# ------------------------------------------------------------------------ # H-DETR # Copyright (c) 2022 Peking University & Microsoft Research Asia. All Rights Reserved. # Licensed under the MIT-style license found in the LICENSE file in the root directory # ------------------------------------------------------------------------ # Deformable DETR # Copyright (c) 2020 SenseTime. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------ # Modified from DETR (https://github.com/facebookresearch/detr) # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # ------------------------------------------------------------------------ """ COCO dataset which returns image_id for evaluation. Mostly copy-paste from https://github.com/pytorch/vision/blob/13b35ff/references/detection/coco_utils.py """ from pathlib import Path import torch import torch.utils.data from pycocotools import mask as coco_mask from .torchvision_datasets import CocoDetection as TvCocoDetection from util.misc import get_local_rank, get_local_size import datasets.transforms as T class CocoDetection(TvCocoDetection): def __init__( self, img_folder, ann_file, transforms, return_masks, cache_mode=False, local_rank=0, local_size=1, ): super(CocoDetection, self).__init__( img_folder, ann_file, cache_mode=cache_mode, local_rank=local_rank, local_size=local_size, ) self._transforms = transforms self.prepare = ConvertCocoPolysToMask(return_masks) def __getitem__(self, idx): img, target = super(CocoDetection, self).__getitem__(idx) image_id = self.ids[idx] target = {"image_id": image_id, "annotations": target} img, target = self.prepare(img, target) if self._transforms is not None: img, target = self._transforms(img, target) return img, target def convert_coco_poly_to_mask(segmentations, height, width): masks = [] for polygons in segmentations: rles = coco_mask.frPyObjects(polygons, height, width) mask = coco_mask.decode(rles) if len(mask.shape) < 3: mask = mask[..., None] mask = torch.as_tensor(mask, dtype=torch.uint8) mask = mask.any(dim=2) masks.append(mask) if masks: masks = torch.stack(masks, dim=0) else: masks = torch.zeros((0, height, width), dtype=torch.uint8) return masks class ConvertCocoPolysToMask(object): def __init__(self, return_masks=False): self.return_masks = return_masks def __call__(self, image, target): w, h = image.size image_id = target["image_id"] image_id = torch.tensor([image_id]) anno = target["annotations"] anno = [obj for obj in anno if "iscrowd" not in obj or obj["iscrowd"] == 0] boxes = [obj["bbox"] for obj in anno] # guard against no boxes via resizing boxes = torch.as_tensor(boxes, dtype=torch.float32).reshape(-1, 4) boxes[:, 2:] += boxes[:, :2] boxes[:, 0::2].clamp_(min=0, max=w) boxes[:, 1::2].clamp_(min=0, max=h) classes = [obj["category_id"] for obj in anno] classes = torch.tensor(classes, dtype=torch.int64) if self.return_masks: segmentations = [obj["segmentation"] for obj in anno] masks = convert_coco_poly_to_mask(segmentations, h, w) keypoints = None if anno and "keypoints" in anno[0]: keypoints = [obj["keypoints"] for obj in anno] keypoints = torch.as_tensor(keypoints, dtype=torch.float32) num_keypoints = keypoints.shape[0] if num_keypoints: keypoints = keypoints.view(num_keypoints, -1, 3) keep = (boxes[:, 3] > boxes[:, 1]) & (boxes[:, 2] > boxes[:, 0]) boxes = boxes[keep] classes = classes[keep] if self.return_masks: masks = masks[keep] if keypoints is not None: keypoints = keypoints[keep] target = {} target["boxes"] = boxes target["labels"] = classes if self.return_masks: target["masks"] = masks target["image_id"] = image_id if keypoints is not None: target["keypoints"] = keypoints # for conversion to coco api area = torch.tensor([obj["area"] for obj in anno]) iscrowd = torch.tensor( [obj["iscrowd"] if "iscrowd" in obj else 0 for obj in anno] ) target["area"] = area[keep] target["iscrowd"] = iscrowd[keep] target["orig_size"] = torch.as_tensor([int(h), int(w)]) target["size"] = torch.as_tensor([int(h), int(w)]) return image, target def make_coco_transforms(image_set): normalize = T.Compose( [T.ToTensor(), T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])] ) scales = [480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800] if image_set == "train": return T.Compose( [ T.RandomHorizontalFlip(), T.RandomSelect( T.RandomResize(scales, max_size=1333), T.Compose( [ T.RandomResize([400, 500, 600]), T.RandomSizeCrop(384, 600), T.RandomResize(scales, max_size=1333), ] ), ), normalize, ] ) if image_set == "val": return T.Compose([T.RandomResize([800], max_size=1333), normalize,]) raise ValueError(f"unknown {image_set}") def build(image_set, args, eval_in_training_set): root = Path(args.coco_path) assert root.exists(), f"provided COCO path {root} does not exist" mode = "instances" PATHS = { "train": (root / "images/train2017", root / "annotations" / f"{mode}_train2017.json"), "val": (root / "images/val2017", root / "annotations" / f"{mode}_val2017.json"), } img_folder, ann_file = PATHS[image_set] if eval_in_training_set: image_set = "val" print("use validation dataset transforms") dataset = CocoDetection( img_folder, ann_file, transforms=make_coco_transforms(image_set), return_masks=args.masks, cache_mode=args.cache_mode, local_rank=get_local_rank(), local_size=get_local_size(), ) return dataset