),
7:
dict(
name='right_hip',
id=7,
color=[255, 128, 0],
type='lower',
swap='left_hip'),
8:
dict(
name='right_knee',
id=8,
color=[255, 128, 0],
type='lower',
swap='left_knee'),
9:
dict(
name='right_back_paw',
id=9,
color=[255, 128, 0],
type='lower',
swap='left_back_paw'),
10:
dict(
name='left_hip',
id=10,
color=[0, 255, 0],
type='lower',
swap='right_hip'),
11:
dict(
name='left_knee',
id=11,
color=[0, 255, 0],
type='lower',
swap='right_knee'),
12:
dict(
name='left_back_paw',
id=12,
color=[0, 255, 0],
type='lower',
swap='right_back_paw'),
13:
dict(name='tail', id=13, color=[51, 153, 255], type='lower', swap=''),
14:
dict(
name='center', id=14, color=[51, 153, 255], type='lower', swap=''),
},
skeleton_info={
0:
dict(link=('left_ear', 'nose'), id=0, color=[51, 153, 255]),
1:
dict(link=('right_ear', 'nose'), id=1, color=[51, 153, 255]),
2:
dict(link=('nose', 'center'), id=2, color=[51, 153, 255]),
3:
dict(
link=('left_shoulder', 'left_front_paw'), id=3, color=[0, 255, 0]),
4:
dict(link=('left_shoulder', 'center'), id=4, color=[0, 255, 0]),
5:
dict(
link=('right_shoulder', 'right_front_paw'),
id=5,
color=[255, 128, 0]),
6:
dict(link=('right_shoulder', 'center'), id=6, color=[255, 128, 0]),
7:
dict(link=('tail', 'center'), id=7, color=[51, 153, 255]),
8:
dict(link=('right_back_paw', 'right_knee'), id=8, color=[255, 128, 0]),
9:
dict(link=('right_knee', 'right_hip'), id=9, color=[255, 128, 0]),
10:
dict(link=('right_hip', 'tail'), id=10, color=[255, 128, 0]),
11:
dict(link=('left_back_paw', 'left_knee'), id=11, color=[0, 255, 0]),
12:
dict(link=('left_knee', 'left_hip'), id=12, color=[0, 255, 0]),
13:
dict(link=('left_hip', 'tail'), id=13, color=[0, 255, 0]),
},
joint_weights=[1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
sigmas=[
0.0277, 0.0823, 0.0831, 0.0202, 0.0716, 0.0263, 0.0646, 0.0302, 0.0440,
0.0316, 0.0333, 0.0547, 0.0263, 0.0683, 0.0539
])
dataset_info = dict(
dataset_name='campus',
paper_info=dict(
author='Belagiannis, Vasileios and Amin, Sikandar and Andriluka, '
'Mykhaylo and Schiele, Bernt and Navab, Nassir and Ilic, Slobodan',
title='3D Pictorial Structures for Multiple Human Pose Estimation',
container='IEEE Computer Society Conference on Computer Vision and '
'Pattern Recognition (CVPR)',
year='2014',
homepage='http://campar.in.tum.de/Chair/MultiHumanPose',
),
keypoint_info={
0:
dict(
name='right_ankle',
id=0,
color=[255, 128, 0],
type='lower',
swap='left_ankle'),
1:
dict(
name='right_knee',
id=1,
color=[255, 128, 0],
type='lower',
swap='left_knee'),
2:
dict(
name='right_hip',
id=2,
color=[255, 128, 0],
type='lower',
swap='left_hip'),
3:
dict(
name='left_hip',
id=3,
color=[0, 255, 0],
type='lower',
swap='right_hip'),
4:
dict(
name='left_knee',
id=4,
color=[0, 255, 0],
type='lower',
swap='right_knee'),
5:
dict(
name='left_ankle',
id=5,
color=[0, 255, 0],
type='lower',
swap='right_ankle'),
6:
dict(
name='right_wrist',
id=6,
color=[255, 128, 0],
type='upper',
swap='left_wrist'),
7:
dict(
name='right_elbow',
id=7,
color=[255, 128, 0],
type='upper',
swap='left_elbow'),
8:
dict(
name='right_shoulder',
id=8,
color=[255, 128, 0],
type='upper',
swap='left_shoulder'),
9:
dict(
name='left_shoulder',
id=9,
color=[0, 255, 0],
type='upper',
swap='right_shoulder'),
10:
dict(
name='left_elbow',
id=10,
color=[0, 255, 0],
type='upper',
swap='right_elbow'),
11:
dict(
name='left_wrist',
id=11,
color=[0, 255, 0],
type='upper',
swap='right_wrist'),
12:
dict(
name='bottom_head',
id=12,
color=[51, 153, 255],
type='upper',
swap=''),
13:
dict(
name='top_head',
id=13,
color=[51, 153, 255],
type='upper',
swap=''),
},
skeleton_info={
0:
dict(link=('right_ankle', 'right_knee'), id=0, color=[255, 128, 0]),
1:
dict(link=('right_knee', 'right_hip'), id=1, color=[255, 128, 0]),
2:
dict(link=('left_hip', 'left_knee'), id=2, color=[0, 255, 0]),
3:
dict(link=('left_knee', 'left_ankle'), id=3, color=[0, 255, 0]),
4:
dict(link=('right_hip', 'left_hip'), id=4, color=[51, 153, 255]),
5:
dict(link=('right_wrist', 'right_elbow'), id=5, color=[255, 128, 0]),
6:
dict(
link=('right_elbow', 'right_shoulder'), id=6, color=[255, 128, 0]),
7:
dict(link=('left_shoulder', 'left_elbow'), id=7, color=[0, 255, 0]),
8:
dict(link=('left_elbow', 'left_wrist'), id=8, color=[0, 255, 0]),
9:
dict(link=('right_hip', 'right_shoulder'), id=9, color=[255, 128, 0]),
10:
dict(link=('left_hip', 'left_shoulder'), id=10, color=[0, 255, 0]),
11:
dict(
link=('right_shoulder', 'bottom_head'), id=11, color=[255, 128,
0]),
12:
dict(link=('left_shoulder', 'bottom_head'), id=12, color=[0, 255, 0]),
13:
dict(link=('bottom_head', 'top_head'), id=13, color=[51, 153, 255]),
},
joint_weights=[
1.5, 1.2, 1.0, 1.0, 1.2, 1.5, 1.5, 1.2, 1.0, 1.0, 1.2, 1.5, 1.0, 1.0
],
sigmas=[
0.089, 0.087, 0.107, 0.107, 0.087, 0.089, 0.062, 0.072, 0.079, 0.079,
0.072, 0.062, 0.026, 0.026
])
dataset_info = dict(
dataset_name='coco',
paper_info=dict(
author='Lin, Tsung-Yi and Maire, Michael and '
'Belongie, Serge and Hays, James and '
'Perona, Pietro and Ramanan, Deva and '
r'Doll{\'a}r, Piotr and Zitnick, C Lawrence',
title='Microsoft coco: Common objects in context',
container='European conference on computer vision',
year='2014',
homepage='http://cocodataset.org/',
),
keypoint_info={
0:
dict(name='nose', id=0, color=[51, 153, 255], type='upper', swap=''),
1:
dict(
name='left_eye',
id=1,
color=[51, 153, 255],
type='upper',
swap='right_eye'),
2:
dict(
name='right_eye',
id=2,
color=[51, 153, 255],
type='upper',
swap='left_eye'),
3:
dict(
name='left_ear',
id=3,
color=[51, 153, 255],
type='upper',
swap='right_ear'),
4:
dict(
name='right_ear',
id=4,
color=[51, 153, 255],
type='upper',
swap='left_ear'),
5:
dict(
name='left_shoulder',
id=5,
color=[0, 255, 0],
type='upper',
swap='right_shoulder'),
6:
dict(
name='right_shoulder',
id=6,
color=[255, 128, 0],
type='upper',
swap='left_shoulder'),
7:
dict(
name='left_elbow',
id=7,
color=[0, 255, 0],
type='upper',
swap='right_elbow'),
8:
dict(
name='right_elbow',
id=8,
color=[255, 128, 0],
type='upper',
swap='left_elbow'),
9:
dict(
name='left_wrist',
id=9,
color=[0, 255, 0],
type='upper',
swap='right_wrist'),
10:
dict(
name='right_wrist',
id=10,
color=[255, 128, 0],
type='upper',
swap='left_wrist'),
11:
dict(
name='left_hip',
id=11,
color=[0, 255, 0],
type='lower',
swap='right_hip'),
12:
dict(
name='right_hip',
id=12,
color=[255, 128, 0],
type='lower',
swap='left_hip'),
13:
dict(
name='left_knee',
id=13,
color=[0, 255, 0],
type='lower',
swap='right_knee'),
14:
dict(
name='right_knee',
id=14,
color=[255, 128, 0],
type='lower',
swap='left_knee'),
15:
dict(
name='left_ankle',
id=15,
color=[0, 255, 0],
type='lower',
swap='right_ankle'),
16:
dict(
name='right_ankle',
id=16,
color=[255, 128, 0],
type='lower',
swap='left_ankle')
},
skeleton_info={
0:
dict(link=('left_ankle', 'left_knee'), id=0, color=[0, 255, 0]),
1:
dict(link=('left_knee', 'left_hip'), id=1, color=[0, 255, 0]),
2:
dict(link=('right_ankle', 'right_knee'), id=2, color=[255, 128, 0]),
3:
dict(link=('right_knee', 'right_hip'), id=3, color=[255, 128, 0]),
4:
dict(link=('left_hip', 'right_hip'), id=4, color=[51, 153, 255]),
5:
dict(link=('left_shoulder', 'left_hip'), id=5, color=[51, 153, 255]),
6:
dict(link=('right_shoulder', 'right_hip'), id=6, color=[51, 153, 255]),
7:
dict(
link=('left_shoulder', 'right_shoulder'),
id=7,
color=[51, 153, 255]),
8:
dict(link=('left_shoulder', 'left_elbow'), id=8, color=[0, 255, 0]),
9:
dict(
link=('right_shoulder', 'right_elbow'), id=9, color=[255, 128, 0]),
10:
dict(link=('left_elbow', 'left_wrist'), id=10, color=[0, 255, 0]),
11:
dict(link=('right_elbow', 'right_wrist'), id=11, color=[255, 128, 0]),
12:
dict(link=('left_eye', 'right_eye'), id=12, color=[51, 153, 255]),
13:
dict(link=('nose', 'left_eye'), id=13, color=[51, 153, 255]),
14:
dict(link=('nose', 'right_eye'), id=14, color=[51, 153, 255]),
15:
dict(link=('left_eye', 'left_ear'), id=15, color=[51, 153, 255]),
16:
dict(link=('right_eye', 'right_ear'), id=16, color=[51, 153, 255]),
17:
dict(link=('left_ear', 'left_shoulder'), id=17, color=[51, 153, 255]),
18:
dict(
link=('right_ear', 'right_shoulder'), id=18, color=[51, 153, 255])
},
joint_weights=[
1., 1., 1., 1., 1., 1., 1., 1.2, 1.2, 1.5, 1.5, 1., 1., 1.2, 1.2, 1.5,
1.5
],
sigmas=[
0.026, 0.025, 0.025, 0.035, 0.035, 0.079, 0.079, 0.072, 0.072, 0.062,
0.062, 0.107, 0.107, 0.087, 0.087, 0.089, 0.089
])
dataset_info = dict(
dataset_name='coco_wholebody',
paper_info=dict(
author='Jin, Sheng and Xu, Lumin and Xu, Jin and '
'Wang, Can and Liu, Wentao and '
'Qian, Chen and Ouyang, Wanli and Luo, Ping',
title='Whole-Body Human Pose Estimation in the Wild',
container='Proceedings of the European '
'Conference on Computer Vision (ECCV)',
year='2020',
homepage='https://github.com/jin-s13/COCO-WholeBody/',
),
keypoint_info={
0:
dict(name='nose', id=0, color=[51, 153, 255], type='upper', swap=''),
1:
dict(
name='left_eye',
id=1,
color=[51, 153, 255],
type='upper',
swap='right_eye'),
2:
dict(
name='right_eye',
id=2,
color=[51, 153, 255],
type='upper',
swap='left_eye'),
3:
dict(
name='left_ear',
id=3,
color=[51, 153, 255],
type='upper',
swap='right_ear'),
4:
dict(
name='right_ear',
id=4,
color=[51, 153, 255],
type='upper',
swap='left_ear'),
5:
dict(
name='left_shoulder',
id=5,
color=[0, 255, 0],
type='upper',
swap='right_shoulder'),
6:
dict(
name='right_shoulder',
id=6,
color=[255, 128, 0],
type='upper',
swap='left_shoulder'),
7:
dict(
name='left_elbow',
id=7,
color=[0, 255, 0],
type='upper',
swap='right_elbow'),
8:
dict(
name='right_elbow',
id=8,
color=[255, 128, 0],
type='upper',
swap='left_elbow'),
9:
dict(
name='left_wrist',
id=9,
color=[0, 255, 0],
type='upper',
swap='right_wrist'),
10:
dict(
name='right_wrist',
id=10,
color=[255, 128, 0],
type='upper',
swap='left_wrist'),
11:
dict(
name='left_hip',
id=11,
color=[0, 255, 0],
type='lower',
swap='right_hip'),
12:
dict(
name='right_hip',
id=12,
color=[255, 128, 0],
type='lower',
swap='left_hip'),
13:
dict(
name='left_knee',
id=13,
color=[0, 255, 0],
type='lower',
swap='right_knee'),
14:
dict(
name='right_knee',
id=14,
color=[255, 128, 0],
type='lower',
swap='left_knee'),
15:
dict(
name='left_ankle',
id=15,
color=[0, 255, 0],
type='lower',
swap='right_ankle'),
16:
dict(
name='right_ankle',
id=16,
color=[255, 128, 0],
type='lower',
swap='left_ankle'),
17:
dict(
name='left_big_toe',
id=17,
color=[255, 128, 0],
type='lower',
swap='right_big_toe'),
18:
dict(
name='left_small_toe',
id=18,
color=[255, 128, 0],
type='lower',
swap='right_small_toe'),
19:
dict(
name='left_heel',
id=19,
color=[255, 128, 0],
type='lower',
swap='right_heel'),
20:
dict(
name='right_big_toe',
id=20,
color=[255, 128, 0],
type='lower',
swap='left_big_toe'),
21:
dict(
name='right_small_toe',
id=21,
color=[255, 128, 0],
type='lower',
swap='left_small_toe'),
22:
dict(
name='right_heel',
id=22,
color=[255, 128, 0],
type='lower',
swap='left_heel'),
23:
dict(
name='face-0',
id=23,
color=[255, 255, 255],
type='',
swap='face-16'),
24:
dict(
name='face-1',
id=24,
color=[255, 255, 255],
type='',
swap='face-15'),
25:
dict(
name='face-2',
id=25,
color=[255, 255, 255],
type='',
swap='face-14'),
26:
dict(
name='face-3',
id=26,
color=[255, 255, 255],
type='',
swap='face-13'),
27:
dict(
name='face-4',
id=27,
color=[255, 255, 255],
type='',
swap='face-12'),
28:
dict(
name='face-5',
id=28,
color=[255, 255, 255],
type='',
swap='face-11'),
29:
dict(
name='face-6',
id=29,
color=[255, 255, 255],
type='',
swap='face-10'),
30:
dict(
name='face-7',
id=30,
color=[255, 255, 255],
type='',
swap='face-9'),
31:
dict(name='face-8', id=31, color=[255, 255, 255], type='', swap=''),
32:
dict(
name='face-9',
id=32,
color=[255, 255, 255],
type='',
swap='face-7'),
33:
dict(
name='face-10',
id=33,
color=[255, 255, 255],
type='',
swap='face-6'),
34:
dict(
name='face-11',
id=34,
color=[255, 255, 255],
type='',
swap='face-5'),
35:
dict(
name='face-12',
id=35,
color=[255, 255, 255],
type='',
swap='face-4'),
36:
dict(
name='face-13',
id=36,
color=[255, 255, 255],
type='',
swap='face-3'),
37:
dict(
name='face-14',
id=37,
color=[255, 255, 255],
type='',
swap='face-2'),
38:
dict(
name='face-15',
id=38,
color=[255, 255, 255],
type='',
swap='face-1'),
39:
dict(
name='face-16',
id=39,
color=[255, 255, 255],
type='',
swap='face-0'),
40:
dict(
name='face-17',
id=40,
color=[255, 255, 255],
type='',
swap='face-26'),
41:
dict(
name='face-18',
id=41,
color=[255, 255, 255],
type='',
swap='face-25'),
42:
dict(
name='face-19',
id=42,
color=[255, 255, 255],
type='',
swap='face-24'),
43:
dict(
name='face-20',
id=43,
color=[255, 255, 255],
type='',
swap='face-23'),
44:
dict(
name='face-21',
id=44,
color=[255, 255, 255],
type='',
swap='face-22'),
45:
dict(
name='face-22',
id=45,
color=[255, 255, 255],
type='',
swap='face-21'),
46:
dict(
name='face-23',
id=46,
color=[255, 255, 255],
type='',
swap='face-20'),
47:
dict(
name='face-24',
id=47,
color=[255, 255, 255],
type='',
swap='face-19'),
48:
dict(
name='face-25',
id=48,
color=[255, 255, 255],
type='',
swap='face-18'),
49:
dict(
name='face-26',
id=49,
color=[255, 255, 255],
type='',
swap='face-17'),
50:
dict(name='face-27', id=50, color=[255, 255, 255], type='', swap=''),
51:
dict(name='face-28', id=51, color=[255, 255, 255], type='', swap=''),
52:
dict(name='face-29', id=52, color=[255, 255, 255], type='', swap=''),
53:
dict(name='face-30', id=53, color=[255, 255, 255], type='', swap=''),
54:
dict(
name='face-31',
id=54,
color=[255, 255, 255],
type='',
swap='face-35'),
55:
dict(
name='face-32',
id=55,
color=[255, 255, 255],
type='',
swap='face-34'),
56:
dict(name='face-33', id=56, color=[255, 255, 255], type='', swap=''),
57:
dict(
name='face-34',
id=57,
color=[255, 255, 255],
type='',
swap='face-32'),
58:
dict(
name='face-35',
id=58,
color=[255, 255, 255],
type='',
swap='face-31'),
59:
dict(
name='face-36',
id=59,
color=[255, 255, 255],
type='',
swap='face-45'),
60:
dict(
name='face-37',
id=60,
color=[255, 255, 255],
type='',
swap='face-44'),
61:
dict(
name='face-38',
id=61,
color=[255, 255, 255],
type='',
swap='face-43'),
62:
dict(
name='face-39',
id=62,
color=[255, 255, 255],
type='',
swap='face-42'),
63:
dict(
name='face-40',
id=63,
color=[255, 255, 255],
type='',
swap='face-47'),
64:
dict(
name='face-41',
id=64,
color=[255, 255, 255],
type='',
swap='face-46'),
65:
dict(
name='face-42',
id=65,
color=[255, 255, 255],
type='',
swap='face-39'),
66:
dict(
name='face-43',
id=66,
color=[255, 255, 255],
type='',
swap='face-38'),
67:
dict(
name='face-44',
id=67,
color=[255, 255, 255],
type='',
swap='face-37'),
68:
dict(
name='face-45',
id=68,
color=[255, 255, 255],
type='',
swap='face-36'),
69:
dict(
name='face-46',
id=69,
color=[255, 255, 255],
type='',
swap='face-41'),
70:
dict(
name='face-47',
id=70,
color=[255, 255, 255],
type='',
swap='face-40'),
71:
dict(
name='face-48',
id=71,
color=[255, 255, 255],
type='',
swap='face-54'),
72:
dict(
name='face-49',
id=72,
color=[255, 255, 255],
type='',
swap='face-53'),
73:
dict(
name='face-50',
id=73,
color=[255, 255, 255],
type='',
swap='face-52'),
74:
dict(name='face-51', id=74, color=[255, 255, 255], type='', swap=''),
75:
dict(
name='face-52',
id=75,
color=[255, 255, 255],
type='',
swap='face-50'),
76:
dict(
name='face-53',
id=76,
color=[255, 255, 255],
type='',
swap='face-49'),
77:
dict(
name='face-54',
id=77,
color=[255, 255, 255],
type='',
swap='face-48'),
78:
dict(
name='face-55',
id=78,
color=[255, 255, 255],
type='',
swap='face-59'),
79:
dict(
name='face-56',
id=79,
color=[255, 255, 255],
type='',
swap='face-58'),
80:
dict(name='face-57', id=80, color=[255, 255, 255], type='', swap=''),
81:
dict(
name='face-58',
id=81,
color=[255, 255, 255],
type='',
swap='face-56'),
82:
dict(
name='face-59',
id=82,
color=[255, 255, 255],
type='',
swap='face-55'),
83:
dict(
name='face-60',
id=83,
color=[255, 255, 255],
type='',
swap='face-64'),
84:
dict(
name='face-61',
id=84,
color=[255, 255, 255],
type='',
swap='face-63'),
85:
dict(name='face-62', id=85, color=[255, 255, 255], type='', swap=''),
86:
dict(
name='face-63',
id=86,
color=[255, 255, 255],
type='',
swap='face-61'),
87:
dict(
name='face-64',
id=87,
color=[255, 255, 255],
type='',
swap='face-60'),
88:
dict(
name='face-65',
id=88,
color=[255, 255, 255],
type='',
swap='face-67'),
89:
dict(name='face-66', id=89, color=[255, 255, 255], type='', swap=''),
90:
dict(
name='face-67',
id=90,
color=[255, 255, 255],
type='',
swap='face-65'),
91:
dict(
name='left_hand_root',
id=91,
color=[255, 255, 255],
type='',
swap='right_hand_root'),
92:
dict(
name='left_thumb1',
id=92,
color=[255, 128, 0],
type='',
swap='right_thumb1'),
93:
dict(
name='left_thumb2',
id=93,
color=[255, 128, 0],
type='',
swap='right_thumb2'),
94:
dict(
name='left_thumb3',
id=94,
color=[255, 128, 0],
type='',
swap='right_thumb3'),
95:
dict(
name='left_thumb4',
id=95,
color=[255, 128, 0],
type='',
swap='right_thumb4'),
96:
dict(
name='left_forefinger1',
id=96,
color=[255, 153, 255],
type='',
swap='right_forefinger1'),
97:
dict(
name='left_forefinger2',
id=97,
color=[255, 153, 255],
type='',
swap='right_forefinger2'),
98:
dict(
name='left_forefinger3',
id=98,
color=[255, 153, 255],
type='',
swap='right_forefinger3'),
99:
dict(
name='left_forefinger4',
id=99,
color=[255, 153, 255],
type='',
swap='right_forefinger4'),
100:
dict(
name='left_middle_finger1',
id=100,
color=[102, 178, 255],
type='',
swap='right_middle_finger1'),
101:
dict(
name='left_middle_finger2',
id=101,
color=[102, 178, 255],
type='',
swap='right_middle_finger2'),
102:
dict(
name='left_middle_finger3',
id=102,
color=[102, 178, 255],
type='',
swap='right_middle_finger3'),
103:
dict(
name='left_middle_finger4',
id=103,
color=[102, 178, 255],
type='',
swap='right_middle_finger4'),
104:
dict(
name='left_ring_finger1',
id=104,
color=[255, 51, 51],
type='',
swap='right_ring_finger1'),
105:
dict(
name='left_ring_finger2',
id=105,
color=[255, 51, 51],
type='',
swap='right_ring_finger2'),
106:
dict(
name='left_ring_finger3',
id=106,
color=[255, 51, 51],
type='',
swap='right_ring_finger3'),
107:
dict(
name='left_ring_finger4',
id=107,
color=[255, 51, 51],
type='',
swap='right_ring_finger4'),
108:
dict(
name='left_pinky_finger1',
id=108,
color=[0, 255, 0],
type='',
swap='right_pinky_finger1'),
109:
dict(
name='left_pinky_finger2',
id=109,
color=[0, 255, 0],
type='',
swap='right_pinky_finger2'),
110:
dict(
name='left_pinky_finger3',
id=110,
color=[0, 255, 0],
type='',
swap='right_pinky_finger3'),
111:
dict(
name='left_pinky_finger4',
id=111,
color=[0, 255, 0],
type='',
swap='right_pinky_finger4'),
112:
dict(
name='right_hand_root',
id=112,
color=[255, 255, 255],
type='',
swap='left_hand_root'),
113:
dict(
name='right_thumb1',
id=113,
color=[255, 128, 0],
type='',
swap='left_thumb1'),
114:
dict(
name='right_thumb2',
id=114,
color=[255, 128, 0],
type='',
swap='left_thumb2'),
115:
dict(
name='right_thumb3',
id=115,
color=[255, 128, 0],
type='',
swap='left_thumb3'),
116:
dict(
name='right_thumb4',
id=116,
color=[255, 128, 0],
type='',
swap='left_thumb4'),
117:
dict(
name='right_forefinger1',
id=117,
color=[255, 153, 255],
type='',
swap='left_forefinger1'),
118:
dict(
name='right_forefinger2',
id=118,
color=[255, 153, 255],
type='',
swap='left_forefinger2'),
119:
dict(
name='right_forefinger3',
id=119,
color=[255, 153, 255],
type='',
swap='left_forefinger3'),
120:
dict(
name='right_forefinger4',
id=120,
color=[255, 153, 255],
type='',
swap='left_forefinger4'),
121:
dict(
name='right_middle_finger1',
id=121,
color=[102, 178, 255],
type='',
swap='left_middle_finger1'),
122:
dict(
name='right_middle_finger2',
id=122,
color=[102, 178, 255],
type='',
swap='left_middle_finger2'),
123:
dict(
name='right_middle_finger3',
id=123,
color=[102, 178, 255],
type='',
swap='left_middle_finger3'),
124:
dict(
name='right_middle_finger4',
id=124,
color=[102, 178, 255],
type='',
swap='left_middle_finger4'),
125:
dict(
name='right_ring_finger1',
id=125,
color=[255, 51, 51],
type='',
swap='left_ring_finger1'),
126:
dict(
name='right_ring_finger2',
id=126,
color=[255, 51, 51],
type='',
swap='left_ring_finger2'),
127:
dict(
name='right_ring_finger3',
id=127,
color=[255, 51, 51],
type='',
swap='left_ring_finger3'),
128:
dict(
name='right_ring_finger4',
id=128,
color=[255, 51, 51],
type='',
swap='left_ring_finger4'),
129:
dict(
name='right_pinky_finger1',
id=129,
color=[0, 255, 0],
type='',
swap='left_pinky_finger1'),
130:
dict(
name='right_pinky_finger2',
id=130,
color=[0, 255, 0],
type='',
swap='left_pinky_finger2'),
131:
dict(
name='right_pinky_finger3',
id=131,
color=[0, 255, 0],
type='',
swap='left_pinky_finger3'),
132:
dict(
name='right_pinky_finger4',
id=132,
color=[0, 255, 0],
type='',
swap='left_pinky_finger4')
},
skeleton_info={
0:
dict(link=('left_ankle', 'left_knee'), id=0, color=[0, 255, 0]),
1:
dict(link=('left_knee', 'left_hip'), id=1, color=[0, 255, 0]),
2:
dict(link=('right_ankle', 'right_knee'), id=2, color=[255, 128, 0]),
3:
dict(link=('right_knee', 'right_hip'), id=3, color=[255, 128, 0]),
4:
dict(link=('left_hip', 'right_hip'), id=4, color=[51, 153, 255]),
5:
dict(link=('left_shoulder', 'left_hip'), id=5, color=[51, 153, 255]),
6:
dict(link=('right_shoulder', 'right_hip'), id=6, color=[51, 153, 255]),
7:
dict(
link=('left_shoulder', 'right_shoulder'),
id=7,
color=[51, 153, 255]),
8:
dict(link=('left_shoulder', 'left_elbow'), id=8, color=[0, 255, 0]),
9:
dict(
link=('right_shoulder', 'right_elbow'), id=9, color=[255, 128, 0]),
10:
dict(link=('left_elbow', 'left_wrist'), id=10, color=[0, 255, 0]),
11:
dict(link=('right_elbow', 'right_wrist'), id=11, color=[255, 128, 0]),
12:
dict(link=('left_eye', 'right_eye'), id=12, color=[51, 153, 255]),
13:
dict(link=('nose', 'left_eye'), id=13, color=[51, 153, 255]),
14:
dict(link=('nose', 'right_eye'), id=14, color=[51, 153, 255]),
15:
dict(link=('left_eye', 'left_ear'), id=15, color=[51, 153, 255]),
16:
dict(link=('right_eye', 'right_ear'), id=16, color=[51, 153, 255]),
17:
dict(link=('left_ear', 'left_shoulder'), id=17, color=[51, 153, 255]),
18:
dict(
link=('right_ear', 'right_shoulder'), id=18, color=[51, 153, 255]),
19:
dict(link=('left_ankle', 'left_big_toe'), id=19, color=[0, 255, 0]),
20:
dict(link=('left_ankle', 'left_small_toe'), id=20, color=[0, 255, 0]),
21:
dict(link=('left_ankle', 'left_heel'), id=21, color=[0, 255, 0]),
22:
dict(
link=('right_ankle', 'right_big_toe'), id=22, color=[255, 128, 0]),
23:
dict(
link=('right_ankle', 'right_small_toe'),
id=23,
color=[255, 128, 0]),
24:
dict(link=('right_ankle', 'right_heel'), id=24, color=[255, 128, 0]),
25:
dict(
link=('left_hand_root', 'left_thumb1'), id=25, color=[255, 128,
0]),
26:
dict(link=('left_thumb1', 'left_thumb2'), id=26, color=[255, 128, 0]),
27:
dict(link=('left_thumb2', 'left_thumb3'), id=27, color=[255, 128, 0]),
28:
dict(link=('left_thumb3', 'left_thumb4'), id=28, color=[255, 128, 0]),
29:
dict(
link=('left_hand_root', 'left_forefinger1'),
id=29,
color=[255, 153, 255]),
30:
dict(
link=('left_forefinger1', 'left_forefinger2'),
id=30,
color=[255, 153, 255]),
31:
dict(
link=('left_forefinger2', 'left_forefinger3'),
id=31,
color=[255, 153, 255]),
32:
dict(
link=('left_forefinger3', 'left_forefinger4'),
id=32,
color=[255, 153, 255]),
33:
dict(
link=('left_hand_root', 'left_middle_finger1'),
id=33,
color=[102, 178, 255]),
34:
dict(
link=('left_middle_finger1', 'left_middle_finger2'),
id=34,
color=[102, 178, 255]),
35:
dict(
link=('left_middle_finger2', 'left_middle_finger3'),
id=35,
color=[102, 178, 255]),
36:
dict(
link=('left_middle_finger3', 'left_middle_finger4'),
id=36,
color=[102, 178, 255]),
37:
dict(
link=('left_hand_root', 'left_ring_finger1'),
id=37,
color=[255, 51, 51]),
38:
dict(
link=('left_ring_finger1', 'left_ring_finger2'),
id=38,
color=[255, 51, 51]),
39:
dict(
link=('left_ring_finger2', 'left_ring_finger3'),
id=39,
color=[255, 51, 51]),
40:
dict(
link=('left_ring_finger3', 'left_ring_finger4'),
id=40,
color=[255, 51, 51]),
41:
dict(
link=('left_hand_root', 'left_pinky_finger1'),
id=41,
color=[0, 255, 0]),
42:
dict(
link=('left_pinky_finger1', 'left_pinky_finger2'),
id=42,
color=[0, 255, 0]),
43:
dict(
link=('left_pinky_finger2', 'left_pinky_finger3'),
id=43,
color=[0, 255, 0]),
44:
dict(
link=('left_pinky_finger3', 'left_pinky_finger4'),
id=44,
color=[0, 255, 0]),
45:
dict(
link=('right_hand_root', 'right_thumb1'),
id=45,
color=[255, 128, 0]),
46:
dict(
link=('right_thumb1', 'right_thumb2'), id=46, color=[255, 128, 0]),
47:
dict(
link=('right_thumb2', 'right_thumb3'), id=47, color=[255, 128, 0]),
48:
dict(
link=('right_thumb3', 'right_thumb4'), id=48, color=[255, 128, 0]),
49:
dict(
link=('right_hand_root', 'right_forefinger1'),
id=49,
color=[255, 153, 255]),
50:
dict(
link=('right_forefinger1', 'right_forefinger2'),
id=50,
color=[255, 153, 255]),
51:
dict(
link=('right_forefinger2', 'right_forefinger3'),
id=51,
color=[255, 153, 255]),
52:
dict(
link=('right_forefinger3', 'right_forefinger4'),
id=52,
color=[255, 153, 255]),
53:
dict(
link=('right_hand_root', 'right_middle_finger1'),
id=53,
color=[102, 178, 255]),
54:
dict(
link=('right_middle_finger1', 'right_middle_finger2'),
id=54,
color=[102, 178, 255]),
55:
dict(
link=('right_middle_finger2', 'right_middle_finger3'),
id=55,
color=[102, 178, 255]),
56:
dict(
link=('right_middle_finger3', 'right_middle_finger4'),
id=56,
color=[102, 178, 255]),
57:
dict(
link=('right_hand_root', 'right_ring_finger1'),
id=57,
color=[255, 51, 51]),
58:
dict(
link=('right_ring_finger1', 'right_ring_finger2'),
id=58,
color=[255, 51, 51]),
59:
dict(
link=('right_ring_finger2', 'right_ring_finger3'),
id=59,
color=[255, 51, 51]),
60:
dict(
link=('right_ring_finger3', 'right_ring_finger4'),
id=60,
color=[255, 51, 51]),
61:
dict(
link=('right_hand_root', 'right_pinky_finger1'),
id=61,
color=[0, 255, 0]),
62:
dict(
link=('right_pinky_finger1', 'right_pinky_finger2'),
id=62,
color=[0, 255, 0]),
63:
dict(
link=('right_pinky_finger2', 'right_pinky_finger3'),
id=63,
color=[0, 255, 0]),
64:
dict(
link=('right_pinky_finger3', 'right_pinky_finger4'),
id=64,
color=[0, 255, 0])
},
joint_weights=[1.] * 133,
# 'https://github.com/jin-s13/COCO-WholeBody/blob/master/'
# 'evaluation/myeval_wholebody.py#L175'
sigmas=[
0.026, 0.025, 0.025, 0.035, 0.035, 0.079, 0.079, 0.072, 0.072, 0.062,
0.062, 0.107, 0.107, 0.087, 0.087, 0.089, 0.089, 0.068, 0.066, 0.066,
0.092, 0.094, 0.094, 0.042, 0.043, 0.044, 0.043, 0.040, 0.035, 0.031,
0.025, 0.020, 0.023, 0.029, 0.032, 0.037, 0.038, 0.043, 0.041, 0.045,
0.013, 0.012, 0.011, 0.011, 0.012, 0.012, 0.011, 0.011, 0.013, 0.015,
0.009, 0.007, 0.007, 0.007, 0.012, 0.009, 0.008, 0.016, 0.010, 0.017,
0.011, 0.009, 0.011, 0.009, 0.007, 0.013, 0.008, 0.011, 0.012, 0.010,
0.034, 0.008, 0.008, 0.009, 0.008, 0.008, 0.007, 0.010, 0.008, 0.009,
0.009, 0.009, 0.007, 0.007, 0.008, 0.011, 0.008, 0.008, 0.008, 0.01,
0.008, 0.029, 0.022, 0.035, 0.037, 0.047, 0.026, 0.025, 0.024, 0.035,
0.018, 0.024, 0.022, 0.026, 0.017, 0.021, 0.021, 0.032, 0.02, 0.019,
0.022, 0.031, 0.029, 0.022, 0.035, 0.037, 0.047, 0.026, 0.025, 0.024,
0.035, 0.018, 0.024, 0.022, 0.026, 0.017, 0.021, 0.021, 0.032, 0.02,
0.019, 0.022, 0.031
])
dataset_info = dict(
dataset_name='coco_wholebody_face',
paper_info=dict(
author='Jin, Sheng and Xu, Lumin and Xu, Jin and '
'Wang, Can and Liu, Wentao and '
'Qian, Chen and Ouyang, Wanli and Luo, Ping',
title='Whole-Body Human Pose Estimation in the Wild',
container='Proceedings of the European '
'Conference on Computer Vision (ECCV)',
year='2020',
homepage='https://github.com/jin-s13/COCO-WholeBody/',
),
keypoint_info={
0:
dict(
name='face-0',
id=0,
color=[255, 255, 255],
type='',
swap='face-16'),
1:
dict(
name='face-1',
id=1,
color=[255, 255, 255],
type='',
swap='face-15'),
2:
dict(
name='face-2',
id=2,
color=[255, 255, 255],
type='',
swap='face-14'),
3:
dict(
name='face-3',
id=3,
color=[255, 255, 255],
type='',
swap='face-13'),
4:
dict(
name='face-4',
id=4,
color=[255, 255, 255],
type='',
swap='face-12'),
5:
dict(
name='face-5',
id=5,
color=[255, 255, 255],
type='',
swap='face-11'),
6:
dict(
name='face-6',
id=6,
color=[255, 255, 255],
type='',
swap='face-10'),
7:
dict(
name='face-7', id=7, color=[255, 255, 255], type='',
swap='face-9'),
8:
dict(name='face-8', id=8, color=[255, 255, 255], type='', swap=''),
9:
dict(
name='face-9', id=9, color=[255, 255, 255], type='',
swap='face-7'),
10:
dict(
name='face-10',
id=10,
color=[255, 255, 255],
type='',
swap='face-6'),
11:
dict(
name='face-11',
id=11,
color=[255, 255, 255],
type='',
swap='face-5'),
12:
dict(
name='face-12',
id=12,
color=[255, 255, 255],
type='',
swap='face-4'),
13:
dict(
name='face-13',
id=13,
color=[255, 255, 255],
type='',
swap='face-3'),
14:
dict(
name='face-14',
id=14,
color=[255, 255, 255],
type='',
swap='face-2'),
15:
dict(
name='face-15',
id=15,
color=[255, 255, 255],
type='',
swap='face-1'),
16:
dict(
name='face-16',
id=16,
color=[255, 255, 255],
type='',
swap='face-0'),
17:
dict(
name='face-17',
id=17,
color=[255, 255, 255],
type='',
swap='face-26'),
18:
dict(
name='face-18',
id=18,
color=[255, 255, 255],
type='',
swap='face-25'),
19:
dict(
name='face-19',
id=19,
color=[255, 255, 255],
type='',
swap='face-24'),
20:
dict(
name='face-20',
id=20,
color=[255, 255, 255],
type='',
swap='face-23'),
21:
dict(
name='face-21',
id=21,
color=[255, 255, 255],
type='',
swap='face-22'),
22:
dict(
name='face-22',
id=22,
color=[255, 255, 255],
type='',
swap='face-21'),
23:
dict(
name='face-23',
id=23,
color=[255, 255, 255],
type='',
swap='face-20'),
24:
dict(
name='face-24',
id=24,
color=[255, 255, 255],
type='',
swap='face-19'),
25:
dict(
name='face-25',
id=25,
color=[255, 255, 255],
type='',
swap='face-18'),
26:
dict(
name='face-26',
id=26,
color=[255, 255, 255],
type='',
swap='face-17'),
27:
dict(name='face-27', id=27, color=[255, 255, 255], type='', swap=''),
28:
dict(name='face-28', id=28, color=[255, 255, 255], type='', swap=''),
29:
dict(name='face-29', id=29, color=[255, 255, 255], type='', swap=''),
30:
dict(name='face-30', id=30, color=[255, 255, 255], type='', swap=''),
31:
dict(
name='face-31',
id=31,
color=[255, 255, 255],
type='',
swap='face-35'),
32:
dict(
name='face-32',
id=32,
color=[255, 255, 255],
type='',
swap='face-34'),
33:
dict(name='face-33', id=33, color=[255, 255, 255], type='', swap=''),
34:
dict(
name='face-34',
id=34,
color=[255, 255, 255],
type='',
swap='face-32'),
35:
dict(
name='face-35',
id=35,
color=[255, 255, 255],
type='',
swap='face-31'),
36:
dict(
name='face-36',
id=36,
color=[255, 255, 255],
type='',
swap='face-45'),
37:
dict(
name='face-37',
id=37,
color=[255, 255, 255],
type='',
swap='face-44'),
38:
dict(
name='face-38',
id=38,
color=[255, 255, 255],
type='',
swap='face-43'),
39:
dict(
name='face-39',
id=39,
color=[255, 255, 255],
type='',
swap='face-42'),
40:
dict(
name='face-40',
id=40,
color=[255, 255, 255],
type='',
swap='face-47'),
41:
dict(
name='face-41',
id=41,
color=[255, 255, 255],
type='',
swap='face-46'),
42:
dict(
name='face-42',
id=42,
color=[255, 255, 255],
type='',
swap='face-39'),
43:
dict(
name='face-43',
id=43,
color=[255, 255, 255],
type='',
swap='face-38'),
44:
dict(
name='face-44',
id=44,
color=[255, 255, 255],
type='',
swap='face-37'),
45:
dict(
name='face-45',
id=45,
color=[255, 255, 255],
type='',
swap='face-36'),
46:
dict(
name='face-46',
id=46,
color=[255, 255, 255],
type='',
swap='face-41'),
47:
dict(
name='face-47',
id=47,
color=[255, 255, 255],
type='',
swap='face-40'),
48:
dict(
name='face-48',
id=48,
color=[255, 255, 255],
type='',
swap='face-54'),
49:
dict(
name='face-49',
id=49,
color=[255, 255, 255],
type='',
swap='face-53'),
50:
dict(
name='face-50',
id=50,
color=[255, 255, 255],
type='',
swap='face-52'),
51:
dict(name='face-51', id=52, color=[255, 255, 255], type='', swap=''),
52:
dict(
name='face-52',
id=52,
color=[255, 255, 255],
type='',
swap='face-50'),
53:
dict(
name='face-53',
id=53,
color=[255, 255, 255],
type='',
swap='face-49'),
54:
dict(
name='face-54',
id=54,
color=[255, 255, 255],
type='',
swap='face-48'),
55:
dict(
name='face-55',
id=55,
color=[255, 255, 255],
type='',
swap='face-59'),
56:
dict(
name='face-56',
id=56,
color=[255, 255, 255],
type='',
swap='face-58'),
57:
dict(name='face-57', id=57, color=[255, 255, 255], type='', swap=''),
58:
dict(
name='face-58',
id=58,
color=[255, 255, 255],
type='',
swap='face-56'),
59:
dict(
name='face-59',
id=59,
color=[255, 255, 255],
type='',
swap='face-55'),
60:
dict(
name='face-60',
id=60,
color=[255, 255, 255],
type='',
swap='face-64'),
61:
dict(
name='face-61',
id=61,
color=[255, 255, 255],
type='',
swap='face-63'),
62:
dict(name='face-62', id=62, color=[255, 255, 255], type='', swap=''),
63:
dict(
name='face-63',
id=63,
color=[255, 255, 255],
type='',
swap='face-61'),
64:
dict(
name='face-64',
id=64,
color=[255, 255, 255],
type='',
swap='face-60'),
65:
dict(
name='face-65',
id=65,
color=[255, 255, 255],
type='',
swap='face-67'),
66:
dict(name='face-66', id=66, color=[255, 255, 255], type='', swap=''),
67:
dict(
name='face-67',
id=67,
color=[255, 255, 255],
type='',
swap='face-65')
},
skeleton_info={},
joint_weights=[1.] * 68,
# 'https://github.com/jin-s13/COCO-WholeBody/blob/master/'
# 'evaluation/myeval_wholebody.py#L177'
sigmas=[
0.042, 0.043, 0.044, 0.043, 0.040, 0.035, 0.031, 0.025, 0.020, 0.023,
0.029, 0.032, 0.037, 0.038, 0.043, 0.041, 0.045, 0.013, 0.012, 0.011,
0.011, 0.012, 0.012, 0.011, 0.011, 0.013, 0.015, 0.009, 0.007, 0.007,
0.007, 0.012, 0.009, 0.008, 0.016, 0.010, 0.017, 0.011, 0.009, 0.011,
0.009, 0.007, 0.013, 0.008, 0.011, 0.012, 0.010, 0.034, 0.008, 0.008,
0.009, 0.008, 0.008, 0.007, 0.010, 0.008, 0.009, 0.009, 0.009, 0.007,
0.007, 0.008, 0.011, 0.008, 0.008, 0.008, 0.01, 0.008
])
dataset_info = dict(
dataset_name='coco_wholebody_hand',
paper_info=dict(
author='Jin, Sheng and Xu, Lumin and Xu, Jin and '
'Wang, Can and Liu, Wentao and '
'Qian, Chen and Ouyang, Wanli and Luo, Ping',
title='Whole-Body Human Pose Estimation in the Wild',
container='Proceedings of the European '
'Conference on Computer Vision (ECCV)',
year='2020',
homepage='https://github.com/jin-s13/COCO-WholeBody/',
),
keypoint_info={
0:
dict(name='wrist', id=0, color=[255, 255, 255], type='', swap=''),
1:
dict(name='thumb1', id=1, color=[255, 128, 0], type='', swap=''),
2:
dict(name='thumb2', id=2, color=[255, 128, 0], type='', swap=''),
3:
dict(name='thumb3', id=3, color=[255, 128, 0], type='', swap=''),
4:
dict(name='thumb4', id=4, color=[255, 128, 0], type='', swap=''),
5:
dict(
name='forefinger1', id=5, color=[255, 153, 255], type='', swap=''),
6:
dict(
name='forefinger2', id=6, color=[255, 153, 255], type='', swap=''),
7:
dict(
name='forefinger3', id=7, color=[255, 153, 255], type='', swap=''),
8:
dict(
name='forefinger4', id=8, color=[255, 153, 255], type='', swap=''),
9:
dict(
name='middle_finger1',
id=9,
color=[102, 178, 255],
type='',
swap=''),
10:
dict(
name='middle_finger2',
id=10,
color=[102, 178, 255],
type='',
swap=''),
11:
dict(
name='middle_finger3',
id=11,
color=[102, 178, 255],
type='',
swap=''),
12:
dict(
name='middle_finger4',
id=12,
color=[102, 178, 255],
type='',
swap=''),
13:
dict(
name='ring_finger1', id=13, color=[255, 51, 51], type='', swap=''),
14:
dict(
name='ring_finger2', id=14, color=[255, 51, 51], type='', swap=''),
15:
dict(
name='ring_finger3', id=15, color=[255, 51, 51], type='', swap=''),
16:
dict(
name='ring_finger4', id=16, color=[255, 51, 51], type='', swap=''),
17:
dict(name='pinky_finger1', id=17, color=[0, 255, 0], type='', swap=''),
18:
dict(name='pinky_finger2', id=18, color=[0, 255, 0], type='', swap=''),
19:
dict(name='pinky_finger3', id=19, color=[0, 255, 0], type='', swap=''),
20:
dict(name='pinky_finger4', id=20, color=[0, 255, 0], type='', swap='')
},
skeleton_info={
0:
dict(link=('wrist', 'thumb1'), id=0, color=[255, 128, 0]),
1:
dict(link=('thumb1', 'thumb2'), id=1, color=[255, 128, 0]),
2:
dict(link=('thumb2', 'thumb3'), id=2, color=[255, 128, 0]),
3:
dict(link=('thumb3', 'thumb4'), id=3, color=[255, 128, 0]),
4:
dict(link=('wrist', 'forefinger1'), id=4, color=[255, 153, 255]),
5:
dict(link=('forefinger1', 'forefinger2'), id=5, color=[255, 153, 255]),
6:
dict(link=('forefinger2', 'forefinger3'), id=6, color=[255, 153, 255]),
7:
dict(link=('forefinger3', 'forefinger4'), id=7, color=[255, 153, 255]),
8:
dict(link=('wrist', 'middle_finger1'), id=8, color=[102, 178, 255]),
9:
dict(
link=('middle_finger1', 'middle_finger2'),
id=9,
color=[102, 178, 255]),
10:
dict(
link=('middle_finger2', 'middle_finger3'),
id=10,
color=[102, 178, 255]),
11:
dict(
link=('middle_finger3', 'middle_finger4'),
id=11,
color=[102, 178, 255]),
12:
dict(link=('wrist', 'ring_finger1'), id=12, color=[255, 51, 51]),
13:
dict(
link=('ring_finger1', 'ring_finger2'), id=13, color=[255, 51, 51]),
14:
dict(
link=('ring_finger2', 'ring_finger3'), id=14, color=[255, 51, 51]),
15:
dict(
link=('ring_finger3', 'ring_finger4'), id=15, color=[255, 51, 51]),
16:
dict(link=('wrist', 'pinky_finger1'), id=16, color=[0, 255, 0]),
17:
dict(
link=('pinky_finger1', 'pinky_finger2'), id=17, color=[0, 255, 0]),
18:
dict(
link=('pinky_finger2', 'pinky_finger3'), id=18, color=[0, 255, 0]),
19:
dict(
link=('pinky_finger3', 'pinky_finger4'), id=19, color=[0, 255, 0])
},
joint_weights=[1.] * 21,
sigmas=[
0.029, 0.022, 0.035, 0.037, 0.047, 0.026, 0.025, 0.024, 0.035, 0.018,
0.024, 0.022, 0.026, 0.017, 0.021, 0.021, 0.032, 0.02, 0.019, 0.022,
0.031
])
dataset_info = dict(
dataset_name='cofw',
paper_info=dict(
author='Burgos-Artizzu, Xavier P and Perona, '
r'Pietro and Doll{\'a}r, Piotr',
title='Robust face landmark estimation under occlusion',
container='Proceedings of the IEEE international '
'conference on computer vision',
year='2013',
homepage='http://www.vision.caltech.edu/xpburgos/ICCV13/',
),
keypoint_info={
0:
dict(name='kpt-0', id=0, color=[255, 255, 255], type='', swap='kpt-1'),
1:
dict(name='kpt-1', id=1, color=[255, 255, 255], type='', swap='kpt-0'),
2:
dict(name='kpt-2', id=2, color=[255, 255, 255], type='', swap='kpt-3'),
3:
dict(name='kpt-3', id=3, color=[255, 255, 255], type='', swap='kpt-2'),
4:
dict(name='kpt-4', id=4, color=[255, 255, 255], type='', swap='kpt-6'),
5:
dict(name='kpt-5', id=5, color=[255, 255, 255], type='', swap='kpt-7'),
6:
dict(name='kpt-6', id=6, color=[255, 255, 255], type='', swap='kpt-4'),
7:
dict(name='kpt-7', id=7, color=[255, 255, 255], type='', swap='kpt-5'),
8:
dict(name='kpt-8', id=8, color=[255, 255, 255], type='', swap='kpt-9'),
9:
dict(name='kpt-9', id=9, color=[255, 255, 255], type='', swap='kpt-8'),
10:
dict(
name='kpt-10',
id=10,
color=[255, 255, 255],
type='',
swap='kpt-11'),
11:
dict(
name='kpt-11',
id=11,
color=[255, 255, 255],
type='',
swap='kpt-10'),
12:
dict(
name='kpt-12',
id=12,
color=[255, 255, 255],
type='',
swap='kpt-14'),
13:
dict(
name='kpt-13',
id=13,
color=[255, 255, 255],
type='',
swap='kpt-15'),
14:
dict(
name='kpt-14',
id=14,
color=[255, 255, 255],
type='',
swap='kpt-12'),
15:
dict(
name='kpt-15',
id=15,
color=[255, 255, 255],
type='',
swap='kpt-13'),
16:
dict(
name='kpt-16',
id=16,
color=[255, 255, 255],
type='',
swap='kpt-17'),
17:
dict(
name='kpt-17',
id=17,
color=[255, 255, 255],
type='',
swap='kpt-16'),
18:
dict(
name='kpt-18',
id=18,
color=[255, 255, 255],
type='',
swap='kpt-19'),
19:
dict(
name='kpt-19',
id=19,
color=[255, 255, 255],
type='',
swap='kpt-18'),
20:
dict(name='kpt-20', id=20, color=[255, 255, 255], type='', swap=''),
21:
dict(name='kpt-21', id=21, color=[255, 255, 255], type='', swap=''),
22:
dict(
name='kpt-22',
id=22,
color=[255, 255, 255],
type='',
swap='kpt-23'),
23:
dict(
name='kpt-23',
id=23,
color=[255, 255, 255],
type='',
swap='kpt-22'),
24:
dict(name='kpt-24', id=24, color=[255, 255, 255], type='', swap=''),
25:
dict(name='kpt-25', id=25, color=[255, 255, 255], type='', swap=''),
26:
dict(name='kpt-26', id=26, color=[255, 255, 255], type='', swap=''),
27:
dict(name='kpt-27', id=27, color=[255, 255, 255], type='', swap=''),
28:
dict(name='kpt-28', id=28, color=[255, 255, 255], type='', swap='')
},
skeleton_info={},
joint_weights=[1.] * 29,
sigmas=[])
dataset_info = dict(
dataset_name='crowdpose',
paper_info=dict(
author='Li, Jiefeng and Wang, Can and Zhu, Hao and '
'Mao, Yihuan and Fang, Hao-Shu and Lu, Cewu',
title='CrowdPose: Efficient Crowded Scenes Pose Estimation '
'and A New Benchmark',
container='Proceedings of IEEE Conference on Computer '
'Vision and Pattern Recognition (CVPR)',
year='2019',
homepage='https://github.com/Jeff-sjtu/CrowdPose',
),
keypoint_info={
0:
dict(
name='left_shoulder',
id=0,
color=[51, 153, 255],
type='upper',
swap='right_shoulder'),
1:
dict(
name='right_shoulder',
id=1,
color=[51, 153, 255],
type='upper',
swap='left_shoulder'),
2:
dict(
name='left_elbow',
id=2,
color=[51, 153, 255],
type='upper',
swap='right_elbow'),
3:
dict(
name='right_elbow',
id=3,
color=[51, 153, 255],
type='upper',
swap='left_elbow'),
4:
dict(
name='left_wrist',
id=4,
color=[51, 153, 255],
type='upper',
swap='right_wrist'),
5:
dict(
name='right_wrist',
id=5,
color=[0, 255, 0],
type='upper',
swap='left_wrist'),
6:
dict(
name='left_hip',
id=6,
color=[255, 128, 0],
type='lower',
swap='right_hip'),
7:
dict(
name='right_hip',
id=7,
color=[0, 255, 0],
type='lower',
swap='left_hip'),
8:
dict(
name='left_knee',
id=8,
color=[255, 128, 0],
type='lower',
swap='right_knee'),
9:
dict(
name='right_knee',
id=9,
color=[0, 255, 0],
type='lower',
swap='left_knee'),
10:
dict(
name='left_ankle',
id=10,
color=[255, 128, 0],
type='lower',
swap='right_ankle'),
11:
dict(
name='right_ankle',
id=11,
color=[0, 255, 0],
type='lower',
swap='left_ankle'),
12:
dict(
name='top_head', id=12, color=[255, 128, 0], type='upper',
swap=''),
13:
dict(name='neck', id=13, color=[0, 255, 0], type='upper', swap='')
},
skeleton_info={
0:
dict(link=('left_ankle', 'left_knee'), id=0, color=[0, 255, 0]),
1:
dict(link=('left_knee', 'left_hip'), id=1, color=[0, 255, 0]),
2:
dict(link=('right_ankle', 'right_knee'), id=2, color=[255, 128, 0]),
3:
dict(link=('right_knee', 'right_hip'), id=3, color=[255, 128, 0]),
4:
dict(link=('left_hip', 'right_hip'), id=4, color=[51, 153, 255]),
5:
dict(link=('left_shoulder', 'left_hip'), id=5, color=[51, 153, 255]),
6:
dict(link=('right_shoulder', 'right_hip'), id=6, color=[51, 153, 255]),
7:
dict(
link=('left_shoulder', 'right_shoulder'),
id=7,
color=[51, 153, 255]),
8:
dict(link=('left_shoulder', 'left_elbow'), id=8, color=[0, 255, 0]),
9:
dict(
link=('right_shoulder', 'right_elbow'), id=9, color=[255, 128, 0]),
10:
dict(link=('left_elbow', 'left_wrist'), id=10, color=[0, 255, 0]),
11:
dict(link=('right_elbow', 'right_wrist'), id=11, color=[255, 128, 0]),
12:
dict(link=('top_head', 'neck'), id=12, color=[51, 153, 255]),
13:
dict(link=('right_shoulder', 'neck'), id=13, color=[51, 153, 255]),
14:
dict(link=('left_shoulder', 'neck'), id=14, color=[51, 153, 255])
},
joint_weights=[
0.2, 0.2, 0.2, 1.3, 1.5, 0.2, 1.3, 1.5, 0.2, 0.2, 0.5, 0.2, 0.2, 0.5
],
sigmas=[
0.079, 0.079, 0.072, 0.072, 0.062, 0.062, 0.107, 0.107, 0.087, 0.087,
0.089, 0.089, 0.079, 0.079
])
colors = dict(
sss=[255, 128, 0], # short_sleeve_shirt
lss=[255, 0, 128], # long_sleeved_shirt
sso=[128, 0, 255], # short_sleeved_outwear
lso=[0, 128, 255], # long_sleeved_outwear
vest=[0, 128, 128], # vest
sling=[0, 0, 128], # sling
shorts=[128, 128, 128], # shorts
trousers=[128, 0, 128], # trousers
skirt=[64, 128, 128], # skirt
ssd=[64, 64, 128], # short_sleeved_dress
lsd=[128, 64, 0], # long_sleeved_dress
vd=[128, 64, 255], # vest_dress
sd=[128, 64, 0], # sling_dress
)
dataset_info = dict(
dataset_name='deepfashion2',
paper_info=dict(
author='Yuying Ge and Ruimao Zhang and Lingyun Wu '
'and Xiaogang Wang and Xiaoou Tang and Ping Luo',
title='DeepFashion2: A Versatile Benchmark for '
'Detection, Pose Estimation, Segmentation and '
'Re-Identification of Clothing Images',
container='Proceedings of IEEE Conference on Computer '
'Vision and Pattern Recognition (CVPR)',
year='2019',
homepage='https://github.com/switchablenorms/DeepFashion2',
),
keypoint_info={
# short_sleeved_shirt
0:
dict(name='sss_kpt1', id=0, color=colors['sss'], type='', swap=''),
1:
dict(
name='sss_kpt2',
id=1,
color=colors['sss'],
type='',
swap='sss_kpt6'),
2:
dict(
name='sss_kpt3',
id=2,
color=colors['sss'],
type='',
swap='sss_kpt5'),
3:
dict(name='sss_kpt4', id=3, color=colors['sss'], type='', swap=''),
4:
dict(
name='sss_kpt5',
id=4,
color=colors['sss'],
type='',
swap='sss_kpt3'),
5:
dict(
name='sss_kpt6',
id=5,
color=colors['sss'],
type='',
swap='sss_kpt2'),
6:
dict(
name='sss_kpt7',
id=6,
color=colors['sss'],
type='',
swap='sss_kpt25'),
7:
dict(
name='sss_kpt8',
id=7,
color=colors['sss'],
type='',
swap='sss_kpt24'),
8:
dict(
name='sss_kpt9',
id=8,
color=colors['sss'],
type='',
swap='sss_kpt23'),
9:
dict(
name='sss_kpt10',
id=9,
color=colors['sss'],
type='',
swap='sss_kpt22'),
10:
dict(
name='sss_kpt11',
id=10,
color=colors['sss'],
type='',
swap='sss_kpt21'),
11:
dict(
name='sss_kpt12',
id=11,
color=colors['sss'],
type='',
swap='sss_kpt20'),
12:
dict(
name='sss_kpt13',
id=12,
color=colors['sss'],
type='',
swap='sss_kpt19'),
13:
dict(
name='sss_kpt14',
id=13,
color=colors['sss'],
type='',
swap='sss_kpt18'),
14:
dict(
name='sss_kpt15',
id=14,
color=colors['sss'],
type='',
swap='sss_kpt17'),
15:
dict(name='sss_kpt16', id=15, color=colors['sss'], type='', swap=''),
16:
dict(
name='sss_kpt17',
id=16,
color=colors['sss'],
type='',
swap='sss_kpt15'),
17:
dict(
name='sss_kpt18',
id=17,
color=colors['sss'],
type='',
swap='sss_kpt14'),
18:
dict(
name='sss_kpt19',
id=18,
color=colors['sss'],
type='',
swap='sss_kpt13'),
19:
dict(
name='sss_kpt20',
id=19,
color=colors['sss'],
type='',
swap='sss_kpt12'),
20:
dict(
name='sss_kpt21',
id=20,
color=colors['sss'],
type='',
swap='sss_kpt11'),
21:
dict(
name='sss_kpt22',
id=21,
color=colors['sss'],
type='',
swap='sss_kpt10'),
22:
dict(
name='sss_kpt23',
id=22,
color=colors['sss'],
type='',
swap='sss_kpt9'),
23:
dict(
name='sss_kpt24',
id=23,
color=colors['sss'],
type='',
swap='sss_kpt8'),
24:
dict(
name='sss_kpt25',
id=24,
color=colors['sss'],
type='',
swap='sss_kpt7'),
# long_sleeved_shirt
25:
dict(name='lss_kpt1', id=25, color=colors['lss'], type='', swap=''),
26:
dict(
name='lss_kpt2',
id=26,
color=colors['lss'],
type='',
swap='lss_kpt6'),
27:
dict(
name='lss_kpt3',
id=27,
color=colors['lss'],
type='',
swap='lss_kpt5'),
28:
dict(name='lss_kpt4', id=28, color=colors['lss'], type='', swap=''),
29:
dict(
name='lss_kpt5',
id=29,
color=colors['lss'],
type='',
swap='lss_kpt3'),
30:
dict(
name='lss_kpt6',
id=30,
color=colors['lss'],
type='',
swap='lss_kpt2'),
31:
dict(
name='lss_kpt7',
id=31,
color=colors['lss'],
type='',
swap='lss_kpt33'),
32:
dict(
name='lss_kpt8',
id=32,
color=colors['lss'],
type='',
swap='lss_kpt32'),
33:
dict(
name='lss_kpt9',
id=33,
color=colors['lss'],
type='',
swap='lss_kpt31'),
34:
dict(
name='lss_kpt10',
id=34,
color=colors['lss'],
type='',
swap='lss_kpt30'),
35:
dict(
name='lss_kpt11',
id=35,
color=colors['lss'],
type='',
swap='lss_kpt29'),
36:
dict(
name='lss_kpt12',
id=36,
color=colors['lss'],
type='',
swap='lss_kpt28'),
37:
dict(
name='lss_kpt13',
id=37,
color=colors['lss'],
type='',
swap='lss_kpt27'),
38:
dict(
name='lss_kpt14',
id=38,
color=colors['lss'],
type='',
swap='lss_kpt26'),
39:
dict(
name='lss_kpt15',
id=39,
color=colors['lss'],
type='',
swap='lss_kpt25'),
40:
dict(
name='lss_kpt16',
id=40,
color=colors['lss'],
type='',
swap='lss_kpt24'),
41:
dict(
name='lss_kpt17',
id=41,
color=colors['lss'],
type='',
swap='lss_kpt23'),
42:
dict(
name='lss_kpt18',
id=42,
color=colors['lss'],
type='',
swap='lss_kpt22'),
43:
dict(
name='lss_kpt19',
id=43,
color=colors['lss'],
type='',
swap='lss_kpt21'),
44:
dict(name='lss_kpt20', id=44, color=colors['lss'], type='', swap=''),
45:
dict(
name='lss_kpt21',
id=45,
color=colors['lss'],
type='',
swap='lss_kpt19'),
46:
dict(
name='lss_kpt22',
id=46,
color=colors['lss'],
type='',
swap='lss_kpt18'),
47:
dict(
name='lss_kpt23',
id=47,
color=colors['lss'],
type='',
swap='lss_kpt17'),
48:
dict(
name='lss_kpt24',
id=48,
color=colors['lss'],
type='',
swap='lss_kpt16'),
49:
dict(
name='lss_kpt25',
id=49,
color=colors['lss'],
type='',
swap='lss_kpt15'),
50:
dict(
name='lss_kpt26',
id=50,
color=colors['lss'],
type='',
swap='lss_kpt14'),
51:
dict(
name='lss_kpt27',
id=51,
color=colors['lss'],
type='',
swap='lss_kpt13'),
52:
dict(
name='lss_kpt28',
id=52,
color=colors['lss'],
type='',
swap='lss_kpt12'),
53:
dict(
name='lss_kpt29',
id=53,
color=colors['lss'],
type='',
swap='lss_kpt11'),
54:
dict(
name='lss_kpt30',
id=54,
color=colors['lss'],
type='',
swap='lss_kpt10'),
55:
dict(
name='lss_kpt31',
id=55,
color=colors['lss'],
type='',
swap='lss_kpt9'),
56:
dict(
name='lss_kpt32',
id=56,
color=colors['lss'],
type='',
swap='lss_kpt8'),
57:
dict(
name='lss_kpt33',
id=57,
color=colors['lss'],
type='',
swap='lss_kpt7'),
# short_sleeved_outwear
58:
dict(name='sso_kpt1', id=58, color=colors['sso'], type='', swap=''),
59:
dict(
name='sso_kpt2',
id=59,
color=colors['sso'],
type='',
swap='sso_kpt26'),
60:
dict(
name='sso_kpt3',
id=60,
color=colors['sso'],
type='',
swap='sso_kpt5'),
61:
dict(
name='sso_kpt4',
id=61,
color=colors['sso'],
type='',
swap='sso_kpt6'),
62:
dict(
name='sso_kpt5',
id=62,
color=colors['sso'],
type='',
swap='sso_kpt3'),
63:
dict(
name='sso_kpt6',
id=63,
color=colors['sso'],
type='',
swap='sso_kpt4'),
64:
dict(
name='sso_kpt7',
id=64,
color=colors['sso'],
type='',
swap='sso_kpt25'),
65:
dict(
name='sso_kpt8',
id=65,
color=colors['sso'],
type='',
swap='sso_kpt24'),
66:
dict(
name='sso_kpt9',
id=66,
color=colors['sso'],
type='',
swap='sso_kpt23'),
67:
dict(
name='sso_kpt10',
id=67,
color=colors['sso'],
type='',
swap='sso_kpt22'),
68:
dict(
name='sso_kpt11',
id=68,
color=colors['sso'],
type='',
swap='sso_kpt21'),
69:
dict(
name='sso_kpt12',
id=69,
color=colors['sso'],
type='',
swap='sso_kpt20'),
70:
dict(
name='sso_kpt13',
id=70,
color=colors['sso'],
type='',
swap='sso_kpt19'),
71:
dict(
name='sso_kpt14',
id=71,
color=colors['sso'],
type='',
swap='sso_kpt18'),
72:
dict(
name='sso_kpt15',
id=72,
color=colors['sso'],
type='',
swap='sso_kpt17'),
73:
dict(
name='sso_kpt16',
id=73,
color=colors['sso'],
type='',
swap='sso_kpt29'),
74:
dict(
name='sso_kpt17',
id=74,
color=colors['sso'],
type='',
swap='sso_kpt15'),
75:
dict(
name='sso_kpt18',
id=75,
color=colors['sso'],
type='',
swap='sso_kpt14'),
76:
dict(
name='sso_kpt19',
id=76,
color=colors['sso'],
type='',
swap='sso_kpt13'),
77:
dict(
name='sso_kpt20',
id=77,
color=colors['sso'],
type='',
swap='sso_kpt12'),
78:
dict(
name='sso_kpt21',
id=78,
color=colors['sso'],
type='',
swap='sso_kpt11'),
79:
dict(
name='sso_kpt22',
id=79,
color=colors['sso'],
type='',
swap='sso_kpt10'),
80:
dict(
name='sso_kpt23',
id=80,
color=colors['sso'],
type='',
swap='sso_kpt9'),
81:
dict(
name='sso_kpt24',
id=81,
color=colors['sso'],
type='',
swap='sso_kpt8'),
82:
dict(
name='sso_kpt25',
id=82,
color=colors['sso'],
type='',
swap='sso_kpt7'),
83:
dict(
name='sso_kpt26',
id=83,
color=colors['sso'],
type='',
swap='sso_kpt2'),
84:
dict(
name='sso_kpt27',
id=84,
color=colors['sso'],
type='',
swap='sso_kpt30'),
85:
dict(
name='sso_kpt28',
id=85,
color=colors['sso'],
type='',
swap='sso_kpt31'),
86:
dict(
name='sso_kpt29',
id=86,
color=colors['sso'],
type='',
swap='sso_kpt16'),
87:
dict(
name='sso_kpt30',
id=87,
color=colors['sso'],
type='',
swap='sso_kpt27'),
88:
dict(
name='sso_kpt31',
id=88,
color=colors['sso'],
type='',
swap='sso_kpt28'),
# long_sleeved_outwear
89:
dict(name='lso_kpt1', id=89, color=colors['lso'], type='', swap=''),
90:
dict(
name='lso_kpt2',
id=90,
color=colors['lso'],
type='',
swap='lso_kpt6'),
91:
dict(
name='lso_kpt3',
id=91,
color=colors['lso'],
type='',
swap='lso_kpt5'),
92:
dict(
name='lso_kpt4',
id=92,
color=colors['lso'],
type='',
swap='lso_kpt34'),
93:
dict(
name='lso_kpt5',
id=93,
color=colors['lso'],
type='',
swap='lso_kpt3'),
94:
dict(
name='lso_kpt6',
id=94,
color=colors['lso'],
type='',
swap='lso_kpt2'),
95:
dict(
name='lso_kpt7',
id=95,
color=colors['lso'],
type='',
swap='lso_kpt33'),
96:
dict(
name='lso_kpt8',
id=96,
color=colors['lso'],
type='',
swap='lso_kpt32'),
97:
dict(
name='lso_kpt9',
id=97,
color=colors['lso'],
type='',
swap='lso_kpt31'),
98:
dict(
name='lso_kpt10',
id=98,
color=colors['lso'],
type='',
swap='lso_kpt30'),
99:
dict(
name='lso_kpt11',
id=99,
color=colors['lso'],
type='',
swap='lso_kpt29'),
100:
dict(
name='lso_kpt12',
id=100,
color=colors['lso'],
type='',
swap='lso_kpt28'),
101:
dict(
name='lso_kpt13',
id=101,
color=colors['lso'],
type='',
swap='lso_kpt27'),
102:
dict(
name='lso_kpt14',
id=102,
color=colors['lso'],
type='',
swap='lso_kpt26'),
103:
dict(
name='lso_kpt15',
id=103,
color=colors['lso'],
type='',
swap='lso_kpt25'),
104:
dict(
name='lso_kpt16',
id=104,
color=colors['lso'],
type='',
swap='lso_kpt24'),
105:
dict(
name='lso_kpt17',
id=105,
color=colors['lso'],
type='',
swap='lso_kpt23'),
106:
dict(
name='lso_kpt18',
id=106,
color=colors['lso'],
type='',
swap='lso_kpt22'),
107:
dict(
name='lso_kpt19',
id=107,
color=colors['lso'],
type='',
swap='lso_kpt21'),
108:
dict(
name='lso_kpt20',
id=108,
color=colors['lso'],
type='',
swap='lso_kpt37'),
109:
dict(
name='lso_kpt21',
id=109,
color=colors['lso'],
type='',
swap='lso_kpt19'),
110:
dict(
name='lso_kpt22',
id=110,
color=colors['lso'],
type='',
swap='lso_kpt18'),
111:
dict(
name='lso_kpt23',
id=111,
color=colors['lso'],
type='',
swap='lso_kpt17'),
112:
dict(
name='lso_kpt24',
id=112,
color=colors['lso'],
type='',
swap='lso_kpt16'),
113:
dict(
name='lso_kpt25',
id=113,
color=colors['lso'],
type='',
swap='lso_kpt15'),
114:
dict(
name='lso_kpt26',
id=114,
color=colors['lso'],
type='',
swap='lso_kpt14'),
115:
dict(
name='lso_kpt27',
id=115,
color=colors['lso'],
type='',
swap='lso_kpt13'),
116:
dict(
name='lso_kpt28',
id=116,
color=colors['lso'],
type='',
swap='lso_kpt12'),
117:
dict(
name='lso_kpt29',
id=117,
color=colors['lso'],
type='',
swap='lso_kpt11'),
118:
dict(
name='lso_kpt30',
id=118,
color=colors['lso'],
type='',
swap='lso_kpt10'),
119:
dict(
name='lso_kpt31',
id=119,
color=colors['lso'],
type='',
swap='lso_kpt9'),
120:
dict(
name='lso_kpt32',
id=120,
color=colors['lso'],
type='',
swap='lso_kpt8'),
121:
dict(
name='lso_kpt33',
id=121,
color=colors['lso'],
type='',
swap='lso_kpt7'),
122:
dict(
name='lso_kpt34',
id=122,
color=colors['lso'],
type='',
swap='lso_kpt4'),
123:
dict(
name='lso_kpt35',
id=123,
color=colors['lso'],
type='',
swap='lso_kpt38'),
124:
dict(
name='lso_kpt36',
id=124,
color=colors['lso'],
type='',
swap='lso_kpt39'),
125:
dict(
name='lso_kpt37',
id=125,
color=colors['lso'],
type='',
swap='lso_kpt20'),
126:
dict(
name='lso_kpt38',
id=126,
color=colors['lso'],
type='',
swap='lso_kpt35'),
127:
dict(
name='lso_kpt39',
id=127,
color=colors['lso'],
type='',
swap='lso_kpt36'),
# vest
128:
dict(name='vest_kpt1', id=128, color=colors['vest'], type='', swap=''),
129:
dict(
name='vest_kpt2',
id=129,
color=colors['vest'],
type='',
swap='vest_kpt6'),
130:
dict(
name='vest_kpt3',
id=130,
color=colors['vest'],
type='',
swap='vest_kpt5'),
131:
dict(name='vest_kpt4', id=131, color=colors['vest'], type='', swap=''),
132:
dict(
name='vest_kpt5',
id=132,
color=colors['vest'],
type='',
swap='vest_kpt3'),
133:
dict(
name='vest_kpt6',
id=133,
color=colors['vest'],
type='',
swap='vest_kpt2'),
134:
dict(
name='vest_kpt7',
id=134,
color=colors['vest'],
type='',
swap='vest_kpt15'),
135:
dict(
name='vest_kpt8',
id=135,
color=colors['vest'],
type='',
swap='vest_kpt14'),
136:
dict(
name='vest_kpt9',
id=136,
color=colors['vest'],
type='',
swap='vest_kpt13'),
137:
dict(
name='vest_kpt10',
id=137,
color=colors['vest'],
type='',
swap='vest_kpt12'),
138:
dict(
name='vest_kpt11', id=138, color=colors['vest'], type='', swap=''),
139:
dict(
name='vest_kpt12',
id=139,
color=colors['vest'],
type='',
swap='vest_kpt10'),
140:
dict(
name='vest_kpt13', id=140, color=colors['vest'], type='', swap=''),
141:
dict(
name='vest_kpt14',
id=141,
color=colors['vest'],
type='',
swap='vest_kpt8'),
142:
dict(
name='vest_kpt15',
id=142,
color=colors['vest'],
type='',
swap='vest_kpt7'),
# sling
143:
dict(
name='sling_kpt1', id=143, color=colors['sling'], type='',
swap=''),
144:
dict(
name='sling_kpt2',
id=144,
color=colors['sling'],
type='',
swap='sling_kpt6'),
145:
dict(
name='sling_kpt3',
id=145,
color=colors['sling'],
type='',
swap='sling_kpt5'),
146:
dict(
name='sling_kpt4', id=146, color=colors['sling'], type='',
swap=''),
147:
dict(
name='sling_kpt5',
id=147,
color=colors['sling'],
type='',
swap='sling_kpt3'),
148:
dict(
name='sling_kpt6',
id=148,
color=colors['sling'],
type='',
swap='sling_kpt2'),
149:
dict(
name='sling_kpt7',
id=149,
color=colors['sling'],
type='',
swap='sling_kpt15'),
150:
dict(
name='sling_kpt8',
id=150,
color=colors['sling'],
type='',
swap='sling_kpt14'),
151:
dict(
name='sling_kpt9',
id=151,
color=colors['sling'],
type='',
swap='sling_kpt13'),
152:
dict(
name='sling_kpt10',
id=152,
color=colors['sling'],
type='',
swap='sling_kpt12'),
153:
dict(
name='sling_kpt11',
id=153,
color=colors['sling'],
type='',
swap=''),
154:
dict(
name='sling_kpt12',
id=154,
color=colors['sling'],
type='',
swap='sling_kpt10'),
155:
dict(
name='sling_kpt13',
id=155,
color=colors['sling'],
type='',
swap='sling_kpt9'),
156:
dict(
name='sling_kpt14',
id=156,
color=colors['sling'],
type='',
swap='sling_kpt8'),
157:
dict(
name='sling_kpt15',
id=157,
color=colors['sling'],
type='',
swap='sling_kpt7'),
# shorts
158:
dict(
name='shorts_kpt1',
id=158,
color=colors['shorts'],
type='',
swap='shorts_kpt3'),
159:
dict(
name='shorts_kpt2',
id=159,
color=colors['shorts'],
type='',
swap=''),
160:
dict(
name='shorts_kpt3',
id=160,
color=colors['shorts'],
type='',
swap='shorts_kpt1'),
161:
dict(
name='shorts_kpt4',
id=161,
color=colors['shorts'],
type='',
swap='shorts_kpt10'),
162:
dict(
name='shorts_kpt5',
id=162,
color=colors['shorts'],
type='',
swap='shorts_kpt9'),
163:
dict(
name='shorts_kpt6',
id=163,
color=colors['shorts'],
type='',
swap='shorts_kpt8'),
164:
dict(
name='shorts_kpt7',
id=164,
color=colors['shorts'],
type='',
swap=''),
165:
dict(
name='shorts_kpt8',
id=165,
color=colors['shorts'],
type='',
swap='shorts_kpt6'),
166:
dict(
name='shorts_kpt9',
id=166,
color=colors['shorts'],
type='',
swap='shorts_kpt5'),
167:
dict(
name='shorts_kpt10',
id=167,
color=colors['shorts'],
type='',
swap='shorts_kpt4'),
# trousers
168:
dict(
name='trousers_kpt1',
id=168,
color=colors['trousers'],
type='',
swap='trousers_kpt3'),
169:
dict(
name='trousers_kpt2',
id=169,
color=colors['trousers'],
type='',
swap=''),
170:
dict(
name='trousers_kpt3',
id=170,
color=colors['trousers'],
type='',
swap='trousers_kpt1'),
171:
dict(
name='trousers_kpt4',
id=171,
color=colors['trousers'],
type='',
swap='trousers_kpt14'),
172:
dict(
name='trousers_kpt5',
id=172,
color=colors['trousers'],
type='',
swap='trousers_kpt13'),
173:
dict(
name='trousers_kpt6',
id=173,
color=colors['trousers'],
type='',
swap='trousers_kpt12'),
174:
dict(
name='trousers_kpt7',
id=174,
color=colors['trousers'],
type='',
swap='trousers_kpt11'),
175:
dict(
name='trousers_kpt8',
id=175,
color=colors['trousers'],
type='',
swap='trousers_kpt10'),
176:
dict(
name='trousers_kpt9',
id=176,
color=colors['trousers'],
type='',
swap=''),
177:
dict(
name='trousers_kpt10',
id=177,
color=colors['trousers'],
type='',
swap='trousers_kpt8'),
178:
dict(
name='trousers_kpt11',
id=178,
color=colors['trousers'],
type='',
swap='trousers_kpt7'),
179:
dict(
name='trousers_kpt12',
id=179,
color=colors['trousers'],
type='',
swap='trousers_kpt6'),
180:
dict(
name='trousers_kpt13',
id=180,
color=colors['trousers'],
type='',
swap='trousers_kpt5'),
181:
dict(
name='trousers_kpt14',
id=181,
color=colors['trousers'],
type='',
swap='trousers_kpt4'),
# skirt
182:
dict(
name='skirt_kpt1',
id=182,
color=colors['skirt'],
type='',
swap='skirt_kpt3'),
183:
dict(
name='skirt_kpt2', id=183, color=colors['skirt'], type='',
swap=''),
184:
dict(
name='skirt_kpt3',
id=184,
color=colors['skirt'],
type='',
swap='skirt_kpt1'),
185:
dict(
name='skirt_kpt4',
id=185,
color=colors['skirt'],
type='',
swap='skirt_kpt8'),
186:
dict(
name='skirt_kpt5',
id=186,
color=colors['skirt'],
type='',
swap='skirt_kpt7'),
187:
dict(
name='skirt_kpt6', id=187, color=colors['skirt'], type='',
swap=''),
188:
dict(
name='skirt_kpt7',
id=188,
color=colors['skirt'],
type='',
swap='skirt_kpt5'),
189:
dict(
name='skirt_kpt8',
id=189,
color=colors['skirt'],
type='',
swap='skirt_kpt4'),
# short_sleeved_dress
190:
dict(name='ssd_kpt1', id=190, color=colors['ssd'], type='', swap=''),
191:
dict(
name='ssd_kpt2',
id=191,
color=colors['ssd'],
type='',
swap='ssd_kpt6'),
192:
dict(
name='ssd_kpt3',
id=192,
color=colors['ssd'],
type='',
swap='ssd_kpt5'),
193:
dict(name='ssd_kpt4', id=193, color=colors['ssd'], type='', swap=''),
194:
dict(
name='ssd_kpt5',
id=194,
color=colors['ssd'],
type='',
swap='ssd_kpt3'),
195:
dict(
name='ssd_kpt6',
id=195,
color=colors['ssd'],
type='',
swap='ssd_kpt2'),
196:
dict(
name='ssd_kpt7',
id=196,
color=colors['ssd'],
type='',
swap='ssd_kpt29'),
197:
dict(
name='ssd_kpt8',
id=197,
color=colors['ssd'],
type='',
swap='ssd_kpt28'),
198:
dict(
name='ssd_kpt9',
id=198,
color=colors['ssd'],
type='',
swap='ssd_kpt27'),
199:
dict(
name='ssd_kpt10',
id=199,
color=colors['ssd'],
type='',
swap='ssd_kpt26'),
200:
dict(
name='ssd_kpt11',
id=200,
color=colors['ssd'],
type='',
swap='ssd_kpt25'),
201:
dict(
name='ssd_kpt12',
id=201,
color=colors['ssd'],
type='',
swap='ssd_kpt24'),
202:
dict(
name='ssd_kpt13',
id=202,
color=colors['ssd'],
type='',
swap='ssd_kpt23'),
203:
dict(
name='ssd_kpt14',
id=203,
color=colors['ssd'],
type='',
swap='ssd_kpt22'),
204:
dict(
name='ssd_kpt15',
id=204,
color=colors['ssd'],
type='',
swap='ssd_kpt21'),
205:
dict(
name='ssd_kpt16',
id=205,
color=colors['ssd'],
type='',
swap='ssd_kpt20'),
206:
dict(
name='ssd_kpt17',
id=206,
color=colors['ssd'],
type='',
swap='ssd_kpt19'),
207:
dict(name='ssd_kpt18', id=207, color=colors['ssd'], type='', swap=''),
208:
dict(
name='ssd_kpt19',
id=208,
color=colors['ssd'],
type='',
swap='ssd_kpt17'),
209:
dict(
name='ssd_kpt20',
id=209,
color=colors['ssd'],
type='',
swap='ssd_kpt16'),
210:
dict(
name='ssd_kpt21',
id=210,
color=colors['ssd'],
type='',
swap='ssd_kpt15'),
211:
dict(
name='ssd_kpt22',
id=211,
color=colors['ssd'],
type='',
swap='ssd_kpt14'),
212:
dict(
name='ssd_kpt23',
id=212,
color=colors['ssd'],
type='',
swap='ssd_kpt13'),
213:
dict(
name='ssd_kpt24',
id=213,
color=colors['ssd'],
type='',
swap='ssd_kpt12'),
214:
dict(
name='ssd_kpt25',
id=214,
color=colors['ssd'],
type='',
swap='ssd_kpt11'),
215:
dict(
name='ssd_kpt26',
id=215,
color=colors['ssd'],
type='',
swap='ssd_kpt10'),
216:
dict(
name='ssd_kpt27',
id=216,
color=colors['ssd'],
type='',
swap='ssd_kpt9'),
217:
dict(
name='ssd_kpt28',
id=217,
color=colors['ssd'],
type='',
swap='ssd_kpt8'),
218:
dict(
name='ssd_kpt29',
id=218,
color=colors['ssd'],
type='',
swap='ssd_kpt7'),
# long_sleeved_dress
219:
dict(name='lsd_kpt1', id=219, color=colors['lsd'], type='', swap=''),
220:
dict(
name='lsd_kpt2',
id=220,
color=colors['lsd'],
type='',
swap='lsd_kpt6'),
221:
dict(
name='lsd_kpt3',
id=221,
color=colors['lsd'],
type='',
swap='lsd_kpt5'),
222:
dict(name='lsd_kpt4', id=222, color=colors['lsd'], type='', swap=''),
223:
dict(
name='lsd_kpt5',
id=223,
color=colors['lsd'],
type='',
swap='lsd_kpt3'),
224:
dict(
name='lsd_kpt6',
id=224,
color=colors['lsd'],
type='',
swap='lsd_kpt2'),
225:
dict(
name='lsd_kpt7',
id=225,
color=colors['lsd'],
type='',
swap='lsd_kpt37'),
226:
dict(
name='lsd_kpt8',
id=226,
color=colors['lsd'],
type='',
swap='lsd_kpt36'),
227:
dict(
name='lsd_kpt9',
id=227,
color=colors['lsd'],
type='',
swap='lsd_kpt35'),
228:
dict(
name='lsd_kpt10',
id=228,
color=colors['lsd'],
type='',
swap='lsd_kpt34'),
229:
dict(
name='lsd_kpt11',
id=229,
color=colors['lsd'],
type='',
swap='lsd_kpt33'),
230:
dict(
name='lsd_kpt12',
id=230,
color=colors['lsd'],
type='',
swap='lsd_kpt32'),
231:
dict(
name='lsd_kpt13',
id=231,
color=colors['lsd'],
type='',
swap='lsd_kpt31'),
232:
dict(
name='lsd_kpt14',
id=232,
color=colors['lsd'],
type='',
swap='lsd_kpt30'),
233:
dict(
name='lsd_kpt15',
id=233,
color=colors['lsd'],
type='',
swap='lsd_kpt29'),
234:
dict(
name='lsd_kpt16',
id=234,
color=colors['lsd'],
type='',
swap='lsd_kpt28'),
235:
dict(
name='lsd_kpt17',
id=235,
color=colors['lsd'],
type='',
swap='lsd_kpt27'),
236:
dict(
name='lsd_kpt18',
id=236,
color=colors['lsd'],
type='',
swap='lsd_kpt26'),
237:
dict(
name='lsd_kpt19',
id=237,
color=colors['lsd'],
type='',
swap='lsd_kpt25'),
238:
dict(
name='lsd_kpt20',
id=238,
color=colors['lsd'],
type='',
swap='lsd_kpt24'),
239:
dict(
name='lsd_kpt21',
id=239,
color=colors['lsd'],
type='',
swap='lsd_kpt23'),
240:
dict(name='lsd_kpt22', id=240, color=colors['lsd'], type='', swap=''),
241:
dict(
name='lsd_kpt23',
id=241,
color=colors['lsd'],
type='',
swap='lsd_kpt21'),
242:
dict(
name='lsd_kpt24',
id=242,
color=colors['lsd'],
type='',
swap='lsd_kpt20'),
243:
dict(
name='lsd_kpt25',
id=243,
color=colors['lsd'],
type='',
swap='lsd_kpt19'),
244:
dict(
name='lsd_kpt26',
id=244,
color=colors['lsd'],
type='',
swap='lsd_kpt18'),
245:
dict(
name='lsd_kpt27',
id=245,
color=colors['lsd'],
type='',
swap='lsd_kpt17'),
246:
dict(
name='lsd_kpt28',
id=246,
color=colors['lsd'],
type='',
swap='lsd_kpt16'),
247:
dict(
name='lsd_kpt29',
id=247,
color=colors['lsd'],
type='',
swap='lsd_kpt15'),
248:
dict(
name='lsd_kpt30',
id=248,
color=colors['lsd'],
type='',
swap='lsd_kpt14'),
249:
dict(
name='lsd_kpt31',
id=249,
color=colors['lsd'],
type='',
swap='lsd_kpt13'),
250:
dict(
name='lsd_kpt32',
id=250,
color=colors['lsd'],
type='',
swap='lsd_kpt12'),
251:
dict(
name='lsd_kpt33',
id=251,
color=colors['lsd'],
type='',
swap='lsd_kpt11'),
252:
dict(
name='lsd_kpt34',
id=252,
color=colors['lsd'],
type='',
swap='lsd_kpt10'),
253:
dict(
name='lsd_kpt35',
id=253,
color=colors['lsd'],
type='',
swap='lsd_kpt9'),
254:
dict(
name='lsd_kpt36',
id=254,
color=colors['lsd'],
type='',
swap='lsd_kpt8'),
255:
dict(
name='lsd_kpt37',
id=255,
color=colors['lsd'],
type='',
swap='lsd_kpt7'),
# vest_dress
256:
dict(name='vd_kpt1', id=256, color=colors['vd'], type='', swap=''),
257:
dict(
name='vd_kpt2',
id=257,
color=colors['vd'],
type='',
swap='vd_kpt6'),
258:
dict(
name='vd_kpt3',
id=258,
color=colors['vd'],
type='',
swap='vd_kpt5'),
259:
dict(name='vd_kpt4', id=259, color=colors['vd'], type='', swap=''),
260:
dict(
name='vd_kpt5',
id=260,
color=colors['vd'],
type='',
swap='vd_kpt3'),
261:
dict(
name='vd_kpt6',
id=261,
color=colors['vd'],
type='',
swap='vd_kpt2'),
262:
dict(
name='vd_kpt7',
id=262,
color=colors['vd'],
type='',
swap='vd_kpt19'),
263:
dict(
name='vd_kpt8',
id=263,
color=colors['vd'],
type='',
swap='vd_kpt18'),
264:
dict(
name='vd_kpt9',
id=264,
color=colors['vd'],
type='',
swap='vd_kpt17'),
265:
dict(
name='vd_kpt10',
id=265,
color=colors['vd'],
type='',
swap='vd_kpt16'),
266:
dict(
name='vd_kpt11',
id=266,
color=colors['vd'],
type='',
swap='vd_kpt15'),
267:
dict(
name='vd_kpt12',
id=267,
color=colors['vd'],
type='',
swap='vd_kpt14'),
268:
dict(name='vd_kpt13', id=268, color=colors['vd'], type='', swap=''),
269:
dict(
name='vd_kpt14',
id=269,
color=colors['vd'],
type='',
swap='vd_kpt12'),
270:
dict(
name='vd_kpt15',
id=270,
color=colors['vd'],
type='',
swap='vd_kpt11'),
271:
dict(
name='vd_kpt16',
id=271,
color=colors['vd'],
type='',
swap='vd_kpt10'),
272:
dict(
name='vd_kpt17',
id=272,
color=colors['vd'],
type='',
swap='vd_kpt9'),
273:
dict(
name='vd_kpt18',
id=273,
color=colors['vd'],
type='',
swap='vd_kpt8'),
274:
dict(
name='vd_kpt19',
id=274,
color=colors['vd'],
type='',
swap='vd_kpt7'),
# sling_dress
275:
dict(name='sd_kpt1', id=275, color=colors['sd'], type='', swap=''),
276:
dict(
name='sd_kpt2',
id=276,
color=colors['sd'],
type='',
swap='sd_kpt6'),
277:
dict(
name='sd_kpt3',
id=277,
color=colors['sd'],
type='',
swap='sd_kpt5'),
278:
dict(name='sd_kpt4', id=278, color=colors['sd'], type='', swap=''),
279:
dict(
name='sd_kpt5',
id=279,
color=colors['sd'],
type='',
swap='sd_kpt3'),
280:
dict(
name='sd_kpt6',
id=280,
color=colors['sd'],
type='',
swap='sd_kpt2'),
281:
dict(
name='sd_kpt7',
id=281,
color=colors['sd'],
type='',
swap='sd_kpt19'),
282:
dict(
name='sd_kpt8',
id=282,
color=colors['sd'],
type='',
swap='sd_kpt18'),
283:
dict(
name='sd_kpt9',
id=283,
color=colors['sd'],
type='',
swap='sd_kpt17'),
284:
dict(
name='sd_kpt10',
id=284,
color=colors['sd'],
type='',
swap='sd_kpt16'),
285:
dict(
name='sd_kpt11',
id=285,
color=colors['sd'],
type='',
swap='sd_kpt15'),
286:
dict(
name='sd_kpt12',
id=286,
color=colors['sd'],
type='',
swap='sd_kpt14'),
287:
dict(name='sd_kpt13', id=287, color=colors['sd'], type='', swap=''),
288:
dict(
name='sd_kpt14',
id=288,
color=colors['sd'],
type='',
swap='sd_kpt12'),
289:
dict(
name='sd_kpt15',
id=289,
color=colors['sd'],
type='',
swap='sd_kpt11'),
290:
dict(
name='sd_kpt16',
id=290,
color=colors['sd'],
type='',
swap='sd_kpt10'),
291:
dict(
name='sd_kpt17',
id=291,
color=colors['sd'],
type='',
swap='sd_kpt9'),
292:
dict(
name='sd_kpt18',
id=292,
color=colors['sd'],
type='',
swap='sd_kpt8'),
293:
dict(
name='sd_kpt19',
id=293,
color=colors['sd'],
type='',
swap='sd_kpt7'),
},
skeleton_info={
# short_sleeved_shirt
0:
dict(link=('sss_kpt1', 'sss_kpt2'), id=0, color=[255, 128, 0]),
1:
dict(link=('sss_kpt2', 'sss_kpt7'), id=1, color=[255, 128, 0]),
2:
dict(link=('sss_kpt7', 'sss_kpt8'), id=2, color=[255, 128, 0]),
3:
dict(link=('sss_kpt8', 'sss_kpt9'), id=3, color=[255, 128, 0]),
4:
dict(link=('sss_kpt9', 'sss_kpt10'), id=4, color=[255, 128, 0]),
5:
dict(link=('sss_kpt10', 'sss_kpt11'), id=5, color=[255, 128, 0]),
6:
dict(link=('sss_kpt11', 'sss_kpt12'), id=6, color=[255, 128, 0]),
7:
dict(link=('sss_kpt12', 'sss_kpt13'), id=7, color=[255, 128, 0]),
8:
dict(link=('sss_kpt13', 'sss_kpt14'), id=8, color=[255, 128, 0]),
9:
dict(link=('sss_kpt14', 'sss_kpt15'), id=9, color=[255, 128, 0]),
10:
dict(link=('sss_kpt15', 'sss_kpt16'), id=10, color=[255, 128, 0]),
11:
dict(link=('sss_kpt16', 'sss_kpt17'), id=11, color=[255, 128, 0]),
12:
dict(link=('sss_kpt17', 'sss_kpt18'), id=12, color=[255, 128, 0]),
13:
dict(link=('sss_kpt18', 'sss_kpt19'), id=13, color=[255, 128, 0]),
14:
dict(link=('sss_kpt19', 'sss_kpt20'), id=14, color=[255, 128, 0]),
15:
dict(link=('sss_kpt20', 'sss_kpt21'), id=15, color=[255, 128, 0]),
16:
dict(link=('sss_kpt21', 'sss_kpt22'), id=16, color=[255, 128, 0]),
17:
dict(link=('sss_kpt22', 'sss_kpt23'), id=17, color=[255, 128, 0]),
18:
dict(link=('sss_kpt23', 'sss_kpt24'), id=18, color=[255, 128, 0]),
19:
dict(link=('sss_kpt24', 'sss_kpt25'), id=19, color=[255, 128, 0]),
20:
dict(link=('sss_kpt25', 'sss_kpt6'), id=20, color=[255, 128, 0]),
21:
dict(link=('sss_kpt6', 'sss_kpt1'), id=21, color=[255, 128, 0]),
22:
dict(link=('sss_kpt2', 'sss_kpt3'), id=22, color=[255, 128, 0]),
23:
dict(link=('sss_kpt3', 'sss_kpt4'), id=23, color=[255, 128, 0]),
24:
dict(link=('sss_kpt4', 'sss_kpt5'), id=24, color=[255, 128, 0]),
25:
dict(link=('sss_kpt5', 'sss_kpt6'), id=25, color=[255, 128, 0]),
# long_sleeve_shirt
26:
dict(link=('lss_kpt1', 'lss_kpt2'), id=26, color=[255, 0, 128]),
27:
dict(link=('lss_kpt2', 'lss_kpt7'), id=27, color=[255, 0, 128]),
28:
dict(link=('lss_kpt7', 'lss_kpt8'), id=28, color=[255, 0, 128]),
29:
dict(link=('lss_kpt8', 'lss_kpt9'), id=29, color=[255, 0, 128]),
30:
dict(link=('lss_kpt9', 'lss_kpt10'), id=30, color=[255, 0, 128]),
31:
dict(link=('lss_kpt10', 'lss_kpt11'), id=31, color=[255, 0, 128]),
32:
dict(link=('lss_kpt11', 'lss_kpt12'), id=32, color=[255, 0, 128]),
33:
dict(link=('lss_kpt12', 'lss_kpt13'), id=33, color=[255, 0, 128]),
34:
dict(link=('lss_kpt13', 'lss_kpt14'), id=34, color=[255, 0, 128]),
35:
dict(link=('lss_kpt14', 'lss_kpt15'), id=35, color=[255, 0, 128]),
36:
dict(link=('lss_kpt15', 'lss_kpt16'), id=36, color=[255, 0, 128]),
37:
dict(link=('lss_kpt16', 'lss_kpt17'), id=37, color=[255, 0, 128]),
38:
dict(link=('lss_kpt17', 'lss_kpt18'), id=38, color=[255, 0, 128]),
39:
dict(link=('lss_kpt18', 'lss_kpt19'), id=39, color=[255, 0, 128]),
40:
dict(link=('lss_kpt19', 'lss_kpt20'), id=40, color=[255, 0, 128]),
41:
dict(link=('lss_kpt20', 'lss_kpt21'), id=41, color=[255, 0, 128]),
42:
dict(link=('lss_kpt21', 'lss_kpt22'), id=42, color=[255, 0, 128]),
43:
dict(link=('lss_kpt22', 'lss_kpt23'), id=43, color=[255, 0, 128]),
44:
dict(link=('lss_kpt23', 'lss_kpt24'), id=44, color=[255, 0, 128]),
45:
dict(link=('lss_kpt24', 'lss_kpt25'), id=45, color=[255, 0, 128]),
46:
dict(link=('lss_kpt25', 'lss_kpt26'), id=46, color=[255, 0, 128]),
47:
dict(link=('lss_kpt26', 'lss_kpt27'), id=47, color=[255, 0, 128]),
48:
dict(link=('lss_kpt27', 'lss_kpt28'), id=48, color=[255, 0, 128]),
49:
dict(link=('lss_kpt28', 'lss_kpt29'), id=49, color=[255, 0, 128]),
50:
dict(link=('lss_kpt29', 'lss_kpt30'), id=50, color=[255, 0, 128]),
51:
dict(link=('lss_kpt30', 'lss_kpt31'), id=51, color=[255, 0, 128]),
52:
dict(link=('lss_kpt31', 'lss_kpt32'), id=52, color=[255, 0, 128]),
53:
dict(link=('lss_kpt32', 'lss_kpt33'), id=53, color=[255, 0, 128]),
54:
dict(link=('lss_kpt33', 'lss_kpt6'), id=54, color=[255, 0, 128]),
55:
dict(link=('lss_kpt6', 'lss_kpt5'), id=55, color=[255, 0, 128]),
56:
dict(link=('lss_kpt5', 'lss_kpt4'), id=56, color=[255, 0, 128]),
57:
dict(link=('lss_kpt4', 'lss_kpt3'), id=57, color=[255, 0, 128]),
58:
dict(link=('lss_kpt3', 'lss_kpt2'), id=58, color=[255, 0, 128]),
59:
dict(link=('lss_kpt6', 'lss_kpt1'), id=59, color=[255, 0, 128]),
# short_sleeved_outwear
60:
dict(link=('sso_kpt1', 'sso_kpt4'), id=60, color=[128, 0, 255]),
61:
dict(link=('sso_kpt4', 'sso_kpt7'), id=61, color=[128, 0, 255]),
62:
dict(link=('sso_kpt7', 'sso_kpt8'), id=62, color=[128, 0, 255]),
63:
dict(link=('sso_kpt8', 'sso_kpt9'), id=63, color=[128, 0, 255]),
64:
dict(link=('sso_kpt9', 'sso_kpt10'), id=64, color=[128, 0, 255]),
65:
dict(link=('sso_kpt10', 'sso_kpt11'), id=65, color=[128, 0, 255]),
66:
dict(link=('sso_kpt11', 'sso_kpt12'), id=66, color=[128, 0, 255]),
67:
dict(link=('sso_kpt12', 'sso_kpt13'), id=67, color=[128, 0, 255]),
68:
dict(link=('sso_kpt13', 'sso_kpt14'), id=68, color=[128, 0, 255]),
69:
dict(link=('sso_kpt14', 'sso_kpt15'), id=69, color=[128, 0, 255]),
70:
dict(link=('sso_kpt15', 'sso_kpt16'), id=70, color=[128, 0, 255]),
71:
dict(link=('sso_kpt16', 'sso_kpt31'), id=71, color=[128, 0, 255]),
72:
dict(link=('sso_kpt31', 'sso_kpt30'), id=72, color=[128, 0, 255]),
73:
dict(link=('sso_kpt30', 'sso_kpt2'), id=73, color=[128, 0, 255]),
74:
dict(link=('sso_kpt2', 'sso_kpt3'), id=74, color=[128, 0, 255]),
75:
dict(link=('sso_kpt3', 'sso_kpt4'), id=75, color=[128, 0, 255]),
76:
dict(link=('sso_kpt1', 'sso_kpt6'), id=76, color=[128, 0, 255]),
77:
dict(link=('sso_kpt6', 'sso_kpt25'), id=77, color=[128, 0, 255]),
78:
dict(link=('sso_kpt25', 'sso_kpt24'), id=78, color=[128, 0, 255]),
79:
dict(link=('sso_kpt24', 'sso_kpt23'), id=79, color=[128, 0, 255]),
80:
dict(link=('sso_kpt23', 'sso_kpt22'), id=80, color=[128, 0, 255]),
81:
dict(link=('sso_kpt22', 'sso_kpt21'), id=81, color=[128, 0, 255]),
82:
dict(link=('sso_kpt21', 'sso_kpt20'), id=82, color=[128, 0, 255]),
83:
dict(link=('sso_kpt20', 'sso_kpt19'), id=83, color=[128, 0, 255]),
84:
dict(link=('sso_kpt19', 'sso_kpt18'), id=84, color=[128, 0, 255]),
85:
dict(link=('sso_kpt18', 'sso_kpt17'), id=85, color=[128, 0, 255]),
86:
dict(link=('sso_kpt17', 'sso_kpt29'), id=86, color=[128, 0, 255]),
87:
dict(link=('sso_kpt29', 'sso_kpt28'), id=87, color=[128, 0, 255]),
88:
dict(link=('sso_kpt28', 'sso_kpt27'), id=88, color=[128, 0, 255]),
89:
dict(link=('sso_kpt27', 'sso_kpt26'), id=89, color=[128, 0, 255]),
90:
dict(link=('sso_kpt26', 'sso_kpt5'), id=90, color=[128, 0, 255]),
91:
dict(link=('sso_kpt5', 'sso_kpt6'), id=91, color=[128, 0, 255]),
# long_sleeved_outwear
92:
dict(link=('lso_kpt1', 'lso_kpt2'), id=92, color=[0, 128, 255]),
93:
dict(link=('lso_kpt2', 'lso_kpt7'), id=93, color=[0, 128, 255]),
94:
dict(link=('lso_kpt7', 'lso_kpt8'), id=94, color=[0, 128, 255]),
95:
dict(link=('lso_kpt8', 'lso_kpt9'), id=95, color=[0, 128, 255]),
96:
dict(link=('lso_kpt9', 'lso_kpt10'), id=96, color=[0, 128, 255]),
97:
dict(link=('lso_kpt10', 'lso_kpt11'), id=97, color=[0, 128, 255]),
98:
dict(link=('lso_kpt11', 'lso_kpt12'), id=98, color=[0, 128, 255]),
99:
dict(link=('lso_kpt12', 'lso_kpt13'), id=99, color=[0, 128, 255]),
100:
dict(link=('lso_kpt13', 'lso_kpt14'), id=100, color=[0, 128, 255]),
101:
dict(link=('lso_kpt14', 'lso_kpt15'), id=101, color=[0, 128, 255]),
102:
dict(link=('lso_kpt15', 'lso_kpt16'), id=102, color=[0, 128, 255]),
103:
dict(link=('lso_kpt16', 'lso_kpt17'), id=103, color=[0, 128, 255]),
104:
dict(link=('lso_kpt17', 'lso_kpt18'), id=104, color=[0, 128, 255]),
105:
dict(link=('lso_kpt18', 'lso_kpt19'), id=105, color=[0, 128, 255]),
106:
dict(link=('lso_kpt19', 'lso_kpt20'), id=106, color=[0, 128, 255]),
107:
dict(link=('lso_kpt20', 'lso_kpt39'), id=107, color=[0, 128, 255]),
108:
dict(link=('lso_kpt39', 'lso_kpt38'), id=108, color=[0, 128, 255]),
109:
dict(link=('lso_kpt38', 'lso_kpt4'), id=109, color=[0, 128, 255]),
110:
dict(link=('lso_kpt4', 'lso_kpt3'), id=110, color=[0, 128, 255]),
111:
dict(link=('lso_kpt3', 'lso_kpt2'), id=111, color=[0, 128, 255]),
112:
dict(link=('lso_kpt1', 'lso_kpt6'), id=112, color=[0, 128, 255]),
113:
dict(link=('lso_kpt6', 'lso_kpt33'), id=113, color=[0, 128, 255]),
114:
dict(link=('lso_kpt33', 'lso_kpt32'), id=114, color=[0, 128, 255]),
115:
dict(link=('lso_kpt32', 'lso_kpt31'), id=115, color=[0, 128, 255]),
116:
dict(link=('lso_kpt31', 'lso_kpt30'), id=116, color=[0, 128, 255]),
117:
dict(link=('lso_kpt30', 'lso_kpt29'), id=117, color=[0, 128, 255]),
118:
dict(link=('lso_kpt29', 'lso_kpt28'), id=118, color=[0, 128, 255]),
119:
dict(link=('lso_kpt28', 'lso_kpt27'), id=119, color=[0, 128, 255]),
120:
dict(link=('lso_kpt27', 'lso_kpt26'), id=120, color=[0, 128, 255]),
121:
dict(link=('lso_kpt26', 'lso_kpt25'), id=121, color=[0, 128, 255]),
122:
dict(link=('lso_kpt25', 'lso_kpt24'), id=122, color=[0, 128, 255]),
123:
dict(link=('lso_kpt24', 'lso_kpt23'), id=123, color=[0, 128, 255]),
124:
dict(link=('lso_kpt23', 'lso_kpt22'), id=124, color=[0, 128, 255]),
125:
dict(link=('lso_kpt22', 'lso_kpt21'), id=125, color=[0, 128, 255]),
126:
dict(link=('lso_kpt21', 'lso_kpt37'), id=126, color=[0, 128, 255]),
127:
dict(link=('lso_kpt37', 'lso_kpt36'), id=127, color=[0, 128, 255]),
128:
dict(link=('lso_kpt36', 'lso_kpt35'), id=128, color=[0, 128, 255]),
129:
dict(link=('lso_kpt35', 'lso_kpt34'), id=129, color=[0, 128, 255]),
130:
dict(link=('lso_kpt34', 'lso_kpt5'), id=130, color=[0, 128, 255]),
131:
dict(link=('lso_kpt5', 'lso_kpt6'), id=131, color=[0, 128, 255]),
# vest
132:
dict(link=('vest_kpt1', 'vest_kpt2'), id=132, color=[0, 128, 128]),
133:
dict(link=('vest_kpt2', 'vest_kpt7'), id=133, color=[0, 128, 128]),
134:
dict(link=('vest_kpt7', 'vest_kpt8'), id=134, color=[0, 128, 128]),
135:
dict(link=('vest_kpt8', 'vest_kpt9'), id=135, color=[0, 128, 128]),
136:
dict(link=('vest_kpt9', 'vest_kpt10'), id=136, color=[0, 128, 128]),
137:
dict(link=('vest_kpt10', 'vest_kpt11'), id=137, color=[0, 128, 128]),
138:
dict(link=('vest_kpt11', 'vest_kpt12'), id=138, color=[0, 128, 128]),
139:
dict(link=('vest_kpt12', 'vest_kpt13'), id=139, color=[0, 128, 128]),
140:
dict(link=('vest_kpt13', 'vest_kpt14'), id=140, color=[0, 128, 128]),
141:
dict(link=('vest_kpt14', 'vest_kpt15'), id=141, color=[0, 128, 128]),
142:
dict(link=('vest_kpt15', 'vest_kpt6'), id=142, color=[0, 128, 128]),
143:
dict(link=('vest_kpt6', 'vest_kpt1'), id=143, color=[0, 128, 128]),
144:
dict(link=('vest_kpt2', 'vest_kpt3'), id=144, color=[0, 128, 128]),
145:
dict(link=('vest_kpt3', 'vest_kpt4'), id=145, color=[0, 128, 128]),
146:
dict(link=('vest_kpt4', 'vest_kpt5'), id=146, color=[0, 128, 128]),
147:
dict(link=('vest_kpt5', 'vest_kpt6'), id=147, color=[0, 128, 128]),
# sling
148:
dict(link=('sling_kpt1', 'sling_kpt2'), id=148, color=[0, 0, 128]),
149:
dict(link=('sling_kpt2', 'sling_kpt8'), id=149, color=[0, 0, 128]),
150:
dict(link=('sling_kpt8', 'sling_kpt9'), id=150, color=[0, 0, 128]),
151:
dict(link=('sling_kpt9', 'sling_kpt10'), id=151, color=[0, 0, 128]),
152:
dict(link=('sling_kpt10', 'sling_kpt11'), id=152, color=[0, 0, 128]),
153:
dict(link=('sling_kpt11', 'sling_kpt12'), id=153, color=[0, 0, 128]),
154:
dict(link=('sling_kpt12', 'sling_kpt13'), id=154, color=[0, 0, 128]),
155:
dict(link=('sling_kpt13', 'sling_kpt14'), id=155, color=[0, 0, 128]),
156:
dict(link=('sling_kpt14', 'sling_kpt6'), id=156, color=[0, 0, 128]),
157:
dict(link=('sling_kpt2', 'sling_kpt7'), id=157, color=[0, 0, 128]),
158:
dict(link=('sling_kpt6', 'sling_kpt15'), id=158, color=[0, 0, 128]),
159:
dict(link=('sling_kpt2', 'sling_kpt3'), id=159, color=[0, 0, 128]),
160:
dict(link=('sling_kpt3', 'sling_kpt4'), id=160, color=[0, 0, 128]),
161:
dict(link=('sling_kpt4', 'sling_kpt5'), id=161, color=[0, 0, 128]),
162:
dict(link=('sling_kpt5', 'sling_kpt6'), id=162, color=[0, 0, 128]),
163:
dict(link=('sling_kpt1', 'sling_kpt6'), id=163, color=[0, 0, 128]),
# shorts
164:
dict(
link=('shorts_kpt1', 'shorts_kpt4'), id=164, color=[128, 128,
128]),
165:
dict(
link=('shorts_kpt4', 'shorts_kpt5'), id=165, color=[128, 128,
128]),
166:
dict(
link=('shorts_kpt5', 'shorts_kpt6'), id=166, color=[128, 128,
128]),
167:
dict(
link=('shorts_kpt6', 'shorts_kpt7'), id=167, color=[128, 128,
128]),
168:
dict(
link=('shorts_kpt7', 'shorts_kpt8'), id=168, color=[128, 128,
128]),
169:
dict(
link=('shorts_kpt8', 'shorts_kpt9'), id=169, color=[128, 128,
128]),
170:
dict(
link=('shorts_kpt9', 'shorts_kpt10'),
id=170,
color=[128, 128, 128]),
171:
dict(
link=('shorts_kpt10', 'shorts_kpt3'),
id=171,
color=[128, 128, 128]),
172:
dict(
link=('shorts_kpt3', 'shorts_kpt2'), id=172, color=[128, 128,
128]),
173:
dict(
link=('shorts_kpt2', 'shorts_kpt1'), id=173, color=[128, 128,
128]),
# trousers
174:
dict(
link=('trousers_kpt1', 'trousers_kpt4'),
id=174,
color=[128, 0, 128]),
175:
dict(
link=('trousers_kpt4', 'trousers_kpt5'),
id=175,
color=[128, 0, 128]),
176:
dict(
link=('trousers_kpt5', 'trousers_kpt6'),
id=176,
color=[128, 0, 128]),
177:
dict(
link=('trousers_kpt6', 'trousers_kpt7'),
id=177,
color=[128, 0, 128]),
178:
dict(
link=('trousers_kpt7', 'trousers_kpt8'),
id=178,
color=[128, 0, 128]),
179:
dict(
link=('trousers_kpt8', 'trousers_kpt9'),
id=179,
color=[128, 0, 128]),
180:
dict(
link=('trousers_kpt9', 'trousers_kpt10'),
id=180,
color=[128, 0, 128]),
181:
dict(
link=('trousers_kpt10', 'trousers_kpt11'),
id=181,
color=[128, 0, 128]),
182:
dict(
link=('trousers_kpt11', 'trousers_kpt12'),
id=182,
color=[128, 0, 128]),
183:
dict(
link=('trousers_kpt12', 'trousers_kpt13'),
id=183,
color=[128, 0, 128]),
184:
dict(
link=('trousers_kpt13', 'trousers_kpt14'),
id=184,
color=[128, 0, 128]),
185:
dict(
link=('trousers_kpt14', 'trousers_kpt3'),
id=185,
color=[128, 0, 128]),
186:
dict(
link=('trousers_kpt3', 'trousers_kpt2'),
id=186,
color=[128, 0, 128]),
187:
dict(
link=('trousers_kpt2', 'trousers_kpt1'),
id=187,
color=[128, 0, 128]),
# skirt
188:
dict(link=('skirt_kpt1', 'skirt_kpt4'), id=188, color=[64, 128, 128]),
189:
dict(link=('skirt_kpt4', 'skirt_kpt5'), id=189, color=[64, 128, 128]),
190:
dict(link=('skirt_kpt5', 'skirt_kpt6'), id=190, color=[64, 128, 128]),
191:
dict(link=('skirt_kpt6', 'skirt_kpt7'), id=191, color=[64, 128, 128]),
192:
dict(link=('skirt_kpt7', 'skirt_kpt8'), id=192, color=[64, 128, 128]),
193:
dict(link=('skirt_kpt8', 'skirt_kpt3'), id=193, color=[64, 128, 128]),
194:
dict(link=('skirt_kpt3', 'skirt_kpt2'), id=194, color=[64, 128, 128]),
195:
dict(link=('skirt_kpt2', 'skirt_kpt1'), id=195, color=[64, 128, 128]),
# short_sleeved_dress
196:
dict(link=('ssd_kpt1', 'ssd_kpt2'), id=196, color=[64, 64, 128]),
197:
dict(link=('ssd_kpt2', 'ssd_kpt7'), id=197, color=[64, 64, 128]),
198:
dict(link=('ssd_kpt7', 'ssd_kpt8'), id=198, color=[64, 64, 128]),
199:
dict(link=('ssd_kpt8', 'ssd_kpt9'), id=199, color=[64, 64, 128]),
200:
dict(link=('ssd_kpt9', 'ssd_kpt10'), id=200, color=[64, 64, 128]),
201:
dict(link=('ssd_kpt10', 'ssd_kpt11'), id=201, color=[64, 64, 128]),
202:
dict(link=('ssd_kpt11', 'ssd_kpt12'), id=202, color=[64, 64, 128]),
203:
dict(link=('ssd_kpt12', 'ssd_kpt13'), id=203, color=[64, 64, 128]),
204:
dict(link=('ssd_kpt13', 'ssd_kpt14'), id=204, color=[64, 64, 128]),
205:
dict(link=('ssd_kpt14', 'ssd_kpt15'), id=205, color=[64, 64, 128]),
206:
dict(link=('ssd_kpt15', 'ssd_kpt16'), id=206, color=[64, 64, 128]),
207:
dict(link=('ssd_kpt16', 'ssd_kpt17'), id=207, color=[64, 64, 128]),
208:
dict(link=('ssd_kpt17', 'ssd_kpt18'), id=208, color=[64, 64, 128]),
209:
dict(link=('ssd_kpt18', 'ssd_kpt19'), id=209, color=[64, 64, 128]),
210:
dict(link=('ssd_kpt19', 'ssd_kpt20'), id=210, color=[64, 64, 128]),
211:
dict(link=('ssd_kpt20', 'ssd_kpt21'), id=211, color=[64, 64, 128]),
212:
dict(link=('ssd_kpt21', 'ssd_kpt22'), id=212, color=[64, 64, 128]),
213:
dict(link=('ssd_kpt22', 'ssd_kpt23'), id=213, color=[64, 64, 128]),
214:
dict(link=('ssd_kpt23', 'ssd_kpt24'), id=214, color=[64, 64, 128]),
215:
dict(link=('ssd_kpt24', 'ssd_kpt25'), id=215, color=[64, 64, 128]),
216:
dict(link=('ssd_kpt25', 'ssd_kpt26'), id=216, color=[64, 64, 128]),
217:
dict(link=('ssd_kpt26', 'ssd_kpt27'), id=217, color=[64, 64, 128]),
218:
dict(link=('ssd_kpt27', 'ssd_kpt28'), id=218, color=[64, 64, 128]),
219:
dict(link=('ssd_kpt28', 'ssd_kpt29'), id=219, color=[64, 64, 128]),
220:
dict(link=('ssd_kpt29', 'ssd_kpt6'), id=220, color=[64, 64, 128]),
221:
dict(link=('ssd_kpt6', 'ssd_kpt5'), id=221, color=[64, 64, 128]),
222:
dict(link=('ssd_kpt5', 'ssd_kpt4'), id=222, color=[64, 64, 128]),
223:
dict(link=('ssd_kpt4', 'ssd_kpt3'), id=223, color=[64, 64, 128]),
224:
dict(link=('ssd_kpt3', 'ssd_kpt2'), id=224, color=[64, 64, 128]),
225:
dict(link=('ssd_kpt6', 'ssd_kpt1'), id=225, color=[64, 64, 128]),
# long_sleeved_dress
226:
dict(link=('lsd_kpt1', 'lsd_kpt2'), id=226, color=[128, 64, 0]),
227:
dict(link=('lsd_kpt2', 'lsd_kpt7'), id=228, color=[128, 64, 0]),
228:
dict(link=('lsd_kpt7', 'lsd_kpt8'), id=228, color=[128, 64, 0]),
229:
dict(link=('lsd_kpt8', 'lsd_kpt9'), id=229, color=[128, 64, 0]),
230:
dict(link=('lsd_kpt9', 'lsd_kpt10'), id=230, color=[128, 64, 0]),
231:
dict(link=('lsd_kpt10', 'lsd_kpt11'), id=231, color=[128, 64, 0]),
232:
dict(link=('lsd_kpt11', 'lsd_kpt12'), id=232, color=[128, 64, 0]),
233:
dict(link=('lsd_kpt12', 'lsd_kpt13'), id=233, color=[128, 64, 0]),
234:
dict(link=('lsd_kpt13', 'lsd_kpt14'), id=234, color=[128, 64, 0]),
235:
dict(link=('lsd_kpt14', 'lsd_kpt15'), id=235, color=[128, 64, 0]),
236:
dict(link=('lsd_kpt15', 'lsd_kpt16'), id=236, color=[128, 64, 0]),
237:
dict(link=('lsd_kpt16', 'lsd_kpt17'), id=237, color=[128, 64, 0]),
238:
dict(link=('lsd_kpt17', 'lsd_kpt18'), id=238, color=[128, 64, 0]),
239:
dict(link=('lsd_kpt18', 'lsd_kpt19'), id=239, color=[128, 64, 0]),
240:
dict(link=('lsd_kpt19', 'lsd_kpt20'), id=240, color=[128, 64, 0]),
241:
dict(link=('lsd_kpt20', 'lsd_kpt21'), id=241, color=[128, 64, 0]),
242:
dict(link=('lsd_kpt21', 'lsd_kpt22'), id=242, color=[128, 64, 0]),
243:
dict(link=('lsd_kpt22', 'lsd_kpt23'), id=243, color=[128, 64, 0]),
244:
dict(link=('lsd_kpt23', 'lsd_kpt24'), id=244, color=[128, 64, 0]),
245:
dict(link=('lsd_kpt24', 'lsd_kpt25'), id=245, color=[128, 64, 0]),
246:
dict(link=('lsd_kpt25', 'lsd_kpt26'), id=246, color=[128, 64, 0]),
247:
dict(link=('lsd_kpt26', 'lsd_kpt27'), id=247, color=[128, 64, 0]),
248:
dict(link=('lsd_kpt27', 'lsd_kpt28'), id=248, color=[128, 64, 0]),
249:
dict(link=('lsd_kpt28', 'lsd_kpt29'), id=249, color=[128, 64, 0]),
250:
dict(link=('lsd_kpt29', 'lsd_kpt30'), id=250, color=[128, 64, 0]),
251:
dict(link=('lsd_kpt30', 'lsd_kpt31'), id=251, color=[128, 64, 0]),
252:
dict(link=('lsd_kpt31', 'lsd_kpt32'), id=252, color=[128, 64, 0]),
253:
dict(link=('lsd_kpt32', 'lsd_kpt33'), id=253, color=[128, 64, 0]),
254:
dict(link=('lsd_kpt33', 'lsd_kpt34'), id=254, color=[128, 64, 0]),
255:
dict(link=('lsd_kpt34', 'lsd_kpt35'), id=255, color=[128, 64, 0]),
256:
dict(link=('lsd_kpt35', 'lsd_kpt36'), id=256, color=[128, 64, 0]),
257:
dict(link=('lsd_kpt36', 'lsd_kpt37'), id=257, color=[128, 64, 0]),
258:
dict(link=('lsd_kpt37', 'lsd_kpt6'), id=258, color=[128, 64, 0]),
259:
dict(link=('lsd_kpt6', 'lsd_kpt5'), id=259, color=[128, 64, 0]),
260:
dict(link=('lsd_kpt5', 'lsd_kpt4'), id=260, color=[128, 64, 0]),
261:
dict(link=('lsd_kpt4', 'lsd_kpt3'), id=261, color=[128, 64, 0]),
262:
dict(link=('lsd_kpt3', 'lsd_kpt2'), id=262, color=[128, 64, 0]),
263:
dict(link=('lsd_kpt6', 'lsd_kpt1'), id=263, color=[128, 64, 0]),
# vest_dress
264:
dict(link=('vd_kpt1', 'vd_kpt2'), id=264, color=[128, 64, 255]),
265:
dict(link=('vd_kpt2', 'vd_kpt7'), id=265, color=[128, 64, 255]),
266:
dict(link=('vd_kpt7', 'vd_kpt8'), id=266, color=[128, 64, 255]),
267:
dict(link=('vd_kpt8', 'vd_kpt9'), id=267, color=[128, 64, 255]),
268:
dict(link=('vd_kpt9', 'vd_kpt10'), id=268, color=[128, 64, 255]),
269:
dict(link=('vd_kpt10', 'vd_kpt11'), id=269, color=[128, 64, 255]),
270:
dict(link=('vd_kpt11', 'vd_kpt12'), id=270, color=[128, 64, 255]),
271:
dict(link=('vd_kpt12', 'vd_kpt13'), id=271, color=[128, 64, 255]),
272:
dict(link=('vd_kpt13', 'vd_kpt14'), id=272, color=[128, 64, 255]),
273:
dict(link=('vd_kpt14', 'vd_kpt15'), id=273, color=[128, 64, 255]),
274:
dict(link=('vd_kpt15', 'vd_kpt16'), id=274, color=[128, 64, 255]),
275:
dict(link=('vd_kpt16', 'vd_kpt17'), id=275, color=[128, 64, 255]),
276:
dict(link=('vd_kpt17', 'vd_kpt18'), id=276, color=[128, 64, 255]),
277:
dict(link=('vd_kpt18', 'vd_kpt19'), id=277, color=[128, 64, 255]),
278:
dict(link=('vd_kpt19', 'vd_kpt6'), id=278, color=[128, 64, 255]),
279:
dict(link=('vd_kpt6', 'vd_kpt5'), id=279, color=[128, 64, 255]),
280:
dict(link=('vd_kpt5', 'vd_kpt4'), id=280, color=[128, 64, 255]),
281:
dict(link=('vd_kpt4', 'vd_kpt3'), id=281, color=[128, 64, 255]),
282:
dict(link=('vd_kpt3', 'vd_kpt2'), id=282, color=[128, 64, 255]),
283:
dict(link=('vd_kpt6', 'vd_kpt1'), id=283, color=[128, 64, 255]),
# sling_dress
284:
dict(link=('sd_kpt1', 'sd_kpt2'), id=284, color=[128, 64, 0]),
285:
dict(link=('sd_kpt2', 'sd_kpt8'), id=285, color=[128, 64, 0]),
286:
dict(link=('sd_kpt8', 'sd_kpt9'), id=286, color=[128, 64, 0]),
287:
dict(link=('sd_kpt9', 'sd_kpt10'), id=287, color=[128, 64, 0]),
288:
dict(link=('sd_kpt10', 'sd_kpt11'), id=288, color=[128, 64, 0]),
289:
dict(link=('sd_kpt11', 'sd_kpt12'), id=289, color=[128, 64, 0]),
290:
dict(link=('sd_kpt12', 'sd_kpt13'), id=290, color=[128, 64, 0]),
291:
dict(link=('sd_kpt13', 'sd_kpt14'), id=291, color=[128, 64, 0]),
292:
dict(link=('sd_kpt14', 'sd_kpt15'), id=292, color=[128, 64, 0]),
293:
dict(link=('sd_kpt15', 'sd_kpt16'), id=293, color=[128, 64, 0]),
294:
dict(link=('sd_kpt16', 'sd_kpt17'), id=294, color=[128, 64, 0]),
295:
dict(link=('sd_kpt17', 'sd_kpt18'), id=295, color=[128, 64, 0]),
296:
dict(link=('sd_kpt18', 'sd_kpt6'), id=296, color=[128, 64, 0]),
297:
dict(link=('sd_kpt6', 'sd_kpt5'), id=297, color=[128, 64, 0]),
298:
dict(link=('sd_kpt5', 'sd_kpt4'), id=298, color=[128, 64, 0]),
299:
dict(link=('sd_kpt4', 'sd_kpt3'), id=299, color=[128, 64, 0]),
300:
dict(link=('sd_kpt3', 'sd_kpt2'), id=300, color=[128, 64, 0]),
301:
dict(link=('sd_kpt2', 'sd_kpt7'), id=301, color=[128, 64, 0]),
302:
dict(link=('sd_kpt6', 'sd_kpt19'), id=302, color=[128, 64, 0]),
303:
dict(link=('sd_kpt6', 'sd_kpt1'), id=303, color=[128, 64, 0]),
},
joint_weights=[1.] * 294,
sigmas=[])
dataset_info = dict(
dataset_name='deepfashion_full',
paper_info=dict(
author='Liu, Ziwei and Luo, Ping and Qiu, Shi '
'and Wang, Xiaogang and Tang, Xiaoou',
title='DeepFashion: Powering Robust Clothes Recognition '
'and Retrieval with Rich Annotations',
container='Proceedings of IEEE Conference on Computer '
'Vision and Pattern Recognition (CVPR)',
year='2016',
homepage='http://mmlab.ie.cuhk.edu.hk/projects/'
'DeepFashion/LandmarkDetection.html',
),
keypoint_info={
0:
dict(
name='left collar',
id=0,
color=[255, 255, 255],
type='',
swap='right collar'),
1:
dict(
name='right collar',
id=1,
color=[255, 255, 255],
type='',
swap='left collar'),
2:
dict(
name='left sleeve',
id=2,
color=[255, 255, 255],
type='',
swap='right sleeve'),
3:
dict(
name='right sleeve',
id=3,
color=[255, 255, 255],
type='',
swap='left sleeve'),
4:
dict(
name='left waistline',
id=0,
color=[255, 255, 255],
type='',
swap='right waistline'),
5:
dict(
name='right waistline',
id=1,
color=[255, 255, 255],
type='',
swap='left waistline'),
6:
dict(
name='left hem',
id=2,
color=[255, 255, 255],
type='',
swap='right hem'),
7:
dict(
name='right hem',
id=3,
color=[255, 255, 255],
type='',
swap='left hem'),
},
skeleton_info={},
joint_weights=[1.] * 8,
sigmas=[])
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment