name: HAT_SRx4_ImageNet-pretrain model_type: HATModel scale: 4 num_gpu: 1 # set num_gpu: 0 for cpu mode manual_seed: 0 tile: # use the tile mode for limited GPU memory when testing. tile_size: 256 # the higher, the more utilized GPU memory and the less performance change against the full image. must be an integer multiple of the window size. tile_pad: 32 # overlapping between adjacency patches.must be an integer multiple of the window size. datasets: test_1: # the 1st test dataset name: Set5 type: PairedImageDataset dataroot_gt: ./datasets/Set5/GTmod4 dataroot_lq: ./datasets/Set5/LRbicx4 io_backend: type: disk # test_2: # the 2nd test dataset # name: Set14 # type: PairedImageDataset # dataroot_gt: ./datasets/Set14/GTmod4 # dataroot_lq: ./datasets/Set14/LRbicx4 # io_backend: # type: disk test_3: name: Urban100 type: PairedImageDataset dataroot_gt: ./datasets/urban100/GTmod4 dataroot_lq: ./datasets/urban100/LRbicx4 io_backend: type: disk # test_4: # name: BSDS100 # type: PairedImageDataset # dataroot_gt: ./datasets/BSDS100/GTmod4 # dataroot_lq: ./datasets/BSDS100/LRbicx4 # io_backend: # type: disk # test_5: # name: Manga109 # type: PairedImageDataset # dataroot_gt: ./datasets/manga109/GTmod4 # dataroot_lq: ./datasets/manga109/LRbicx4 # io_backend: # type: disk # network structures network_g: type: HAT upscale: 4 in_chans: 3 img_size: 64 window_size: 16 compress_ratio: 3 squeeze_factor: 30 conv_scale: 0.01 overlap_ratio: 0.5 img_range: 1. depths: [6, 6, 6, 6, 6, 6] embed_dim: 180 num_heads: [6, 6, 6, 6, 6, 6] mlp_ratio: 2 upsampler: 'pixelshuffle' resi_connection: '1conv' # path path: pretrain_network_g: ./experiments/pretrained_models/HAT_SRx4_ImageNet-pretrain.pth strict_load_g: true param_key_g: 'params_ema' # validation settings val: save_img: true suffix: ~ # add suffix to saved images, if None, use exp name metrics: psnr: # metric name, can be arbitrary type: calculate_psnr crop_border: 4 test_y_channel: true ssim: type: calculate_ssim crop_border: 4 test_y_channel: true