name: HAT_SRx4_ImageNet-LR model_type: HATModel scale: 4 num_gpu: 1 # set num_gpu: 0 for cpu mode manual_seed: 0 tile: tile_size: 512 # max patch size for the tile mode tile_pad: 32 datasets: test_1: # the 1st test dataset name: custom type: SingleImageDataset dataroot_lq: ./datasets/Set5/LRbicx4 io_backend: type: disk # network structures network_g: type: HAT upscale: 4 in_chans: 3 img_size: 64 window_size: 16 compress_ratio: 3 squeeze_factor: 30 conv_scale: 0.01 overlap_ratio: 0.5 img_range: 1. depths: [6, 6, 6, 6, 6, 6] embed_dim: 180 num_heads: [6, 6, 6, 6, 6, 6] mlp_ratio: 2 upsampler: 'pixelshuffle' resi_connection: '1conv' # path path: pretrain_network_g: experiments/pretrained_models/HAT_SRx4_ImageNet-pretrain.pth strict_load_g: true param_key_g: 'params_ema' # validation settings val: save_img: true suffix: ~ # add suffix to saved images, if None, use exp name