Commit 37c8cebc authored by Sugon_ldc's avatar Sugon_ldc
Browse files

add new model

parents
Pipeline #318 failed with stages
in 0 seconds
_base_ = [
'../../../../_base_/default_runtime.py',
'../../../../_base_/datasets/horse10.py'
]
evaluation = dict(interval=10, metric='PCK', save_best='PCK')
optimizer = dict(
type='Adam',
lr=5e-4,
)
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=0.001,
step=[170, 200])
total_epochs = 210
log_config = dict(
interval=1,
hooks=[
dict(type='TextLoggerHook'),
# dict(type='TensorboardLoggerHook')
])
channel_cfg = dict(
num_output_channels=22,
dataset_joints=22,
dataset_channel=[
[
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 21
],
],
inference_channel=[
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
21
])
# model settings
model = dict(
type='TopDown',
pretrained='torchvision://resnet152',
backbone=dict(type='ResNet', depth=152),
keypoint_head=dict(
type='TopdownHeatmapSimpleHead',
in_channels=2048,
out_channels=channel_cfg['num_output_channels'],
loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)),
train_cfg=dict(),
test_cfg=dict(
flip_test=True,
post_process='default',
shift_heatmap=True,
modulate_kernel=11))
data_cfg = dict(
image_size=[256, 256],
heatmap_size=[64, 64],
num_output_channels=channel_cfg['num_output_channels'],
num_joints=channel_cfg['dataset_joints'],
dataset_channel=channel_cfg['dataset_channel'],
inference_channel=channel_cfg['inference_channel'])
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='TopDownGetBboxCenterScale', padding=1.25),
dict(type='TopDownRandomShiftBboxCenter', shift_factor=0.16, prob=0.3),
dict(type='TopDownRandomFlip', flip_prob=0.5),
dict(
type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5),
dict(type='TopDownAffine'),
dict(type='ToTensor'),
dict(
type='NormalizeTensor',
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
dict(type='TopDownGenerateTarget', sigma=2),
dict(
type='Collect',
keys=['img', 'target', 'target_weight'],
meta_keys=[
'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
'rotation', 'bbox_score', 'flip_pairs'
]),
]
val_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='TopDownGetBboxCenterScale', padding=1.25),
dict(type='TopDownAffine'),
dict(type='ToTensor'),
dict(
type='NormalizeTensor',
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
dict(
type='Collect',
keys=['img'],
meta_keys=[
'image_file', 'center', 'scale', 'rotation', 'bbox_score',
'flip_pairs'
]),
]
test_pipeline = val_pipeline
data_root = 'data/horse10'
data = dict(
samples_per_gpu=32,
workers_per_gpu=2,
val_dataloader=dict(samples_per_gpu=32),
test_dataloader=dict(samples_per_gpu=32),
train=dict(
type='AnimalHorse10Dataset',
ann_file=f'{data_root}/annotations/horse10-train-split2.json',
img_prefix=f'{data_root}/',
data_cfg=data_cfg,
pipeline=train_pipeline,
dataset_info={{_base_.dataset_info}}),
val=dict(
type='AnimalHorse10Dataset',
ann_file=f'{data_root}/annotations/horse10-test-split2.json',
img_prefix=f'{data_root}/',
data_cfg=data_cfg,
pipeline=val_pipeline,
dataset_info={{_base_.dataset_info}}),
test=dict(
type='AnimalHorse10Dataset',
ann_file=f'{data_root}/annotations/horse10-test-split2.json',
img_prefix=f'{data_root}/',
data_cfg=data_cfg,
pipeline=test_pipeline,
dataset_info={{_base_.dataset_info}}),
)
_base_ = [
'../../../../_base_/default_runtime.py',
'../../../../_base_/datasets/horse10.py'
]
evaluation = dict(interval=10, metric='PCK', save_best='PCK')
optimizer = dict(
type='Adam',
lr=5e-4,
)
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=0.001,
step=[170, 200])
total_epochs = 210
log_config = dict(
interval=1,
hooks=[
dict(type='TextLoggerHook'),
# dict(type='TensorboardLoggerHook')
])
channel_cfg = dict(
num_output_channels=22,
dataset_joints=22,
dataset_channel=[
[
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 21
],
],
inference_channel=[
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
21
])
# model settings
model = dict(
type='TopDown',
pretrained='torchvision://resnet152',
backbone=dict(type='ResNet', depth=152),
keypoint_head=dict(
type='TopdownHeatmapSimpleHead',
in_channels=2048,
out_channels=channel_cfg['num_output_channels'],
loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)),
train_cfg=dict(),
test_cfg=dict(
flip_test=True,
post_process='default',
shift_heatmap=True,
modulate_kernel=11))
data_cfg = dict(
image_size=[256, 256],
heatmap_size=[64, 64],
num_output_channels=channel_cfg['num_output_channels'],
num_joints=channel_cfg['dataset_joints'],
dataset_channel=channel_cfg['dataset_channel'],
inference_channel=channel_cfg['inference_channel'])
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='TopDownGetBboxCenterScale', padding=1.25),
dict(type='TopDownRandomShiftBboxCenter', shift_factor=0.16, prob=0.3),
dict(type='TopDownRandomFlip', flip_prob=0.5),
dict(
type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5),
dict(type='TopDownAffine'),
dict(type='ToTensor'),
dict(
type='NormalizeTensor',
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
dict(type='TopDownGenerateTarget', sigma=2),
dict(
type='Collect',
keys=['img', 'target', 'target_weight'],
meta_keys=[
'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
'rotation', 'bbox_score', 'flip_pairs'
]),
]
val_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='TopDownGetBboxCenterScale', padding=1.25),
dict(type='TopDownAffine'),
dict(type='ToTensor'),
dict(
type='NormalizeTensor',
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
dict(
type='Collect',
keys=['img'],
meta_keys=[
'image_file', 'center', 'scale', 'rotation', 'bbox_score',
'flip_pairs'
]),
]
test_pipeline = val_pipeline
data_root = 'data/horse10'
data = dict(
samples_per_gpu=32,
workers_per_gpu=2,
val_dataloader=dict(samples_per_gpu=32),
test_dataloader=dict(samples_per_gpu=32),
train=dict(
type='AnimalHorse10Dataset',
ann_file=f'{data_root}/annotations/horse10-train-split3.json',
img_prefix=f'{data_root}/',
data_cfg=data_cfg,
pipeline=train_pipeline,
dataset_info={{_base_.dataset_info}}),
val=dict(
type='AnimalHorse10Dataset',
ann_file=f'{data_root}/annotations/horse10-test-split3.json',
img_prefix=f'{data_root}/',
data_cfg=data_cfg,
pipeline=val_pipeline,
dataset_info={{_base_.dataset_info}}),
test=dict(
type='AnimalHorse10Dataset',
ann_file=f'{data_root}/annotations/horse10-test-split3.json',
img_prefix=f'{data_root}/',
data_cfg=data_cfg,
pipeline=test_pipeline,
dataset_info={{_base_.dataset_info}}),
)
_base_ = [
'../../../../_base_/default_runtime.py',
'../../../../_base_/datasets/horse10.py'
]
evaluation = dict(interval=10, metric='PCK', save_best='PCK')
optimizer = dict(
type='Adam',
lr=5e-4,
)
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=0.001,
step=[170, 200])
total_epochs = 210
log_config = dict(
interval=1,
hooks=[
dict(type='TextLoggerHook'),
# dict(type='TensorboardLoggerHook')
])
channel_cfg = dict(
num_output_channels=22,
dataset_joints=22,
dataset_channel=[
[
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 21
],
],
inference_channel=[
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
21
])
# model settings
model = dict(
type='TopDown',
pretrained='torchvision://resnet50',
backbone=dict(type='ResNet', depth=50),
keypoint_head=dict(
type='TopdownHeatmapSimpleHead',
in_channels=2048,
out_channels=channel_cfg['num_output_channels'],
loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)),
train_cfg=dict(),
test_cfg=dict(
flip_test=True,
post_process='default',
shift_heatmap=True,
modulate_kernel=11))
data_cfg = dict(
image_size=[256, 256],
heatmap_size=[64, 64],
num_output_channels=channel_cfg['num_output_channels'],
num_joints=channel_cfg['dataset_joints'],
dataset_channel=channel_cfg['dataset_channel'],
inference_channel=channel_cfg['inference_channel'])
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='TopDownGetBboxCenterScale', padding=1.25),
dict(type='TopDownRandomShiftBboxCenter', shift_factor=0.16, prob=0.3),
dict(type='TopDownRandomFlip', flip_prob=0.5),
dict(
type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5),
dict(type='TopDownAffine'),
dict(type='ToTensor'),
dict(
type='NormalizeTensor',
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
dict(type='TopDownGenerateTarget', sigma=2),
dict(
type='Collect',
keys=['img', 'target', 'target_weight'],
meta_keys=[
'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
'rotation', 'bbox_score', 'flip_pairs'
]),
]
val_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='TopDownGetBboxCenterScale', padding=1.25),
dict(type='TopDownAffine'),
dict(type='ToTensor'),
dict(
type='NormalizeTensor',
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
dict(
type='Collect',
keys=['img'],
meta_keys=[
'image_file', 'center', 'scale', 'rotation', 'bbox_score',
'flip_pairs'
]),
]
test_pipeline = val_pipeline
data_root = 'data/horse10'
data = dict(
samples_per_gpu=64,
workers_per_gpu=2,
val_dataloader=dict(samples_per_gpu=32),
test_dataloader=dict(samples_per_gpu=32),
train=dict(
type='AnimalHorse10Dataset',
ann_file=f'{data_root}/annotations/horse10-train-split1.json',
img_prefix=f'{data_root}/',
data_cfg=data_cfg,
pipeline=train_pipeline,
dataset_info={{_base_.dataset_info}}),
val=dict(
type='AnimalHorse10Dataset',
ann_file=f'{data_root}/annotations/horse10-test-split1.json',
img_prefix=f'{data_root}/',
data_cfg=data_cfg,
pipeline=val_pipeline,
dataset_info={{_base_.dataset_info}}),
test=dict(
type='AnimalHorse10Dataset',
ann_file=f'{data_root}/annotations/horse10-test-split1.json',
img_prefix=f'{data_root}/',
data_cfg=data_cfg,
pipeline=test_pipeline,
dataset_info={{_base_.dataset_info}}),
)
_base_ = [
'../../../../_base_/default_runtime.py',
'../../../../_base_/datasets/horse10.py'
]
evaluation = dict(interval=10, metric='PCK', save_best='PCK')
optimizer = dict(
type='Adam',
lr=5e-4,
)
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=0.001,
step=[170, 200])
total_epochs = 210
log_config = dict(
interval=1,
hooks=[
dict(type='TextLoggerHook'),
# dict(type='TensorboardLoggerHook')
])
channel_cfg = dict(
num_output_channels=22,
dataset_joints=22,
dataset_channel=[
[
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 21
],
],
inference_channel=[
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
21
])
# model settings
model = dict(
type='TopDown',
pretrained='torchvision://resnet50',
backbone=dict(type='ResNet', depth=50),
keypoint_head=dict(
type='TopdownHeatmapSimpleHead',
in_channels=2048,
out_channels=channel_cfg['num_output_channels'],
loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)),
train_cfg=dict(),
test_cfg=dict(
flip_test=True,
post_process='default',
shift_heatmap=True,
modulate_kernel=11))
data_cfg = dict(
image_size=[256, 256],
heatmap_size=[64, 64],
num_output_channels=channel_cfg['num_output_channels'],
num_joints=channel_cfg['dataset_joints'],
dataset_channel=channel_cfg['dataset_channel'],
inference_channel=channel_cfg['inference_channel'])
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='TopDownGetBboxCenterScale', padding=1.25),
dict(type='TopDownRandomShiftBboxCenter', shift_factor=0.16, prob=0.3),
dict(type='TopDownRandomFlip', flip_prob=0.5),
dict(
type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5),
dict(type='TopDownAffine'),
dict(type='ToTensor'),
dict(
type='NormalizeTensor',
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
dict(type='TopDownGenerateTarget', sigma=2),
dict(
type='Collect',
keys=['img', 'target', 'target_weight'],
meta_keys=[
'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
'rotation', 'bbox_score', 'flip_pairs'
]),
]
val_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='TopDownGetBboxCenterScale', padding=1.25),
dict(type='TopDownAffine'),
dict(type='ToTensor'),
dict(
type='NormalizeTensor',
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
dict(
type='Collect',
keys=['img'],
meta_keys=[
'image_file', 'center', 'scale', 'rotation', 'bbox_score',
'flip_pairs'
]),
]
test_pipeline = val_pipeline
data_root = 'data/horse10'
data = dict(
samples_per_gpu=64,
workers_per_gpu=2,
val_dataloader=dict(samples_per_gpu=32),
test_dataloader=dict(samples_per_gpu=32),
train=dict(
type='AnimalHorse10Dataset',
ann_file=f'{data_root}/annotations/horse10-train-split2.json',
img_prefix=f'{data_root}/',
data_cfg=data_cfg,
pipeline=train_pipeline,
dataset_info={{_base_.dataset_info}}),
val=dict(
type='AnimalHorse10Dataset',
ann_file=f'{data_root}/annotations/horse10-test-split2.json',
img_prefix=f'{data_root}/',
data_cfg=data_cfg,
pipeline=val_pipeline,
dataset_info={{_base_.dataset_info}}),
test=dict(
type='AnimalHorse10Dataset',
ann_file=f'{data_root}/annotations/horse10-test-split2.json',
img_prefix=f'{data_root}/',
data_cfg=data_cfg,
pipeline=test_pipeline,
dataset_info={{_base_.dataset_info}}),
)
_base_ = [
'../../../../_base_/default_runtime.py',
'../../../../_base_/datasets/horse10.py'
]
evaluation = dict(interval=10, metric='PCK', save_best='PCK')
optimizer = dict(
type='Adam',
lr=5e-4,
)
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=0.001,
step=[170, 200])
total_epochs = 210
log_config = dict(
interval=1,
hooks=[
dict(type='TextLoggerHook'),
# dict(type='TensorboardLoggerHook')
])
channel_cfg = dict(
num_output_channels=22,
dataset_joints=22,
dataset_channel=[
[
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 21
],
],
inference_channel=[
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
21
])
# model settings
model = dict(
type='TopDown',
pretrained='torchvision://resnet50',
backbone=dict(type='ResNet', depth=50),
keypoint_head=dict(
type='TopdownHeatmapSimpleHead',
in_channels=2048,
out_channels=channel_cfg['num_output_channels'],
loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)),
train_cfg=dict(),
test_cfg=dict(
flip_test=True,
post_process='default',
shift_heatmap=True,
modulate_kernel=11))
data_cfg = dict(
image_size=[256, 256],
heatmap_size=[64, 64],
num_output_channels=channel_cfg['num_output_channels'],
num_joints=channel_cfg['dataset_joints'],
dataset_channel=channel_cfg['dataset_channel'],
inference_channel=channel_cfg['inference_channel'])
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='TopDownGetBboxCenterScale', padding=1.25),
dict(type='TopDownRandomShiftBboxCenter', shift_factor=0.16, prob=0.3),
dict(type='TopDownRandomFlip', flip_prob=0.5),
dict(
type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5),
dict(type='TopDownAffine'),
dict(type='ToTensor'),
dict(
type='NormalizeTensor',
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
dict(type='TopDownGenerateTarget', sigma=2),
dict(
type='Collect',
keys=['img', 'target', 'target_weight'],
meta_keys=[
'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
'rotation', 'bbox_score', 'flip_pairs'
]),
]
val_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='TopDownGetBboxCenterScale', padding=1.25),
dict(type='TopDownAffine'),
dict(type='ToTensor'),
dict(
type='NormalizeTensor',
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
dict(
type='Collect',
keys=['img'],
meta_keys=[
'image_file', 'center', 'scale', 'rotation', 'bbox_score',
'flip_pairs'
]),
]
test_pipeline = val_pipeline
data_root = 'data/horse10'
data = dict(
samples_per_gpu=64,
workers_per_gpu=2,
val_dataloader=dict(samples_per_gpu=32),
test_dataloader=dict(samples_per_gpu=32),
train=dict(
type='AnimalHorse10Dataset',
ann_file=f'{data_root}/annotations/horse10-train-split3.json',
img_prefix=f'{data_root}/',
data_cfg=data_cfg,
pipeline=train_pipeline,
dataset_info={{_base_.dataset_info}}),
val=dict(
type='AnimalHorse10Dataset',
ann_file=f'{data_root}/annotations/horse10-test-split3.json',
img_prefix=f'{data_root}/',
data_cfg=data_cfg,
pipeline=val_pipeline,
dataset_info={{_base_.dataset_info}}),
test=dict(
type='AnimalHorse10Dataset',
ann_file=f'{data_root}/annotations/horse10-test-split3.json',
img_prefix=f'{data_root}/',
data_cfg=data_cfg,
pipeline=test_pipeline,
dataset_info={{_base_.dataset_info}}),
)
<!-- [ALGORITHM] -->
<details>
<summary align="right"><a href="http://openaccess.thecvf.com/content_ECCV_2018/html/Bin_Xiao_Simple_Baselines_for_ECCV_2018_paper.html">SimpleBaseline2D (ECCV'2018)</a></summary>
```bibtex
@inproceedings{xiao2018simple,
title={Simple baselines for human pose estimation and tracking},
author={Xiao, Bin and Wu, Haiping and Wei, Yichen},
booktitle={Proceedings of the European conference on computer vision (ECCV)},
pages={466--481},
year={2018}
}
```
</details>
<!-- [DATASET] -->
<details>
<summary align="right"><a href="https://openaccess.thecvf.com/content/WACV2021/html/Mathis_Pretraining_Boosts_Out-of-Domain_Robustness_for_Pose_Estimation_WACV_2021_paper.html">Horse-10 (WACV'2021)</a></summary>
```bibtex
@inproceedings{mathis2021pretraining,
title={Pretraining boosts out-of-domain robustness for pose estimation},
author={Mathis, Alexander and Biasi, Thomas and Schneider, Steffen and Yuksekgonul, Mert and Rogers, Byron and Bethge, Matthias and Mathis, Mackenzie W},
booktitle={Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision},
pages={1859--1868},
year={2021}
}
```
</details>
Results on Horse-10 test set
| Set | Arch | Input Size | PCK@0.3 | NME | ckpt | log |
| :----- | :-------------------------------------------------------: | :--------: | :-----: | :---: | :--------------------------------------------------------: | :-------------------------------------------------------: |
| split1 | [pose_resnet_50](/configs/animal/2d_kpt_sview_rgb_img/topdown_heatmap/horse10/res50_horse10_256x256-split1.py) | 256x256 | 0.956 | 0.113 | [ckpt](https://download.openmmlab.com/mmpose/animal/resnet/res50_horse10_256x256_split1-3a3dc37e_20210405.pth) | [log](https://download.openmmlab.com/mmpose/animal/resnet/res50_horse10_256x256_split1_20210405.log.json) |
| split2 | [pose_resnet_50](/configs/animal/2d_kpt_sview_rgb_img/topdown_heatmap/horse10/res50_horse10_256x256-split2.py) | 256x256 | 0.954 | 0.111 | [ckpt](https://download.openmmlab.com/mmpose/animal/resnet/res50_horse10_256x256_split2-65e2a508_20210405.pth) | [log](https://download.openmmlab.com/mmpose/animal/resnet/res50_horse10_256x256_split2_20210405.log.json) |
| split3 | [pose_resnet_50](/configs/animal/2d_kpt_sview_rgb_img/topdown_heatmap/horse10/res50_horse10_256x256-split3.py) | 256x256 | 0.946 | 0.129 | [ckpt](https://download.openmmlab.com/mmpose/animal/resnet/res50_horse10_256x256_split3-9637d4eb_20210405.pth) | [log](https://download.openmmlab.com/mmpose/animal/resnet/res50_horse10_256x256_split3_20210405.log.json) |
| split1 | [pose_resnet_101](/configs/animal/2d_kpt_sview_rgb_img/topdown_heatmap/horse10/res101_horse10_256x256-split1.py) | 256x256 | 0.958 | 0.115 | [ckpt](https://download.openmmlab.com/mmpose/animal/resnet/res101_horse10_256x256_split1-1b7c259c_20210405.pth) | [log](https://download.openmmlab.com/mmpose/animal/resnet/res101_horse10_256x256_split1_20210405.log.json) |
| split2 | [pose_resnet_101](/configs/animal/2d_kpt_sview_rgb_img/topdown_heatmap/horse10/res101_horse10_256x256-split2.py) | 256x256 | 0.955 | 0.115 | [ckpt](https://download.openmmlab.com/mmpose/animal/resnet/res101_horse10_256x256_split2-30e2fa87_20210405.pth) | [log](https://download.openmmlab.com/mmpose/animal/resnet/res101_horse10_256x256_split2_20210405.log.json) |
| split3 | [pose_resnet_101](/configs/animal/2d_kpt_sview_rgb_img/topdown_heatmap/horse10/res101_horse10_256x256-split3.py) | 256x256 | 0.946 | 0.126 | [ckpt](https://download.openmmlab.com/mmpose/animal/resnet/res101_horse10_256x256_split3-2eea5bb1_20210405.pth) | [log](https://download.openmmlab.com/mmpose/animal/resnet/res101_horse10_256x256_split3_20210405.log.json) |
| split1 | [pose_resnet_152](/configs/animal/2d_kpt_sview_rgb_img/topdown_heatmap/horse10/res152_horse10_256x256-split1.py) | 256x256 | 0.969 | 0.105 | [ckpt](https://download.openmmlab.com/mmpose/animal/resnet/res152_horse10_256x256_split1-7e81fe2d_20210405.pth) | [log](https://download.openmmlab.com/mmpose/animal/resnet/res152_horse10_256x256_split1_20210405.log.json) |
| split2 | [pose_resnet_152](/configs/animal/2d_kpt_sview_rgb_img/topdown_heatmap/horse10/res152_horse10_256x256-split2.py) | 256x256 | 0.970 | 0.103 | [ckpt](https://download.openmmlab.com/mmpose/animal/resnet/res152_horse10_256x256_split2-3b3404a3_20210405.pth) | [log](https://download.openmmlab.com/mmpose/animal/resnet/res152_horse10_256x256_split2_20210405.log.json) |
| split3 | [pose_resnet_152](/configs/animal/2d_kpt_sview_rgb_img/topdown_heatmap/horse10/res152_horse10_256x256-split3.py) | 256x256 | 0.957 | 0.131 | [ckpt](https://download.openmmlab.com/mmpose/animal/resnet/res152_horse10_256x256_split3-c957dac5_20210405.pth) | [log](https://download.openmmlab.com/mmpose/animal/resnet/res152_horse10_256x256_split3_20210405.log.json) |
Collections:
- Name: SimpleBaseline2D
Paper:
Title: Simple baselines for human pose estimation and tracking
URL: http://openaccess.thecvf.com/content_ECCV_2018/html/Bin_Xiao_Simple_Baselines_for_ECCV_2018_paper.html
README: https://github.com/open-mmlab/mmpose/blob/master/docs/en/papers/algorithms/simplebaseline2d.md
Models:
- Config: configs/animal/2d_kpt_sview_rgb_img/topdown_heatmap/horse10/res50_horse10_256x256-split1.py
In Collection: SimpleBaseline2D
Metadata:
Architecture: &id001
- SimpleBaseline2D
Training Data: Horse-10
Name: topdown_heatmap_res50_horse10_256x256-split1
Results:
- Dataset: Horse-10
Metrics:
NME: 0.113
PCK@0.3: 0.956
Task: Animal 2D Keypoint
Weights: https://download.openmmlab.com/mmpose/animal/resnet/res50_horse10_256x256_split1-3a3dc37e_20210405.pth
- Config: configs/animal/2d_kpt_sview_rgb_img/topdown_heatmap/horse10/res50_horse10_256x256-split2.py
In Collection: SimpleBaseline2D
Metadata:
Architecture: *id001
Training Data: Horse-10
Name: topdown_heatmap_res50_horse10_256x256-split2
Results:
- Dataset: Horse-10
Metrics:
NME: 0.111
PCK@0.3: 0.954
Task: Animal 2D Keypoint
Weights: https://download.openmmlab.com/mmpose/animal/resnet/res50_horse10_256x256_split2-65e2a508_20210405.pth
- Config: configs/animal/2d_kpt_sview_rgb_img/topdown_heatmap/horse10/res50_horse10_256x256-split3.py
In Collection: SimpleBaseline2D
Metadata:
Architecture: *id001
Training Data: Horse-10
Name: topdown_heatmap_res50_horse10_256x256-split3
Results:
- Dataset: Horse-10
Metrics:
NME: 0.129
PCK@0.3: 0.946
Task: Animal 2D Keypoint
Weights: https://download.openmmlab.com/mmpose/animal/resnet/res50_horse10_256x256_split3-9637d4eb_20210405.pth
- Config: configs/animal/2d_kpt_sview_rgb_img/topdown_heatmap/horse10/res101_horse10_256x256-split1.py
In Collection: SimpleBaseline2D
Metadata:
Architecture: *id001
Training Data: Horse-10
Name: topdown_heatmap_res101_horse10_256x256-split1
Results:
- Dataset: Horse-10
Metrics:
NME: 0.115
PCK@0.3: 0.958
Task: Animal 2D Keypoint
Weights: https://download.openmmlab.com/mmpose/animal/resnet/res101_horse10_256x256_split1-1b7c259c_20210405.pth
- Config: configs/animal/2d_kpt_sview_rgb_img/topdown_heatmap/horse10/res101_horse10_256x256-split2.py
In Collection: SimpleBaseline2D
Metadata:
Architecture: *id001
Training Data: Horse-10
Name: topdown_heatmap_res101_horse10_256x256-split2
Results:
- Dataset: Horse-10
Metrics:
NME: 0.115
PCK@0.3: 0.955
Task: Animal 2D Keypoint
Weights: https://download.openmmlab.com/mmpose/animal/resnet/res101_horse10_256x256_split2-30e2fa87_20210405.pth
- Config: configs/animal/2d_kpt_sview_rgb_img/topdown_heatmap/horse10/res101_horse10_256x256-split3.py
In Collection: SimpleBaseline2D
Metadata:
Architecture: *id001
Training Data: Horse-10
Name: topdown_heatmap_res101_horse10_256x256-split3
Results:
- Dataset: Horse-10
Metrics:
NME: 0.126
PCK@0.3: 0.946
Task: Animal 2D Keypoint
Weights: https://download.openmmlab.com/mmpose/animal/resnet/res101_horse10_256x256_split3-2eea5bb1_20210405.pth
- Config: configs/animal/2d_kpt_sview_rgb_img/topdown_heatmap/horse10/res152_horse10_256x256-split1.py
In Collection: SimpleBaseline2D
Metadata:
Architecture: *id001
Training Data: Horse-10
Name: topdown_heatmap_res152_horse10_256x256-split1
Results:
- Dataset: Horse-10
Metrics:
NME: 0.105
PCK@0.3: 0.969
Task: Animal 2D Keypoint
Weights: https://download.openmmlab.com/mmpose/animal/resnet/res152_horse10_256x256_split1-7e81fe2d_20210405.pth
- Config: configs/animal/2d_kpt_sview_rgb_img/topdown_heatmap/horse10/res152_horse10_256x256-split2.py
In Collection: SimpleBaseline2D
Metadata:
Architecture: *id001
Training Data: Horse-10
Name: topdown_heatmap_res152_horse10_256x256-split2
Results:
- Dataset: Horse-10
Metrics:
NME: 0.103
PCK@0.3: 0.97
Task: Animal 2D Keypoint
Weights: https://download.openmmlab.com/mmpose/animal/resnet/res152_horse10_256x256_split2-3b3404a3_20210405.pth
- Config: configs/animal/2d_kpt_sview_rgb_img/topdown_heatmap/horse10/res152_horse10_256x256-split3.py
In Collection: SimpleBaseline2D
Metadata:
Architecture: *id001
Training Data: Horse-10
Name: topdown_heatmap_res152_horse10_256x256-split3
Results:
- Dataset: Horse-10
Metrics:
NME: 0.131
PCK@0.3: 0.957
Task: Animal 2D Keypoint
Weights: https://download.openmmlab.com/mmpose/animal/resnet/res152_horse10_256x256_split3-c957dac5_20210405.pth
_base_ = [
'../../../../_base_/default_runtime.py',
'../../../../_base_/datasets/locust.py'
]
evaluation = dict(interval=10, metric=['PCK', 'AUC', 'EPE'], save_best='AUC')
optimizer = dict(
type='Adam',
lr=5e-4,
)
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=0.001,
step=[170, 200])
total_epochs = 210
log_config = dict(
interval=1,
hooks=[
dict(type='TextLoggerHook'),
# dict(type='TensorboardLoggerHook')
])
channel_cfg = dict(
num_output_channels=35,
dataset_joints=35,
dataset_channel=[
[
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34
],
],
inference_channel=[
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34
])
# model settings
model = dict(
type='TopDown',
pretrained='torchvision://resnet101',
backbone=dict(type='ResNet', depth=101),
keypoint_head=dict(
type='TopdownHeatmapSimpleHead',
in_channels=2048,
out_channels=channel_cfg['num_output_channels'],
loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)),
train_cfg=dict(),
test_cfg=dict(
flip_test=True,
post_process='default',
shift_heatmap=True,
modulate_kernel=11))
data_cfg = dict(
image_size=[160, 160],
heatmap_size=[40, 40],
num_output_channels=channel_cfg['num_output_channels'],
num_joints=channel_cfg['dataset_joints'],
dataset_channel=channel_cfg['dataset_channel'],
inference_channel=channel_cfg['inference_channel'])
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='TopDownGetBboxCenterScale', padding=0.8),
dict(type='TopDownRandomShiftBboxCenter', shift_factor=0.25, prob=0.3),
dict(type='TopDownRandomFlip', flip_prob=0.5),
dict(
type='TopDownGetRandomScaleRotation', rot_factor=90, scale_factor=0.3),
dict(type='TopDownAffine'),
dict(type='ToTensor'),
dict(
type='NormalizeTensor',
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
dict(type='TopDownGenerateTarget', sigma=2),
dict(
type='Collect',
keys=['img', 'target', 'target_weight'],
meta_keys=[
'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
'rotation', 'flip_pairs'
]),
]
val_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='TopDownGetBboxCenterScale', padding=0.8),
dict(type='TopDownAffine'),
dict(type='ToTensor'),
dict(
type='NormalizeTensor',
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
dict(
type='Collect',
keys=['img'],
meta_keys=['image_file', 'center', 'scale', 'rotation', 'flip_pairs']),
]
test_pipeline = val_pipeline
data_root = 'data/locust'
data = dict(
samples_per_gpu=64,
workers_per_gpu=2,
val_dataloader=dict(samples_per_gpu=32),
test_dataloader=dict(samples_per_gpu=32),
train=dict(
type='AnimalLocustDataset',
ann_file=f'{data_root}/annotations/locust_train.json',
img_prefix=f'{data_root}/images/',
data_cfg=data_cfg,
pipeline=train_pipeline,
dataset_info={{_base_.dataset_info}}),
val=dict(
type='AnimalLocustDataset',
ann_file=f'{data_root}/annotations/locust_test.json',
img_prefix=f'{data_root}/images/',
data_cfg=data_cfg,
pipeline=val_pipeline,
dataset_info={{_base_.dataset_info}}),
test=dict(
type='AnimalLocustDataset',
ann_file=f'{data_root}/annotations/locust_test.json',
img_prefix=f'{data_root}/images/',
data_cfg=data_cfg,
pipeline=test_pipeline,
dataset_info={{_base_.dataset_info}}),
)
_base_ = [
'../../../../_base_/default_runtime.py',
'../../../../_base_/datasets/locust.py'
]
evaluation = dict(interval=10, metric=['PCK', 'AUC', 'EPE'], save_best='AUC')
optimizer = dict(
type='Adam',
lr=5e-4,
)
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=0.001,
step=[170, 200])
total_epochs = 210
log_config = dict(
interval=1,
hooks=[
dict(type='TextLoggerHook'),
# dict(type='TensorboardLoggerHook')
])
channel_cfg = dict(
num_output_channels=35,
dataset_joints=35,
dataset_channel=[
[
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34
],
],
inference_channel=[
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34
])
# model settings
model = dict(
type='TopDown',
pretrained='torchvision://resnet152',
backbone=dict(type='ResNet', depth=152),
keypoint_head=dict(
type='TopdownHeatmapSimpleHead',
in_channels=2048,
out_channels=channel_cfg['num_output_channels'],
loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)),
train_cfg=dict(),
test_cfg=dict(
flip_test=True,
post_process='default',
shift_heatmap=True,
modulate_kernel=11))
data_cfg = dict(
image_size=[160, 160],
heatmap_size=[40, 40],
num_output_channels=channel_cfg['num_output_channels'],
num_joints=channel_cfg['dataset_joints'],
dataset_channel=channel_cfg['dataset_channel'],
inference_channel=channel_cfg['inference_channel'])
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='TopDownGetBboxCenterScale', padding=0.8),
dict(type='TopDownRandomShiftBboxCenter', shift_factor=0.25, prob=0.3),
dict(type='TopDownRandomFlip', flip_prob=0.5),
dict(
type='TopDownGetRandomScaleRotation', rot_factor=90, scale_factor=0.3),
dict(type='TopDownAffine'),
dict(type='ToTensor'),
dict(
type='NormalizeTensor',
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
dict(type='TopDownGenerateTarget', sigma=2),
dict(
type='Collect',
keys=['img', 'target', 'target_weight'],
meta_keys=[
'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
'rotation', 'flip_pairs'
]),
]
val_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='TopDownGetBboxCenterScale', padding=0.8),
dict(type='TopDownAffine'),
dict(type='ToTensor'),
dict(
type='NormalizeTensor',
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
dict(
type='Collect',
keys=['img'],
meta_keys=['image_file', 'center', 'scale', 'rotation', 'flip_pairs']),
]
test_pipeline = val_pipeline
data_root = 'data/locust'
data = dict(
samples_per_gpu=32,
workers_per_gpu=2,
val_dataloader=dict(samples_per_gpu=32),
test_dataloader=dict(samples_per_gpu=32),
train=dict(
type='AnimalLocustDataset',
ann_file=f'{data_root}/annotations/locust_train.json',
img_prefix=f'{data_root}/images/',
data_cfg=data_cfg,
pipeline=train_pipeline,
dataset_info={{_base_.dataset_info}}),
val=dict(
type='AnimalLocustDataset',
ann_file=f'{data_root}/annotations/locust_test.json',
img_prefix=f'{data_root}/images/',
data_cfg=data_cfg,
pipeline=val_pipeline,
dataset_info={{_base_.dataset_info}}),
test=dict(
type='AnimalLocustDataset',
ann_file=f'{data_root}/annotations/locust_test.json',
img_prefix=f'{data_root}/images/',
data_cfg=data_cfg,
pipeline=test_pipeline,
dataset_info={{_base_.dataset_info}}),
)
_base_ = [
'../../../../_base_/default_runtime.py',
'../../../../_base_/datasets/locust.py'
]
evaluation = dict(interval=10, metric=['PCK', 'AUC', 'EPE'], save_best='AUC')
optimizer = dict(
type='Adam',
lr=5e-4,
)
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=0.001,
step=[170, 200])
total_epochs = 210
log_config = dict(
interval=1,
hooks=[
dict(type='TextLoggerHook'),
# dict(type='TensorboardLoggerHook')
])
channel_cfg = dict(
num_output_channels=35,
dataset_joints=35,
dataset_channel=[
[
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34
],
],
inference_channel=[
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34
])
# model settings
model = dict(
type='TopDown',
pretrained='torchvision://resnet50',
backbone=dict(type='ResNet', depth=50),
keypoint_head=dict(
type='TopdownHeatmapSimpleHead',
in_channels=2048,
out_channels=channel_cfg['num_output_channels'],
loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)),
train_cfg=dict(),
test_cfg=dict(
flip_test=True,
post_process='default',
shift_heatmap=True,
modulate_kernel=11))
data_cfg = dict(
image_size=[160, 160],
heatmap_size=[40, 40],
num_output_channels=channel_cfg['num_output_channels'],
num_joints=channel_cfg['dataset_joints'],
dataset_channel=channel_cfg['dataset_channel'],
inference_channel=channel_cfg['inference_channel'])
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='TopDownGetBboxCenterScale', padding=0.8),
dict(type='TopDownRandomShiftBboxCenter', shift_factor=0.25, prob=0.3),
dict(type='TopDownRandomFlip', flip_prob=0.5),
dict(
type='TopDownGetRandomScaleRotation', rot_factor=90, scale_factor=0.3),
dict(type='TopDownAffine'),
dict(type='ToTensor'),
dict(
type='NormalizeTensor',
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
dict(type='TopDownGenerateTarget', sigma=2),
dict(
type='Collect',
keys=['img', 'target', 'target_weight'],
meta_keys=[
'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
'rotation', 'flip_pairs'
]),
]
val_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='TopDownGetBboxCenterScale', padding=0.8),
dict(type='TopDownAffine'),
dict(type='ToTensor'),
dict(
type='NormalizeTensor',
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
dict(
type='Collect',
keys=['img'],
meta_keys=['image_file', 'center', 'scale', 'rotation', 'flip_pairs']),
]
test_pipeline = val_pipeline
data_root = 'data/locust'
data = dict(
samples_per_gpu=64,
workers_per_gpu=2,
val_dataloader=dict(samples_per_gpu=32),
test_dataloader=dict(samples_per_gpu=32),
train=dict(
type='AnimalLocustDataset',
ann_file=f'{data_root}/annotations/locust_train.json',
img_prefix=f'{data_root}/images/',
data_cfg=data_cfg,
pipeline=train_pipeline,
dataset_info={{_base_.dataset_info}}),
val=dict(
type='AnimalLocustDataset',
ann_file=f'{data_root}/annotations/locust_test.json',
img_prefix=f'{data_root}/images/',
data_cfg=data_cfg,
pipeline=val_pipeline,
dataset_info={{_base_.dataset_info}}),
test=dict(
type='AnimalLocustDataset',
ann_file=f'{data_root}/annotations/locust_test.json',
img_prefix=f'{data_root}/images/',
data_cfg=data_cfg,
pipeline=val_pipeline,
dataset_info={{_base_.dataset_info}}),
)
<!-- [ALGORITHM] -->
<details>
<summary align="right"><a href="http://openaccess.thecvf.com/content_ECCV_2018/html/Bin_Xiao_Simple_Baselines_for_ECCV_2018_paper.html">SimpleBaseline2D (ECCV'2018)</a></summary>
```bibtex
@inproceedings{xiao2018simple,
title={Simple baselines for human pose estimation and tracking},
author={Xiao, Bin and Wu, Haiping and Wei, Yichen},
booktitle={Proceedings of the European conference on computer vision (ECCV)},
pages={466--481},
year={2018}
}
```
</details>
<!-- [DATASET] -->
<details>
<summary align="right"><a href="https://elifesciences.org/articles/47994">Desert Locust (Elife'2019)</a></summary>
```bibtex
@article{graving2019deepposekit,
title={DeepPoseKit, a software toolkit for fast and robust animal pose estimation using deep learning},
author={Graving, Jacob M and Chae, Daniel and Naik, Hemal and Li, Liang and Koger, Benjamin and Costelloe, Blair R and Couzin, Iain D},
journal={Elife},
volume={8},
pages={e47994},
year={2019},
publisher={eLife Sciences Publications Limited}
}
```
</details>
Results on Desert Locust test set
| Arch | Input Size | PCK@0.2 | AUC | EPE | ckpt | log |
| :--------------------------------------------------------- | :--------: | :-----: | :---: | :--: | :--------------------------------------------------------: | :--------------------------------------------------------: |
| [pose_resnet_50](/configs/animal/2d_kpt_sview_rgb_img/topdown_heatmap/locust/res50_locust_160x160.py) | 160x160 | 0.999 | 0.899 | 2.27 | [ckpt](https://download.openmmlab.com/mmpose/animal/resnet/res50_locust_160x160-9efca22b_20210407.pth) | [log](https://download.openmmlab.com/mmpose/animal/resnet/res50_locust_160x160_20210407.log.json) |
| [pose_resnet_101](/configs/animal/2d_kpt_sview_rgb_img/topdown_heatmap/locust/res101_locust_160x160.py) | 160x160 | 0.999 | 0.907 | 2.03 | [ckpt](https://download.openmmlab.com/mmpose/animal/resnet/res101_locust_160x160-d77986b3_20210407.pth) | [log](https://download.openmmlab.com/mmpose/animal/resnet/res101_locust_160x160_20210407.log.json) |
| [pose_resnet_152](/configs/animal/2d_kpt_sview_rgb_img/topdown_heatmap/locust/res152_locust_160x160.py) | 160x160 | 1.000 | 0.926 | 1.48 | [ckpt](https://download.openmmlab.com/mmpose/animal/resnet/res152_locust_160x160-4ea9b372_20210407.pth) | [log](https://download.openmmlab.com/mmpose/animal/resnet/res152_locust_160x160_20210407.log.json) |
Collections:
- Name: SimpleBaseline2D
Paper:
Title: Simple baselines for human pose estimation and tracking
URL: http://openaccess.thecvf.com/content_ECCV_2018/html/Bin_Xiao_Simple_Baselines_for_ECCV_2018_paper.html
README: https://github.com/open-mmlab/mmpose/blob/master/docs/en/papers/algorithms/simplebaseline2d.md
Models:
- Config: configs/animal/2d_kpt_sview_rgb_img/topdown_heatmap/locust/res50_locust_160x160.py
In Collection: SimpleBaseline2D
Metadata:
Architecture: &id001
- SimpleBaseline2D
Training Data: Desert Locust
Name: topdown_heatmap_res50_locust_160x160
Results:
- Dataset: Desert Locust
Metrics:
AUC: 0.899
EPE: 2.27
PCK@0.2: 0.999
Task: Animal 2D Keypoint
Weights: https://download.openmmlab.com/mmpose/animal/resnet/res50_locust_160x160-9efca22b_20210407.pth
- Config: configs/animal/2d_kpt_sview_rgb_img/topdown_heatmap/locust/res101_locust_160x160.py
In Collection: SimpleBaseline2D
Metadata:
Architecture: *id001
Training Data: Desert Locust
Name: topdown_heatmap_res101_locust_160x160
Results:
- Dataset: Desert Locust
Metrics:
AUC: 0.907
EPE: 2.03
PCK@0.2: 0.999
Task: Animal 2D Keypoint
Weights: https://download.openmmlab.com/mmpose/animal/resnet/res101_locust_160x160-d77986b3_20210407.pth
- Config: configs/animal/2d_kpt_sview_rgb_img/topdown_heatmap/locust/res152_locust_160x160.py
In Collection: SimpleBaseline2D
Metadata:
Architecture: *id001
Training Data: Desert Locust
Name: topdown_heatmap_res152_locust_160x160
Results:
- Dataset: Desert Locust
Metrics:
AUC: 0.926
EPE: 1.48
PCK@0.2: 1.0
Task: Animal 2D Keypoint
Weights: https://download.openmmlab.com/mmpose/animal/resnet/res152_locust_160x160-4ea9b372_20210407.pth
<!-- [ALGORITHM] -->
<details>
<summary align="right"><a href="http://openaccess.thecvf.com/content_CVPR_2019/html/Sun_Deep_High-Resolution_Representation_Learning_for_Human_Pose_Estimation_CVPR_2019_paper.html">HRNet (CVPR'2019)</a></summary>
```bibtex
@inproceedings{sun2019deep,
title={Deep high-resolution representation learning for human pose estimation},
author={Sun, Ke and Xiao, Bin and Liu, Dong and Wang, Jingdong},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={5693--5703},
year={2019}
}
```
</details>
<!-- [DATASET] -->
<details>
<summary align="right"><a href="https://www.ncbi.nlm.nih.gov/pmc/articles/pmc7874091/">MacaquePose (bioRxiv'2020)</a></summary>
```bibtex
@article{labuguen2020macaquepose,
title={MacaquePose: A novel ‘in the wild’macaque monkey pose dataset for markerless motion capture},
author={Labuguen, Rollyn and Matsumoto, Jumpei and Negrete, Salvador and Nishimaru, Hiroshi and Nishijo, Hisao and Takada, Masahiko and Go, Yasuhiro and Inoue, Ken-ichi and Shibata, Tomohiro},
journal={bioRxiv},
year={2020},
publisher={Cold Spring Harbor Laboratory}
}
```
</details>
Results on MacaquePose with ground-truth detection bounding boxes
| Arch | Input Size | AP | AP<sup>50</sup> | AP<sup>75</sup> | AR | AR<sup>50</sup> | ckpt | log |
| :-------------------------------------------- | :--------: | :---: | :-------------: | :-------------: | :---: | :-------------: | :-------------------------------------------: | :-------------------------------------------: |
| [pose_hrnet_w32](/configs/animal/2d_kpt_sview_rgb_img/topdown_heatmap/macaque/hrnet_w32_macaque_256x192.py) | 256x192 | 0.814 | 0.953 | 0.918 | 0.851 | 0.969 | [ckpt](https://download.openmmlab.com/mmpose/animal/hrnet/hrnet_w32_macaque_256x192-f7e9e04f_20210407.pth) | [log](https://download.openmmlab.com/mmpose/animal/hrnet/hrnet_w32_macaque_256x192_20210407.log.json) |
| [pose_hrnet_w48](/configs/animal/2d_kpt_sview_rgb_img/topdown_heatmap/macaque/hrnet_w48_macaque_256x192.py) | 256x192 | 0.818 | 0.963 | 0.917 | 0.855 | 0.971 | [ckpt](https://download.openmmlab.com/mmpose/animal/hrnet/hrnet_w48_macaque_256x192-9b34b02a_20210407.pth) | [log](https://download.openmmlab.com/mmpose/animal/hrnet/hrnet_w48_macaque_256x192_20210407.log.json) |
Collections:
- Name: HRNet
Paper:
Title: Deep high-resolution representation learning for human pose estimation
URL: http://openaccess.thecvf.com/content_CVPR_2019/html/Sun_Deep_High-Resolution_Representation_Learning_for_Human_Pose_Estimation_CVPR_2019_paper.html
README: https://github.com/open-mmlab/mmpose/blob/master/docs/en/papers/backbones/hrnet.md
Models:
- Config: configs/animal/2d_kpt_sview_rgb_img/topdown_heatmap/macaque/hrnet_w32_macaque_256x192.py
In Collection: HRNet
Metadata:
Architecture: &id001
- HRNet
Training Data: MacaquePose
Name: topdown_heatmap_hrnet_w32_macaque_256x192
Results:
- Dataset: MacaquePose
Metrics:
AP: 0.814
AP@0.5: 0.953
AP@0.75: 0.918
AR: 0.851
AR@0.5: 0.969
Task: Animal 2D Keypoint
Weights: https://download.openmmlab.com/mmpose/animal/hrnet/hrnet_w32_macaque_256x192-f7e9e04f_20210407.pth
- Config: configs/animal/2d_kpt_sview_rgb_img/topdown_heatmap/macaque/hrnet_w48_macaque_256x192.py
In Collection: HRNet
Metadata:
Architecture: *id001
Training Data: MacaquePose
Name: topdown_heatmap_hrnet_w48_macaque_256x192
Results:
- Dataset: MacaquePose
Metrics:
AP: 0.818
AP@0.5: 0.963
AP@0.75: 0.917
AR: 0.855
AR@0.5: 0.971
Task: Animal 2D Keypoint
Weights: https://download.openmmlab.com/mmpose/animal/hrnet/hrnet_w48_macaque_256x192-9b34b02a_20210407.pth
_base_ = [
'../../../../_base_/default_runtime.py',
'../../../../_base_/datasets/macaque.py'
]
evaluation = dict(interval=10, metric='mAP', save_best='AP')
optimizer = dict(
type='Adam',
lr=5e-4,
)
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=0.001,
step=[170, 200])
total_epochs = 210
log_config = dict(
interval=10,
hooks=[
dict(type='TextLoggerHook'),
# dict(type='TensorboardLoggerHook')
])
channel_cfg = dict(
num_output_channels=17,
dataset_joints=17,
dataset_channel=[
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16],
],
inference_channel=[
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
])
# model settings
model = dict(
type='TopDown',
pretrained='https://download.openmmlab.com/mmpose/'
'pretrain_models/hrnet_w32-36af842e.pth',
backbone=dict(
type='HRNet',
in_channels=3,
extra=dict(
stage1=dict(
num_modules=1,
num_branches=1,
block='BOTTLENECK',
num_blocks=(4, ),
num_channels=(64, )),
stage2=dict(
num_modules=1,
num_branches=2,
block='BASIC',
num_blocks=(4, 4),
num_channels=(32, 64)),
stage3=dict(
num_modules=4,
num_branches=3,
block='BASIC',
num_blocks=(4, 4, 4),
num_channels=(32, 64, 128)),
stage4=dict(
num_modules=3,
num_branches=4,
block='BASIC',
num_blocks=(4, 4, 4, 4),
num_channels=(32, 64, 128, 256))),
),
keypoint_head=dict(
type='TopdownHeatmapSimpleHead',
in_channels=32,
out_channels=channel_cfg['num_output_channels'],
num_deconv_layers=0,
extra=dict(final_conv_kernel=1, ),
loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)),
train_cfg=dict(),
test_cfg=dict(
flip_test=True,
post_process='default',
shift_heatmap=True,
modulate_kernel=11))
data_cfg = dict(
image_size=[192, 256],
heatmap_size=[48, 64],
num_output_channels=channel_cfg['num_output_channels'],
num_joints=channel_cfg['dataset_joints'],
dataset_channel=channel_cfg['dataset_channel'],
inference_channel=channel_cfg['inference_channel'],
soft_nms=False,
nms_thr=1.0,
oks_thr=0.9,
vis_thr=0.2,
use_gt_bbox=True,
det_bbox_thr=0.0,
bbox_file='',
)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='TopDownGetBboxCenterScale', padding=1.25),
dict(type='TopDownRandomShiftBboxCenter', shift_factor=0.16, prob=0.3),
dict(type='TopDownRandomFlip', flip_prob=0.5),
dict(
type='TopDownHalfBodyTransform',
num_joints_half_body=8,
prob_half_body=0.3),
dict(
type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5),
dict(type='TopDownAffine'),
dict(type='ToTensor'),
dict(
type='NormalizeTensor',
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
dict(type='TopDownGenerateTarget', sigma=2),
dict(
type='Collect',
keys=['img', 'target', 'target_weight'],
meta_keys=[
'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
'rotation', 'bbox_score', 'flip_pairs'
]),
]
val_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='TopDownGetBboxCenterScale', padding=1.25),
dict(type='TopDownAffine'),
dict(type='ToTensor'),
dict(
type='NormalizeTensor',
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
dict(
type='Collect',
keys=['img'],
meta_keys=[
'image_file', 'center', 'scale', 'rotation', 'bbox_score',
'flip_pairs'
]),
]
test_pipeline = val_pipeline
data_root = 'data/macaque'
data = dict(
samples_per_gpu=64,
workers_per_gpu=2,
val_dataloader=dict(samples_per_gpu=32),
test_dataloader=dict(samples_per_gpu=32),
train=dict(
type='AnimalMacaqueDataset',
ann_file=f'{data_root}/annotations/macaque_train.json',
img_prefix=f'{data_root}/images/',
data_cfg=data_cfg,
pipeline=train_pipeline,
dataset_info={{_base_.dataset_info}}),
val=dict(
type='AnimalMacaqueDataset',
ann_file=f'{data_root}/annotations/macaque_test.json',
img_prefix=f'{data_root}/images/',
data_cfg=data_cfg,
pipeline=val_pipeline,
dataset_info={{_base_.dataset_info}}),
test=dict(
type='AnimalMacaqueDataset',
ann_file=f'{data_root}/annotations/macaque_test.json',
img_prefix=f'{data_root}/images/',
data_cfg=data_cfg,
pipeline=test_pipeline,
dataset_info={{_base_.dataset_info}}),
)
_base_ = [
'../../../../_base_/default_runtime.py',
'../../../../_base_/datasets/macaque.py'
]
evaluation = dict(interval=10, metric='mAP', save_best='AP')
optimizer = dict(
type='Adam',
lr=5e-4,
)
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=0.001,
step=[170, 200])
total_epochs = 210
log_config = dict(
interval=10,
hooks=[
dict(type='TextLoggerHook'),
# dict(type='TensorboardLoggerHook')
])
channel_cfg = dict(
num_output_channels=17,
dataset_joints=17,
dataset_channel=[
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16],
],
inference_channel=[
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
])
# model settings
model = dict(
type='TopDown',
pretrained='https://download.openmmlab.com/mmpose/'
'pretrain_models/hrnet_w48-8ef0771d.pth',
backbone=dict(
type='HRNet',
in_channels=3,
extra=dict(
stage1=dict(
num_modules=1,
num_branches=1,
block='BOTTLENECK',
num_blocks=(4, ),
num_channels=(64, )),
stage2=dict(
num_modules=1,
num_branches=2,
block='BASIC',
num_blocks=(4, 4),
num_channels=(48, 96)),
stage3=dict(
num_modules=4,
num_branches=3,
block='BASIC',
num_blocks=(4, 4, 4),
num_channels=(48, 96, 192)),
stage4=dict(
num_modules=3,
num_branches=4,
block='BASIC',
num_blocks=(4, 4, 4, 4),
num_channels=(48, 96, 192, 384))),
),
keypoint_head=dict(
type='TopdownHeatmapSimpleHead',
in_channels=48,
out_channels=channel_cfg['num_output_channels'],
num_deconv_layers=0,
extra=dict(final_conv_kernel=1, ),
loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)),
train_cfg=dict(),
test_cfg=dict(
flip_test=True,
post_process='default',
shift_heatmap=True,
modulate_kernel=11))
data_cfg = dict(
image_size=[192, 256],
heatmap_size=[48, 64],
num_output_channels=channel_cfg['num_output_channels'],
num_joints=channel_cfg['dataset_joints'],
dataset_channel=channel_cfg['dataset_channel'],
inference_channel=channel_cfg['inference_channel'],
soft_nms=False,
nms_thr=1.0,
oks_thr=0.9,
vis_thr=0.2,
use_gt_bbox=True,
det_bbox_thr=0.0,
bbox_file='',
)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='TopDownGetBboxCenterScale', padding=1.25),
dict(type='TopDownRandomShiftBboxCenter', shift_factor=0.16, prob=0.3),
dict(type='TopDownRandomFlip', flip_prob=0.5),
dict(
type='TopDownHalfBodyTransform',
num_joints_half_body=8,
prob_half_body=0.3),
dict(
type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5),
dict(type='TopDownAffine'),
dict(type='ToTensor'),
dict(
type='NormalizeTensor',
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
dict(type='TopDownGenerateTarget', sigma=2),
dict(
type='Collect',
keys=['img', 'target', 'target_weight'],
meta_keys=[
'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
'rotation', 'bbox_score', 'flip_pairs'
]),
]
val_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='TopDownGetBboxCenterScale', padding=1.25),
dict(type='TopDownAffine'),
dict(type='ToTensor'),
dict(
type='NormalizeTensor',
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
dict(
type='Collect',
keys=['img'],
meta_keys=[
'image_file', 'center', 'scale', 'rotation', 'bbox_score',
'flip_pairs'
]),
]
test_pipeline = val_pipeline
data_root = 'data/macaque'
data = dict(
samples_per_gpu=32,
workers_per_gpu=2,
val_dataloader=dict(samples_per_gpu=32),
test_dataloader=dict(samples_per_gpu=32),
train=dict(
type='AnimalMacaqueDataset',
ann_file=f'{data_root}/annotations/macaque_train.json',
img_prefix=f'{data_root}/images/',
data_cfg=data_cfg,
pipeline=train_pipeline,
dataset_info={{_base_.dataset_info}}),
val=dict(
type='AnimalMacaqueDataset',
ann_file=f'{data_root}/annotations/macaque_test.json',
img_prefix=f'{data_root}/images/',
data_cfg=data_cfg,
pipeline=val_pipeline,
dataset_info={{_base_.dataset_info}}),
test=dict(
type='AnimalMacaqueDataset',
ann_file=f'{data_root}/annotations/macaque_test.json',
img_prefix=f'{data_root}/images/',
data_cfg=data_cfg,
pipeline=test_pipeline,
dataset_info={{_base_.dataset_info}}),
)
_base_ = [
'../../../../_base_/default_runtime.py',
'../../../../_base_/datasets/macaque.py'
]
evaluation = dict(interval=10, metric='mAP', save_best='AP')
optimizer = dict(
type='Adam',
lr=5e-4,
)
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=0.001,
step=[170, 200])
total_epochs = 210
log_config = dict(
interval=10,
hooks=[
dict(type='TextLoggerHook'),
# dict(type='TensorboardLoggerHook')
])
channel_cfg = dict(
num_output_channels=17,
dataset_joints=17,
dataset_channel=[
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16],
],
inference_channel=[
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
])
# model settings
model = dict(
type='TopDown',
pretrained='torchvision://resnet101',
backbone=dict(type='ResNet', depth=101),
keypoint_head=dict(
type='TopdownHeatmapSimpleHead',
in_channels=2048,
out_channels=channel_cfg['num_output_channels'],
loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)),
train_cfg=dict(),
test_cfg=dict(
flip_test=True,
post_process='default',
shift_heatmap=True,
modulate_kernel=11))
data_cfg = dict(
image_size=[192, 256],
heatmap_size=[48, 64],
num_output_channels=channel_cfg['num_output_channels'],
num_joints=channel_cfg['dataset_joints'],
dataset_channel=channel_cfg['dataset_channel'],
inference_channel=channel_cfg['inference_channel'],
soft_nms=False,
nms_thr=1.0,
oks_thr=0.9,
vis_thr=0.2,
use_gt_bbox=True,
det_bbox_thr=0.0,
bbox_file='',
)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='TopDownGetBboxCenterScale', padding=1.25),
dict(type='TopDownRandomShiftBboxCenter', shift_factor=0.16, prob=0.3),
dict(type='TopDownRandomFlip', flip_prob=0.5),
dict(
type='TopDownHalfBodyTransform',
num_joints_half_body=8,
prob_half_body=0.3),
dict(
type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5),
dict(type='TopDownAffine'),
dict(type='ToTensor'),
dict(
type='NormalizeTensor',
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
dict(type='TopDownGenerateTarget', sigma=2),
dict(
type='Collect',
keys=['img', 'target', 'target_weight'],
meta_keys=[
'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
'rotation', 'bbox_score', 'flip_pairs'
]),
]
val_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='TopDownGetBboxCenterScale', padding=1.25),
dict(type='TopDownAffine'),
dict(type='ToTensor'),
dict(
type='NormalizeTensor',
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
dict(
type='Collect',
keys=['img'],
meta_keys=[
'image_file', 'center', 'scale', 'rotation', 'bbox_score',
'flip_pairs'
]),
]
test_pipeline = val_pipeline
data_root = 'data/macaque'
data = dict(
samples_per_gpu=64,
workers_per_gpu=2,
val_dataloader=dict(samples_per_gpu=32),
test_dataloader=dict(samples_per_gpu=32),
train=dict(
type='AnimalMacaqueDataset',
ann_file=f'{data_root}/annotations/macaque_train.json',
img_prefix=f'{data_root}/images/',
data_cfg=data_cfg,
pipeline=train_pipeline,
dataset_info={{_base_.dataset_info}}),
val=dict(
type='AnimalMacaqueDataset',
ann_file=f'{data_root}/annotations/macaque_test.json',
img_prefix=f'{data_root}/images/',
data_cfg=data_cfg,
pipeline=val_pipeline,
dataset_info={{_base_.dataset_info}}),
test=dict(
type='AnimalMacaqueDataset',
ann_file=f'{data_root}/annotations/macaque_test.json',
img_prefix=f'{data_root}/images/',
data_cfg=data_cfg,
pipeline=test_pipeline,
dataset_info={{_base_.dataset_info}}),
)
_base_ = [
'../../../../_base_/default_runtime.py',
'../../../../_base_/datasets/macaque.py'
]
evaluation = dict(interval=10, metric='mAP', save_best='AP')
optimizer = dict(
type='Adam',
lr=5e-4,
)
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=0.001,
step=[170, 200])
total_epochs = 210
log_config = dict(
interval=10,
hooks=[
dict(type='TextLoggerHook'),
# dict(type='TensorboardLoggerHook')
])
channel_cfg = dict(
num_output_channels=17,
dataset_joints=17,
dataset_channel=[
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16],
],
inference_channel=[
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
])
# model settings
model = dict(
type='TopDown',
pretrained='torchvision://resnet152',
backbone=dict(type='ResNet', depth=152),
keypoint_head=dict(
type='TopdownHeatmapSimpleHead',
in_channels=2048,
out_channels=channel_cfg['num_output_channels'],
loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)),
train_cfg=dict(),
test_cfg=dict(
flip_test=True,
post_process='default',
shift_heatmap=True,
modulate_kernel=11))
data_cfg = dict(
image_size=[192, 256],
heatmap_size=[48, 64],
num_output_channels=channel_cfg['num_output_channels'],
num_joints=channel_cfg['dataset_joints'],
dataset_channel=channel_cfg['dataset_channel'],
inference_channel=channel_cfg['inference_channel'],
soft_nms=False,
nms_thr=1.0,
oks_thr=0.9,
vis_thr=0.2,
use_gt_bbox=True,
det_bbox_thr=0.0,
bbox_file='',
)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='TopDownGetBboxCenterScale', padding=1.25),
dict(type='TopDownRandomShiftBboxCenter', shift_factor=0.16, prob=0.3),
dict(type='TopDownRandomFlip', flip_prob=0.5),
dict(
type='TopDownHalfBodyTransform',
num_joints_half_body=8,
prob_half_body=0.3),
dict(
type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5),
dict(type='TopDownAffine'),
dict(type='ToTensor'),
dict(
type='NormalizeTensor',
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
dict(type='TopDownGenerateTarget', sigma=2),
dict(
type='Collect',
keys=['img', 'target', 'target_weight'],
meta_keys=[
'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
'rotation', 'bbox_score', 'flip_pairs'
]),
]
val_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='TopDownGetBboxCenterScale', padding=1.25),
dict(type='TopDownAffine'),
dict(type='ToTensor'),
dict(
type='NormalizeTensor',
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
dict(
type='Collect',
keys=['img'],
meta_keys=[
'image_file', 'center', 'scale', 'rotation', 'bbox_score',
'flip_pairs'
]),
]
test_pipeline = val_pipeline
data_root = 'data/macaque'
data = dict(
samples_per_gpu=64,
workers_per_gpu=2,
val_dataloader=dict(samples_per_gpu=32),
test_dataloader=dict(samples_per_gpu=32),
train=dict(
type='AnimalMacaqueDataset',
ann_file=f'{data_root}/annotations/macaque_train.json',
img_prefix=f'{data_root}/images/',
data_cfg=data_cfg,
pipeline=train_pipeline,
dataset_info={{_base_.dataset_info}}),
val=dict(
type='AnimalMacaqueDataset',
ann_file=f'{data_root}/annotations/macaque_test.json',
img_prefix=f'{data_root}/images/',
data_cfg=data_cfg,
pipeline=val_pipeline,
dataset_info={{_base_.dataset_info}}),
test=dict(
type='AnimalMacaqueDataset',
ann_file=f'{data_root}/annotations/macaque_test.json',
img_prefix=f'{data_root}/images/',
data_cfg=data_cfg,
pipeline=test_pipeline,
dataset_info={{_base_.dataset_info}}),
)
_base_ = [
'../../../../_base_/default_runtime.py',
'../../../../_base_/datasets/macaque.py'
]
evaluation = dict(interval=10, metric='mAP', save_best='AP')
optimizer = dict(
type='Adam',
lr=5e-4,
)
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=0.001,
step=[170, 200])
total_epochs = 210
log_config = dict(
interval=10,
hooks=[
dict(type='TextLoggerHook'),
# dict(type='TensorboardLoggerHook')
])
channel_cfg = dict(
num_output_channels=17,
dataset_joints=17,
dataset_channel=[
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16],
],
inference_channel=[
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
])
# model settings
model = dict(
type='TopDown',
pretrained='torchvision://resnet50',
backbone=dict(type='ResNet', depth=50),
keypoint_head=dict(
type='TopdownHeatmapSimpleHead',
in_channels=2048,
out_channels=channel_cfg['num_output_channels'],
loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)),
train_cfg=dict(),
test_cfg=dict(
flip_test=True,
post_process='default',
shift_heatmap=True,
modulate_kernel=11))
data_cfg = dict(
image_size=[192, 256],
heatmap_size=[48, 64],
num_output_channels=channel_cfg['num_output_channels'],
num_joints=channel_cfg['dataset_joints'],
dataset_channel=channel_cfg['dataset_channel'],
inference_channel=channel_cfg['inference_channel'],
soft_nms=False,
nms_thr=1.0,
oks_thr=0.9,
vis_thr=0.2,
use_gt_bbox=True,
det_bbox_thr=0.0,
bbox_file='',
)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='TopDownGetBboxCenterScale', padding=1.25),
dict(type='TopDownRandomShiftBboxCenter', shift_factor=0.16, prob=0.3),
dict(type='TopDownRandomFlip', flip_prob=0.5),
dict(
type='TopDownHalfBodyTransform',
num_joints_half_body=8,
prob_half_body=0.3),
dict(
type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5),
dict(type='TopDownAffine'),
dict(type='ToTensor'),
dict(
type='NormalizeTensor',
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
dict(type='TopDownGenerateTarget', sigma=2),
dict(
type='Collect',
keys=['img', 'target', 'target_weight'],
meta_keys=[
'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
'rotation', 'bbox_score', 'flip_pairs'
]),
]
val_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='TopDownGetBboxCenterScale', padding=1.25),
dict(type='TopDownAffine'),
dict(type='ToTensor'),
dict(
type='NormalizeTensor',
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
dict(
type='Collect',
keys=['img'],
meta_keys=[
'image_file', 'center', 'scale', 'rotation', 'bbox_score',
'flip_pairs'
]),
]
test_pipeline = val_pipeline
data_root = 'data/macaque'
data = dict(
samples_per_gpu=64,
workers_per_gpu=2,
val_dataloader=dict(samples_per_gpu=32),
test_dataloader=dict(samples_per_gpu=32),
train=dict(
type='AnimalMacaqueDataset',
ann_file=f'{data_root}/annotations/macaque_train.json',
img_prefix=f'{data_root}/images/',
data_cfg=data_cfg,
pipeline=train_pipeline,
dataset_info={{_base_.dataset_info}}),
val=dict(
type='AnimalMacaqueDataset',
ann_file=f'{data_root}/annotations/macaque_test.json',
img_prefix=f'{data_root}/images/',
data_cfg=data_cfg,
pipeline=val_pipeline,
dataset_info={{_base_.dataset_info}}),
test=dict(
type='AnimalMacaqueDataset',
ann_file=f'{data_root}/annotations/macaque_test.json',
img_prefix=f'{data_root}/images/',
data_cfg=data_cfg,
pipeline=test_pipeline,
dataset_info={{_base_.dataset_info}}),
)
<!-- [ALGORITHM] -->
<details>
<summary align="right"><a href="http://openaccess.thecvf.com/content_ECCV_2018/html/Bin_Xiao_Simple_Baselines_for_ECCV_2018_paper.html">SimpleBaseline2D (ECCV'2018)</a></summary>
```bibtex
@inproceedings{xiao2018simple,
title={Simple baselines for human pose estimation and tracking},
author={Xiao, Bin and Wu, Haiping and Wei, Yichen},
booktitle={Proceedings of the European conference on computer vision (ECCV)},
pages={466--481},
year={2018}
}
```
</details>
<!-- [DATASET] -->
<details>
<summary align="right"><a href="https://www.ncbi.nlm.nih.gov/pmc/articles/pmc7874091/">MacaquePose (bioRxiv'2020)</a></summary>
```bibtex
@article{labuguen2020macaquepose,
title={MacaquePose: A novel ‘in the wild’macaque monkey pose dataset for markerless motion capture},
author={Labuguen, Rollyn and Matsumoto, Jumpei and Negrete, Salvador and Nishimaru, Hiroshi and Nishijo, Hisao and Takada, Masahiko and Go, Yasuhiro and Inoue, Ken-ichi and Shibata, Tomohiro},
journal={bioRxiv},
year={2020},
publisher={Cold Spring Harbor Laboratory}
}
```
</details>
Results on MacaquePose with ground-truth detection bounding boxes
| Arch | Input Size | AP | AP<sup>50</sup> | AP<sup>75</sup> | AR | AR<sup>50</sup> | ckpt | log |
| :-------------------------------------------- | :--------: | :---: | :-------------: | :-------------: | :---: | :-------------: | :-------------------------------------------: | :-------------------------------------------: |
| [pose_resnet_50](/configs/animal/2d_kpt_sview_rgb_img/topdown_heatmap/macaque/res50_macaque_256x192.py) | 256x192 | 0.799 | 0.952 | 0.919 | 0.837 | 0.964 | [ckpt](https://download.openmmlab.com/mmpose/animal/resnet/res50_macaque_256x192-98f1dd3a_20210407.pth) | [log](https://download.openmmlab.com/mmpose/animal/resnet/res50_macaque_256x192_20210407.log.json) |
| [pose_resnet_101](/configs/animal/2d_kpt_sview_rgb_img/topdown_heatmap/macaque/res101_macaque_256x192.py) | 256x192 | 0.790 | 0.953 | 0.908 | 0.828 | 0.967 | [ckpt](https://download.openmmlab.com/mmpose/animal/resnet/res101_macaque_256x192-e3b9c6bb_20210407.pth) | [log](https://download.openmmlab.com/mmpose/animal/resnet/res101_macaque_256x192_20210407.log.json) |
| [pose_resnet_152](/configs/animal/2d_kpt_sview_rgb_img/topdown_heatmap/macaque/res152_macaque_256x192.py) | 256x192 | 0.794 | 0.951 | 0.915 | 0.834 | 0.968 | [ckpt](https://download.openmmlab.com/mmpose/animal/resnet/res152_macaque_256x192-c42abc02_20210407.pth) | [log](https://download.openmmlab.com/mmpose/animal/resnet/res152_macaque_256x192_20210407.log.json) |
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment