import cv2 import numpy as np import os.path as osp from torch.utils import data as data from torchvision.transforms.functional import normalize from basicsr.data.data_util import paths_from_lmdb, scandir from basicsr.data.transforms import augment, paired_random_crop from basicsr.utils import FileClient, imfrombytes, img2tensor from basicsr.utils.matlab_functions import imresize, rgb2ycbcr from basicsr.utils.registry import DATASET_REGISTRY @DATASET_REGISTRY.register() class ImageNetPairedDataset(data.Dataset): def __init__(self, opt): super(ImageNetPairedDataset, self).__init__() self.opt = opt # file client (io backend) self.file_client = None self.io_backend_opt = opt['io_backend'] self.mean = opt['mean'] if 'mean' in opt else None self.std = opt['std'] if 'std' in opt else None self.gt_folder = opt['dataroot_gt'] if self.io_backend_opt['type'] == 'lmdb': self.io_backend_opt['db_paths'] = [self.gt_folder] self.io_backend_opt['client_keys'] = ['gt'] self.paths = paths_from_lmdb(self.gt_folder) elif 'meta_info_file' in self.opt: with open(self.opt['meta_info_file'], 'r') as fin: self.paths = [osp.join(self.gt_folder, line.split(' ')[0]) for line in fin] else: self.paths = sorted(list(scandir(self.gt_folder, full_path=True))) def __getitem__(self, index): if self.file_client is None: self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt) scale = self.opt['scale'] # Load gt and lq images. Dimension order: HWC; channel order: BGR; # image range: [0, 1], float32. gt_path = self.paths[index] img_bytes = self.file_client.get(gt_path, 'gt') img_gt = imfrombytes(img_bytes, float32=True) # modcrop size_h, size_w, _ = img_gt.shape size_h = size_h - size_h % scale size_w = size_w - size_w % scale img_gt = img_gt[0:size_h, 0:size_w, :] # generate training pairs size_h = max(size_h, self.opt['gt_size']) size_w = max(size_w, self.opt['gt_size']) img_gt = cv2.resize(img_gt, (size_w, size_h)) img_lq = imresize(img_gt, 1 / scale) img_gt = np.ascontiguousarray(img_gt, dtype=np.float32) img_lq = np.ascontiguousarray(img_lq, dtype=np.float32) # augmentation for training if self.opt['phase'] == 'train': gt_size = self.opt['gt_size'] # random crop img_gt, img_lq = paired_random_crop(img_gt, img_lq, gt_size, scale, gt_path) # flip, rotation img_gt, img_lq = augment([img_gt, img_lq], self.opt['use_hflip'], self.opt['use_rot']) # color space transform if 'color' in self.opt and self.opt['color'] == 'y': img_gt = rgb2ycbcr(img_gt, y_only=True)[..., None] img_lq = rgb2ycbcr(img_lq, y_only=True)[..., None] # crop the unmatched GT images during validation or testing, especially for SR benchmark datasets # TODO: It is better to update the datasets, rather than force to crop if self.opt['phase'] != 'train': img_gt = img_gt[0:img_lq.shape[0] * scale, 0:img_lq.shape[1] * scale, :] # BGR to RGB, HWC to CHW, numpy to tensor img_gt, img_lq = img2tensor([img_gt, img_lq], bgr2rgb=True, float32=True) # normalize if self.mean is not None or self.std is not None: normalize(img_lq, self.mean, self.std, inplace=True) normalize(img_gt, self.mean, self.std, inplace=True) return {'lq': img_lq, 'gt': img_gt, 'gt_path': gt_path} def __len__(self): return len(self.paths)