# ------------------------------------------------------------------------ # H-DETR # Copyright (c) 2022 Peking University & Microsoft Research Asia. All Rights Reserved. # Licensed under the MIT-style license found in the LICENSE file in the root directory # ------------------------------------------------------------------------ # Deformable DETR # Copyright (c) 2020 SenseTime. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------ # Modified from DETR (https://github.com/facebookresearch/detr) # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # ------------------------------------------------------------------------ import argparse import datetime import json import random import time import os import torch import datasets import numpy as np import util.misc as utils import datasets.samplers as samplers from pathlib import Path from torch.utils.data import DataLoader from datasets import build_dataset, get_coco_api_from_dataset from engine import evaluate, train_one_epoch from models import build_model def get_args_parser(): parser = argparse.ArgumentParser("Deformable DETR Detector", add_help=False) parser.add_argument("--lr", default=2e-4, type=float) parser.add_argument( "--lr_backbone_names", default=["backbone.0"], type=str, nargs="+" ) parser.add_argument("--lr_backbone", default=2e-5, type=float) parser.add_argument( "--lr_linear_proj_names", default=["reference_points", "sampling_offsets"], type=str, nargs="+", ) parser.add_argument("--lr_linear_proj_mult", default=0.1, type=float) parser.add_argument("--batch_size", default=2, type=int) parser.add_argument("--weight_decay", default=1e-4, type=float) parser.add_argument("--epochs", default=50, type=int) parser.add_argument("--lr_drop", default=40, type=int) parser.add_argument("--lr_drop_epochs", default=None, type=int, nargs="+") parser.add_argument( "--clip_max_norm", default=0.1, type=float, help="gradient clipping max norm" ) parser.add_argument("--sgd", action="store_true") # Variants of Deformable DETR parser.add_argument("--with_box_refine", default=False, action="store_true") parser.add_argument("--two_stage", default=False, action="store_true") # Model parameters parser.add_argument( "--frozen_weights", type=str, default=None, help="Path to the pretrained model. If set, only the mask head will be trained", ) # * Backbone parser.add_argument( "--backbone", default="resnet50", type=str, help="Name of the convolutional backbone to use", ) parser.add_argument( "--dilation", action="store_true", help="If true, we replace stride with dilation in the last convolutional block (DC5)", ) parser.add_argument( "--position_embedding", default="sine", type=str, choices=("sine", "learned"), help="Type of positional embedding to use on top of the image features", ) parser.add_argument( "--position_embedding_scale", default=2 * np.pi, type=float, help="position / size * scale", ) parser.add_argument( "--num_feature_levels", default=4, type=int, help="number of feature levels" ) # swin backbone parser.add_argument( "--pretrained_backbone_path", default="./swin_tiny_patch4_window7_224.pkl", type=str, ) parser.add_argument("--drop_path_rate", default=0.2, type=float) # * Transformer parser.add_argument( "--enc_layers", default=6, type=int, help="Number of encoding layers in the transformer", ) parser.add_argument( "--dec_layers", default=6, type=int, help="Number of decoding layers in the transformer", ) parser.add_argument( "--dim_feedforward", default=2048, type=int, help="Intermediate size of the feedforward layers in the transformer blocks", ) parser.add_argument( "--hidden_dim", default=256, type=int, help="Size of the embeddings (dimension of the transformer)", ) parser.add_argument( "--dropout", default=0.1, type=float, help="Dropout applied in the transformer" ) parser.add_argument( "--nheads", default=8, type=int, help="Number of attention heads inside the transformer's attentions", ) parser.add_argument( "--num_queries_one2one", default=300, type=int, help="Number of query slots for one-to-one matching", ) parser.add_argument( "--num_queries_one2many", default=0, type=int, help="Number of query slots for one-to-many matchining", ) parser.add_argument("--dec_n_points", default=4, type=int) parser.add_argument("--enc_n_points", default=4, type=int) # Deformable DETR tricks parser.add_argument("--mixed_selection", action="store_true", default=False) parser.add_argument("--look_forward_twice", action="store_true", default=False) # hybrid branch parser.add_argument("--k_one2many", default=5, type=int) parser.add_argument("--lambda_one2many", default=1.0, type=float) # * Segmentation parser.add_argument( "--masks", action="store_true", help="Train segmentation head if the flag is provided", ) # Loss parser.add_argument( "--no_aux_loss", dest="aux_loss", action="store_false", help="Disables auxiliary decoding losses (loss at each layer)", ) # * Matcher parser.add_argument( "--set_cost_class", default=2, type=float, help="Class coefficient in the matching cost", ) parser.add_argument( "--set_cost_bbox", default=5, type=float, help="L1 box coefficient in the matching cost", ) parser.add_argument( "--set_cost_giou", default=2, type=float, help="giou box coefficient in the matching cost", ) # * Loss coefficients parser.add_argument("--mask_loss_coef", default=1, type=float) parser.add_argument("--dice_loss_coef", default=1, type=float) parser.add_argument("--cls_loss_coef", default=2, type=float) parser.add_argument("--bbox_loss_coef", default=5, type=float) parser.add_argument("--giou_loss_coef", default=2, type=float) parser.add_argument("--focal_alpha", default=0.25, type=float) # dataset parameters parser.add_argument("--dataset_file", default="coco") parser.add_argument("--coco_path", default="/home/datasets/COCO2017", type=str) parser.add_argument("--coco_panoptic_path", type=str) parser.add_argument("--remove_difficult", action="store_true") parser.add_argument( "--output_dir", default="./results", help="path where to save, empty for no saving" ) parser.add_argument( "--device", default="cuda", help="device to use for training / testing" ) parser.add_argument("--seed", default=42, type=int) parser.add_argument("--resume", default="", help="resume from checkpoint") parser.add_argument( "--start_epoch", default=0, type=int, metavar="N", help="start epoch" ) parser.add_argument("--num_workers", default=2, type=int) parser.add_argument( "--cache_mode", default=False, action="store_true", help="whether to cache images on memory", ) # * eval technologies parser.add_argument("--eval", action="store_true") # eval in training set parser.add_argument("--eval_in_training_set", default=False, action="store_true") # topk for eval parser.add_argument("--topk", default=100, type=int) # * training technologies parser.add_argument("--use_fp16", default=False, action="store_true") parser.add_argument("--use_checkpoint", default=False, action="store_true") # * logging technologies parser.add_argument("--use_wandb", action="store_true", default=False) return parser def main(args): utils.init_distributed_mode(args) print("git:\n {}\n".format(utils.get_sha())) if args.frozen_weights is not None: assert args.masks, "Frozen training is meant for segmentation only" print(args) device = torch.device(args.device) # fix the seed for reproducibility seed = args.seed + utils.get_rank() torch.manual_seed(seed) np.random.seed(seed) random.seed(seed) model, criterion, postprocessors = build_model(args) model.to(device) model_without_ddp = model n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad) print("number of params:", n_parameters) dataset_train = build_dataset(image_set="train", args=args) if not args.eval_in_training_set: dataset_val = build_dataset( image_set="val", args=args, eval_in_training_set=False, ) else: print("eval in the training set") dataset_val = build_dataset( image_set="train", args=args, eval_in_training_set=True, ) if args.distributed: if args.cache_mode: sampler_train = samplers.NodeDistributedSampler(dataset_train) sampler_val = samplers.NodeDistributedSampler(dataset_val, shuffle=False) else: sampler_train = samplers.DistributedSampler(dataset_train) sampler_val = samplers.DistributedSampler(dataset_val, shuffle=False) else: sampler_train = torch.utils.data.RandomSampler(dataset_train) sampler_val = torch.utils.data.SequentialSampler(dataset_val) batch_sampler_train = torch.utils.data.BatchSampler( sampler_train, args.batch_size, drop_last=True ) data_loader_train = DataLoader( dataset_train, batch_sampler=batch_sampler_train, collate_fn=utils.collate_fn, num_workers=args.num_workers, pin_memory=True, ) data_loader_val = DataLoader( dataset_val, args.batch_size, sampler=sampler_val, drop_last=False, collate_fn=utils.collate_fn, num_workers=args.num_workers, pin_memory=True, ) # lr_backbone_names = ["backbone.0", "backbone.neck", "input_proj", "transformer.encoder"] def match_name_keywords(n, name_keywords): out = False for b in name_keywords: if b in n: out = True break return out for n, p in model_without_ddp.named_parameters(): print(n) param_dicts = [ { "params": [ p for n, p in model_without_ddp.named_parameters() if not match_name_keywords(n, args.lr_backbone_names) and not match_name_keywords(n, args.lr_linear_proj_names) and p.requires_grad ], "lr": args.lr, }, { "params": [ p for n, p in model_without_ddp.named_parameters() if match_name_keywords(n, args.lr_backbone_names) and p.requires_grad ], "lr": args.lr_backbone, }, { "params": [ p for n, p in model_without_ddp.named_parameters() if match_name_keywords(n, args.lr_linear_proj_names) and p.requires_grad ], "lr": args.lr * args.lr_linear_proj_mult, }, ] if args.sgd: optimizer = torch.optim.SGD( param_dicts, lr=args.lr, momentum=0.9, weight_decay=args.weight_decay ) else: optimizer = torch.optim.AdamW( param_dicts, lr=args.lr, weight_decay=args.weight_decay ) lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.lr_drop) if args.distributed: model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu]) model_without_ddp = model.module if args.dataset_file == "coco_panoptic": # We also evaluate AP during panoptic training, on original coco DS coco_val = datasets.coco.build("val", args) base_ds = get_coco_api_from_dataset(coco_val) else: base_ds = get_coco_api_from_dataset(dataset_val) if args.frozen_weights is not None: checkpoint = torch.load(args.frozen_weights, map_location="cpu") model_without_ddp.detr.load_state_dict(checkpoint["model"]) output_dir = Path(args.output_dir) if args.resume and os.path.exists(args.resume): if args.resume.startswith("https"): checkpoint = torch.hub.load_state_dict_from_url( args.resume, map_location="cpu", check_hash=True ) else: checkpoint = torch.load(args.resume, map_location="cpu") missing_keys, unexpected_keys = model_without_ddp.load_state_dict( checkpoint["model"], strict=False ) unexpected_keys = [ k for k in unexpected_keys if not (k.endswith("total_params") or k.endswith("total_ops")) ] if len(missing_keys) > 0: print("Missing Keys: {}".format(missing_keys)) if len(unexpected_keys) > 0: print("Unexpected Keys: {}".format(unexpected_keys)) if ( not args.eval and "optimizer" in checkpoint and "lr_scheduler" in checkpoint and "epoch" in checkpoint ): import copy p_groups = copy.deepcopy(optimizer.param_groups) optimizer.load_state_dict(checkpoint["optimizer"]) for pg, pg_old in zip(optimizer.param_groups, p_groups): pg["lr"] = pg_old["lr"] pg["initial_lr"] = pg_old["initial_lr"] print(optimizer.param_groups) lr_scheduler.load_state_dict(checkpoint["lr_scheduler"]) # todo: this is a hack for doing experiment that resume from checkpoint and also modify lr scheduler (e.g., decrease lr in advance). args.override_resumed_lr_drop = True if args.override_resumed_lr_drop: print( "Warning: (hack) args.override_resumed_lr_drop is set to True, so args.lr_drop would override lr_drop in resumed lr_scheduler." ) lr_scheduler.step_size = args.lr_drop lr_scheduler.base_lrs = list( map(lambda group: group["initial_lr"], optimizer.param_groups) ) lr_scheduler.step(lr_scheduler.last_epoch) args.start_epoch = checkpoint["epoch"] + 1 # check the resumed model if not args.eval: test_stats, coco_evaluator = evaluate( model, criterion, postprocessors, data_loader_val, base_ds, device, args.output_dir, use_wandb=args.use_wandb, ) if args.eval: test_stats, coco_evaluator = evaluate( model, criterion, postprocessors, data_loader_val, base_ds, device, args.output_dir, use_wandb=args.use_wandb, ) if args.output_dir: utils.save_on_master( coco_evaluator.coco_eval["bbox"].eval, output_dir / "eval.pth" ) return print("Start training") start_time = time.time() for epoch in range(args.start_epoch, args.epochs): if args.distributed: sampler_train.set_epoch(epoch) train_stats = train_one_epoch( model, criterion, data_loader_train, optimizer, device, epoch, args.clip_max_norm, k_one2many=args.k_one2many, lambda_one2many=args.lambda_one2many, use_wandb=args.use_wandb, use_fp16=args.use_fp16, ) lr_scheduler.step() if args.output_dir: checkpoint_paths = [output_dir / "checkpoint.pth"] # extra checkpoint before LR drop and every 5 epochs checkpoint_paths.append(output_dir / f"checkpoint{epoch:04}.pth") for checkpoint_path in checkpoint_paths: utils.save_on_master( { "model": model_without_ddp.state_dict(), "optimizer": optimizer.state_dict(), "lr_scheduler": lr_scheduler.state_dict(), "epoch": epoch, "args": args, }, checkpoint_path, ) test_stats, coco_evaluator = evaluate( model, criterion, postprocessors, data_loader_val, base_ds, device, args.output_dir, use_wandb=args.use_wandb, ) log_stats = { **{f"train_{k}": v for k, v in train_stats.items()}, **{f"test_{k}": v for k, v in test_stats.items()}, "epoch": epoch, "n_parameters": n_parameters, } if args.output_dir and utils.is_main_process(): with (output_dir / "log.txt").open("a") as f: f.write(json.dumps(log_stats) + "\n") # for evaluation logs if coco_evaluator is not None: (output_dir / "eval").mkdir(exist_ok=True) if "bbox" in coco_evaluator.coco_eval: filenames = ["latest.pth"] if epoch % 50 == 0: filenames.append(f"{epoch:03}.pth") for name in filenames: torch.save( coco_evaluator.coco_eval["bbox"].eval, output_dir / "eval" / name, ) total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) print("Training time {}".format(total_time_str)) if __name__ == "__main__": parser = argparse.ArgumentParser( "Deformable DETR training and evaluation script", parents=[get_args_parser()] ) args = parser.parse_args() if args.output_dir: Path(args.output_dir).mkdir(parents=True, exist_ok=True) main(args)