Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
GroundingDINO_mmcv
Commits
b12850fe
Commit
b12850fe
authored
May 29, 2024
by
dengjb
Browse files
update codes
parent
6515fb96
Pipeline
#1046
failed with stages
in 0 seconds
Changes
364
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
3572 additions
and
0 deletions
+3572
-0
configs/grounding_dino/dod/grounding_dino_swin-b_pretrain_zeroshot_concat_dod.py
...dod/grounding_dino_swin-b_pretrain_zeroshot_concat_dod.py
+14
-0
configs/grounding_dino/dod/grounding_dino_swin-b_pretrain_zeroshot_parallel_dod.py
...d/grounding_dino_swin-b_pretrain_zeroshot_parallel_dod.py
+3
-0
configs/grounding_dino/dod/grounding_dino_swin-t_pretrain_zeroshot_concat_dod.py
...dod/grounding_dino_swin-t_pretrain_zeroshot_concat_dod.py
+78
-0
configs/grounding_dino/dod/grounding_dino_swin-t_pretrain_zeroshot_parallel_dod.py
...d/grounding_dino_swin-t_pretrain_zeroshot_parallel_dod.py
+3
-0
configs/grounding_dino/flickr30k/grounding_dino_swin-t-pretrain_zeroshot_flickr30k.py
...r30k/grounding_dino_swin-t-pretrain_zeroshot_flickr30k.py
+57
-0
configs/grounding_dino/grounding_dino_r50_scratch_8xb2_1x_coco.py
...grounding_dino/grounding_dino_r50_scratch_8xb2_1x_coco.py
+584
-0
configs/grounding_dino/grounding_dino_swin-b_finetune_16xb2_1x_coco.py
...ding_dino/grounding_dino_swin-b_finetune_16xb2_1x_coco.py
+17
-0
configs/grounding_dino/grounding_dino_swin-b_pretrain_mixeddata.py
...rounding_dino/grounding_dino_swin-b_pretrain_mixeddata.py
+16
-0
configs/grounding_dino/grounding_dino_swin-t_finetune_16xb2_1x_coco.py
...ding_dino/grounding_dino_swin-t_finetune_16xb2_1x_coco.py
+204
-0
configs/grounding_dino/grounding_dino_swin-t_finetune_8xb2_20e_cat.py
...nding_dino/grounding_dino_swin-t_finetune_8xb2_20e_cat.py
+56
-0
configs/grounding_dino/grounding_dino_swin-t_pretrain_obj365_goldg_cap4m.py
...dino/grounding_dino_swin-t_pretrain_obj365_goldg_cap4m.py
+128
-0
configs/grounding_dino/lvis/grounding_dino_swin-b_pretrain_zeroshot_lvis.py
...dino/lvis/grounding_dino_swin-b_pretrain_zeroshot_lvis.py
+14
-0
configs/grounding_dino/lvis/grounding_dino_swin-b_pretrain_zeroshot_mini-lvis.py
...lvis/grounding_dino_swin-b_pretrain_zeroshot_mini-lvis.py
+14
-0
configs/grounding_dino/lvis/grounding_dino_swin-t_pretrain_zeroshot_lvis.py
...dino/lvis/grounding_dino_swin-t_pretrain_zeroshot_lvis.py
+24
-0
configs/grounding_dino/lvis/grounding_dino_swin-t_pretrain_zeroshot_mini-lvis.py
...lvis/grounding_dino_swin-t_pretrain_zeroshot_mini-lvis.py
+25
-0
configs/grounding_dino/metafile.yml
configs/grounding_dino/metafile.yml
+67
-0
configs/grounding_dino/odinw/grounding_dino_swin-b_pretrain_odinw13.py
...ding_dino/odinw/grounding_dino_swin-b_pretrain_odinw13.py
+338
-0
configs/grounding_dino/odinw/grounding_dino_swin-b_pretrain_odinw35.py
...ding_dino/odinw/grounding_dino_swin-b_pretrain_odinw35.py
+796
-0
configs/grounding_dino/odinw/grounding_dino_swin-t_pretrain_odinw13.py
...ding_dino/odinw/grounding_dino_swin-t_pretrain_odinw13.py
+338
-0
configs/grounding_dino/odinw/grounding_dino_swin-t_pretrain_odinw35.py
...ding_dino/odinw/grounding_dino_swin-t_pretrain_odinw35.py
+796
-0
No files found.
Too many changes to show.
To preserve performance only
364 of 364+
files are displayed.
Plain diff
Email patch
configs/grounding_dino/dod/grounding_dino_swin-b_pretrain_zeroshot_concat_dod.py
0 → 100644
View file @
b12850fe
_base_
=
'grounding_dino_swin-t_pretrain_zeroshot_concat_dod.py'
model
=
dict
(
type
=
'GroundingDINO'
,
backbone
=
dict
(
pretrain_img_size
=
384
,
embed_dims
=
128
,
depths
=
[
2
,
2
,
18
,
2
],
num_heads
=
[
4
,
8
,
16
,
32
],
window_size
=
12
,
drop_path_rate
=
0.3
,
patch_norm
=
True
),
neck
=
dict
(
in_channels
=
[
256
,
512
,
1024
]),
)
configs/grounding_dino/dod/grounding_dino_swin-b_pretrain_zeroshot_parallel_dod.py
0 → 100644
View file @
b12850fe
_base_
=
'grounding_dino_swin-b_pretrain_zeroshot_concat_dod.py'
model
=
dict
(
test_cfg
=
dict
(
chunked_size
=
1
))
configs/grounding_dino/dod/grounding_dino_swin-t_pretrain_zeroshot_concat_dod.py
0 → 100644
View file @
b12850fe
_base_
=
'../grounding_dino_swin-t_pretrain_obj365_goldg_cap4m.py'
data_root
=
'data/d3/'
test_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
,
backend_args
=
None
,
imdecode_backend
=
'pillow'
),
dict
(
type
=
'FixScaleResize'
,
scale
=
(
800
,
1333
),
keep_ratio
=
True
,
backend
=
'pillow'
),
dict
(
type
=
'LoadAnnotations'
,
with_bbox
=
True
),
dict
(
type
=
'PackDetInputs'
,
meta_keys
=
(
'img_id'
,
'img_path'
,
'ori_shape'
,
'img_shape'
,
'scale_factor'
,
'text'
,
'custom_entities'
,
'sent_ids'
))
]
# -------------------------------------------------#
val_dataset_full
=
dict
(
type
=
'DODDataset'
,
data_root
=
data_root
,
ann_file
=
'd3_json/d3_full_annotations.json'
,
data_prefix
=
dict
(
img
=
'd3_images/'
,
anno
=
'd3_pkl'
),
pipeline
=
test_pipeline
,
test_mode
=
True
,
backend_args
=
None
,
return_classes
=
True
)
val_evaluator_full
=
dict
(
type
=
'DODCocoMetric'
,
ann_file
=
data_root
+
'd3_json/d3_full_annotations.json'
)
# -------------------------------------------------#
val_dataset_pres
=
dict
(
type
=
'DODDataset'
,
data_root
=
data_root
,
ann_file
=
'd3_json/d3_pres_annotations.json'
,
data_prefix
=
dict
(
img
=
'd3_images/'
,
anno
=
'd3_pkl'
),
pipeline
=
test_pipeline
,
test_mode
=
True
,
backend_args
=
None
,
return_classes
=
True
)
val_evaluator_pres
=
dict
(
type
=
'DODCocoMetric'
,
ann_file
=
data_root
+
'd3_json/d3_pres_annotations.json'
)
# -------------------------------------------------#
val_dataset_abs
=
dict
(
type
=
'DODDataset'
,
data_root
=
data_root
,
ann_file
=
'd3_json/d3_abs_annotations.json'
,
data_prefix
=
dict
(
img
=
'd3_images/'
,
anno
=
'd3_pkl'
),
pipeline
=
test_pipeline
,
test_mode
=
True
,
backend_args
=
None
,
return_classes
=
True
)
val_evaluator_abs
=
dict
(
type
=
'DODCocoMetric'
,
ann_file
=
data_root
+
'd3_json/d3_abs_annotations.json'
)
# -------------------------------------------------#
datasets
=
[
val_dataset_full
,
val_dataset_pres
,
val_dataset_abs
]
dataset_prefixes
=
[
'FULL'
,
'PRES'
,
'ABS'
]
metrics
=
[
val_evaluator_full
,
val_evaluator_pres
,
val_evaluator_abs
]
val_dataloader
=
dict
(
dataset
=
dict
(
_delete_
=
True
,
type
=
'ConcatDataset'
,
datasets
=
datasets
))
test_dataloader
=
val_dataloader
val_evaluator
=
dict
(
_delete_
=
True
,
type
=
'MultiDatasetsEvaluator'
,
metrics
=
metrics
,
dataset_prefixes
=
dataset_prefixes
)
test_evaluator
=
val_evaluator
configs/grounding_dino/dod/grounding_dino_swin-t_pretrain_zeroshot_parallel_dod.py
0 → 100644
View file @
b12850fe
_base_
=
'grounding_dino_swin-t_pretrain_zeroshot_concat_dod.py'
model
=
dict
(
test_cfg
=
dict
(
chunked_size
=
1
))
configs/grounding_dino/flickr30k/grounding_dino_swin-t-pretrain_zeroshot_flickr30k.py
0 → 100644
View file @
b12850fe
_base_
=
'../grounding_dino_swin-t_pretrain_obj365_goldg_cap4m.py'
dataset_type
=
'Flickr30kDataset'
data_root
=
'data/flickr30k_entities/'
test_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
,
backend_args
=
None
,
imdecode_backend
=
'pillow'
),
dict
(
type
=
'FixScaleResize'
,
scale
=
(
800
,
1333
),
keep_ratio
=
True
,
backend
=
'pillow'
),
dict
(
type
=
'LoadAnnotations'
,
with_bbox
=
True
),
dict
(
type
=
'PackDetInputs'
,
meta_keys
=
(
'img_id'
,
'img_path'
,
'ori_shape'
,
'img_shape'
,
'scale_factor'
,
'text'
,
'custom_entities'
,
'tokens_positive'
,
'phrase_ids'
,
'phrases'
))
]
dataset_Flickr30k_val
=
dict
(
type
=
dataset_type
,
data_root
=
data_root
,
ann_file
=
'final_flickr_separateGT_val.json'
,
data_prefix
=
dict
(
img
=
'flickr30k_images/'
),
pipeline
=
test_pipeline
,
)
dataset_Flickr30k_test
=
dict
(
type
=
dataset_type
,
data_root
=
data_root
,
ann_file
=
'final_flickr_separateGT_test.json'
,
data_prefix
=
dict
(
img
=
'flickr30k_images/'
),
pipeline
=
test_pipeline
,
)
val_evaluator_Flickr30k
=
dict
(
type
=
'Flickr30kMetric'
)
test_evaluator_Flickr30k
=
dict
(
type
=
'Flickr30kMetric'
)
# ----------Config---------- #
dataset_prefixes
=
[
'Flickr30kVal'
,
'Flickr30kTest'
]
datasets
=
[
dataset_Flickr30k_val
,
dataset_Flickr30k_test
]
metrics
=
[
val_evaluator_Flickr30k
,
test_evaluator_Flickr30k
]
val_dataloader
=
dict
(
dataset
=
dict
(
_delete_
=
True
,
type
=
'ConcatDataset'
,
datasets
=
datasets
))
test_dataloader
=
val_dataloader
val_evaluator
=
dict
(
_delete_
=
True
,
type
=
'MultiDatasetsEvaluator'
,
metrics
=
metrics
,
dataset_prefixes
=
dataset_prefixes
)
test_evaluator
=
val_evaluator
configs/grounding_dino/grounding_dino_r50_scratch_8xb2_1x_coco.py
0 → 100644
View file @
b12850fe
work_dir
=
'./work_dirs/grounding_dino_r50_scratch_8xb2_1x_coco'
data_root
=
'datasets/coco_mini/'
train_anno
=
'annotations/instances_train2017.json'
val_anno
=
'annotations/instances_val2017.json'
train_image_dir
=
'images/train2017/'
val_image_dir
=
'images/val2017/'
test_batch_size
=
1
train_batch_size
=
2
max_epochs
=
12
auto_scale_lr
=
dict
(
base_batch_size
=
16
,
enable
=
False
)
backend_args
=
None
dataset_type
=
'CocoDataset'
default_hooks
=
dict
(
checkpoint
=
dict
(
interval
=
1
,
type
=
'CheckpointHook'
),
logger
=
dict
(
interval
=
50
,
type
=
'LoggerHook'
),
param_scheduler
=
dict
(
type
=
'ParamSchedulerHook'
),
sampler_seed
=
dict
(
type
=
'DistSamplerSeedHook'
),
timer
=
dict
(
type
=
'IterTimerHook'
),
visualization
=
dict
(
type
=
'DetVisualizationHook'
))
default_scope
=
'mmdet'
env_cfg
=
dict
(
cudnn_benchmark
=
False
,
dist_cfg
=
dict
(
backend
=
'nccl'
),
mp_cfg
=
dict
(
mp_start_method
=
'fork'
,
opencv_num_threads
=
0
))
lang_model_name
=
'bert-base-uncased'
launcher
=
'pytorch'
load_from
=
None
log_level
=
'INFO'
log_processor
=
dict
(
by_epoch
=
True
,
type
=
'LogProcessor'
,
window_size
=
50
)
model
=
dict
(
as_two_stage
=
True
,
backbone
=
dict
(
depth
=
50
,
frozen_stages
=
1
,
init_cfg
=
dict
(
checkpoint
=
'torchvision://resnet50'
,
type
=
'Pretrained'
),
norm_cfg
=
dict
(
requires_grad
=
False
,
type
=
'BN'
),
norm_eval
=
True
,
num_stages
=
4
,
out_indices
=
(
1
,
2
,
3
,
),
style
=
'pytorch'
,
type
=
'ResNet'
),
bbox_head
=
dict
(
contrastive_cfg
=
dict
(
bias
=
True
,
log_scale
=
'auto'
,
max_text_len
=
256
),
loss_bbox
=
dict
(
loss_weight
=
5.0
,
type
=
'L1Loss'
),
loss_cls
=
dict
(
alpha
=
0.25
,
gamma
=
2.0
,
loss_weight
=
1.0
,
type
=
'FocalLoss'
,
use_sigmoid
=
True
),
loss_iou
=
dict
(
loss_weight
=
2.0
,
type
=
'GIoULoss'
),
num_classes
=
80
,
sync_cls_avg_factor
=
True
,
type
=
'GroundingDINOHead'
),
data_preprocessor
=
dict
(
bgr_to_rgb
=
True
,
mean
=
[
123.675
,
116.28
,
103.53
,
],
pad_mask
=
False
,
std
=
[
58.395
,
57.12
,
57.375
,
],
type
=
'DetDataPreprocessor'
),
decoder
=
dict
(
layer_cfg
=
dict
(
cross_attn_cfg
=
dict
(
dropout
=
0.0
,
embed_dims
=
256
,
num_heads
=
8
),
cross_attn_text_cfg
=
dict
(
dropout
=
0.0
,
embed_dims
=
256
,
num_heads
=
8
),
ffn_cfg
=
dict
(
embed_dims
=
256
,
feedforward_channels
=
2048
,
ffn_drop
=
0.0
),
self_attn_cfg
=
dict
(
dropout
=
0.0
,
embed_dims
=
256
,
num_heads
=
8
)),
num_layers
=
6
,
post_norm_cfg
=
None
,
return_intermediate
=
True
),
dn_cfg
=
dict
(
box_noise_scale
=
1.0
,
group_cfg
=
dict
(
dynamic
=
True
,
num_dn_queries
=
100
,
num_groups
=
None
),
label_noise_scale
=
0.5
),
encoder
=
dict
(
fusion_layer_cfg
=
dict
(
embed_dim
=
1024
,
init_values
=
0.0001
,
l_dim
=
256
,
num_heads
=
4
,
v_dim
=
256
),
layer_cfg
=
dict
(
ffn_cfg
=
dict
(
embed_dims
=
256
,
feedforward_channels
=
2048
,
ffn_drop
=
0.0
),
self_attn_cfg
=
dict
(
dropout
=
0.0
,
embed_dims
=
256
,
num_levels
=
4
)),
num_cp
=
6
,
num_layers
=
6
,
text_layer_cfg
=
dict
(
ffn_cfg
=
dict
(
embed_dims
=
256
,
feedforward_channels
=
1024
,
ffn_drop
=
0.0
),
self_attn_cfg
=
dict
(
dropout
=
0.0
,
embed_dims
=
256
,
num_heads
=
4
))),
language_model
=
dict
(
add_pooling_layer
=
False
,
name
=
'bert-base-uncased'
,
pad_to_max
=
False
,
special_tokens_list
=
[
'[CLS]'
,
'[SEP]'
,
'.'
,
'?'
,
],
type
=
'BertModel'
,
use_sub_sentence_represent
=
True
),
neck
=
dict
(
act_cfg
=
None
,
bias
=
True
,
in_channels
=
[
512
,
1024
,
2048
,
],
kernel_size
=
1
,
norm_cfg
=
dict
(
num_groups
=
32
,
type
=
'GN'
),
num_outs
=
4
,
out_channels
=
256
,
type
=
'ChannelMapper'
),
num_queries
=
900
,
positional_encoding
=
dict
(
normalize
=
True
,
num_feats
=
128
,
offset
=
0.0
,
temperature
=
20
),
test_cfg
=
dict
(
max_per_img
=
300
),
train_cfg
=
dict
(
assigner
=
dict
(
match_costs
=
[
dict
(
type
=
'BinaryFocalLossCost'
,
weight
=
2.0
),
dict
(
box_format
=
'xywh'
,
type
=
'BBoxL1Cost'
,
weight
=
5.0
),
dict
(
iou_mode
=
'giou'
,
type
=
'IoUCost'
,
weight
=
2.0
),
],
type
=
'HungarianAssigner'
)),
type
=
'GroundingDINO'
,
with_box_refine
=
True
)
optim_wrapper
=
dict
(
clip_grad
=
dict
(
max_norm
=
0.1
,
norm_type
=
2
),
optimizer
=
dict
(
lr
=
0.0001
,
type
=
'AdamW'
,
weight_decay
=
0.0001
),
paramwise_cfg
=
dict
(
custom_keys
=
dict
(
absolute_pos_embed
=
dict
(
decay_mult
=
0.0
),
backbone
=
dict
(
lr_mult
=
0.1
))),
type
=
'OptimWrapper'
)
param_scheduler
=
[
dict
(
begin
=
0
,
by_epoch
=
True
,
end
=
12
,
gamma
=
0.1
,
milestones
=
[
11
,
],
type
=
'MultiStepLR'
),
]
resume
=
False
test_cfg
=
dict
(
type
=
'TestLoop'
)
test_dataloader
=
dict
(
batch_size
=
test_batch_size
,
dataset
=
dict
(
ann_file
=
val_anno
,
backend_args
=
None
,
data_prefix
=
dict
(
img
=
val_image_dir
),
data_root
=
data_root
,
pipeline
=
[
dict
(
backend_args
=
None
,
type
=
'LoadImageFromFile'
),
dict
(
keep_ratio
=
True
,
scale
=
(
800
,
1333
,
),
type
=
'FixScaleResize'
),
dict
(
type
=
'LoadAnnotations'
,
with_bbox
=
True
),
dict
(
meta_keys
=
(
'img_id'
,
'img_path'
,
'ori_shape'
,
'img_shape'
,
'scale_factor'
,
'text'
,
'custom_entities'
,
),
type
=
'PackDetInputs'
),
],
return_classes
=
True
,
test_mode
=
True
,
type
=
'CocoDataset'
),
drop_last
=
False
,
num_workers
=
2
,
persistent_workers
=
True
,
sampler
=
dict
(
shuffle
=
False
,
type
=
'DefaultSampler'
))
test_evaluator
=
dict
(
ann_file
=
data_root
+
val_anno
,
backend_args
=
None
,
format_only
=
False
,
metric
=
'bbox'
,
type
=
'CocoMetric'
)
test_pipeline
=
[
dict
(
backend_args
=
None
,
type
=
'LoadImageFromFile'
),
dict
(
keep_ratio
=
True
,
scale
=
(
800
,
1333
,
),
type
=
'FixScaleResize'
),
dict
(
type
=
'LoadAnnotations'
,
with_bbox
=
True
),
dict
(
meta_keys
=
(
'img_id'
,
'img_path'
,
'ori_shape'
,
'img_shape'
,
'scale_factor'
,
'text'
,
'custom_entities'
,
),
type
=
'PackDetInputs'
),
]
train_cfg
=
dict
(
max_epochs
=
12
,
type
=
'EpochBasedTrainLoop'
,
val_interval
=
1
)
train_dataloader
=
dict
(
batch_sampler
=
dict
(
type
=
'AspectRatioBatchSampler'
),
batch_size
=
train_batch_size
,
dataset
=
dict
(
ann_file
=
train_anno
,
backend_args
=
None
,
data_prefix
=
dict
(
img
=
train_image_dir
),
data_root
=
data_root
,
filter_cfg
=
dict
(
filter_empty_gt
=
False
,
min_size
=
32
),
pipeline
=
[
dict
(
backend_args
=
None
,
type
=
'LoadImageFromFile'
),
dict
(
type
=
'LoadAnnotations'
,
with_bbox
=
True
),
dict
(
prob
=
0.5
,
type
=
'RandomFlip'
),
dict
(
transforms
=
[
[
dict
(
keep_ratio
=
True
,
scales
=
[
(
480
,
1333
,
),
(
512
,
1333
,
),
(
544
,
1333
,
),
(
576
,
1333
,
),
(
608
,
1333
,
),
(
640
,
1333
,
),
(
672
,
1333
,
),
(
704
,
1333
,
),
(
736
,
1333
,
),
(
768
,
1333
,
),
(
800
,
1333
,
),
],
type
=
'RandomChoiceResize'
),
],
[
dict
(
keep_ratio
=
True
,
scales
=
[
(
400
,
4200
,
),
(
500
,
4200
,
),
(
600
,
4200
,
),
],
type
=
'RandomChoiceResize'
),
dict
(
allow_negative_crop
=
True
,
crop_size
=
(
384
,
600
,
),
crop_type
=
'absolute_range'
,
type
=
'RandomCrop'
),
dict
(
keep_ratio
=
True
,
scales
=
[
(
480
,
1333
,
),
(
512
,
1333
,
),
(
544
,
1333
,
),
(
576
,
1333
,
),
(
608
,
1333
,
),
(
640
,
1333
,
),
(
672
,
1333
,
),
(
704
,
1333
,
),
(
736
,
1333
,
),
(
768
,
1333
,
),
(
800
,
1333
,
),
],
type
=
'RandomChoiceResize'
),
],
],
type
=
'RandomChoice'
),
dict
(
meta_keys
=
(
'img_id'
,
'img_path'
,
'ori_shape'
,
'img_shape'
,
'scale_factor'
,
'flip'
,
'flip_direction'
,
'text'
,
'custom_entities'
,
),
type
=
'PackDetInputs'
),
],
return_classes
=
True
,
type
=
'CocoDataset'
),
num_workers
=
2
,
persistent_workers
=
True
,
sampler
=
dict
(
shuffle
=
True
,
type
=
'DefaultSampler'
))
train_pipeline
=
[
dict
(
backend_args
=
None
,
type
=
'LoadImageFromFile'
),
dict
(
type
=
'LoadAnnotations'
,
with_bbox
=
True
),
dict
(
prob
=
0.5
,
type
=
'RandomFlip'
),
dict
(
transforms
=
[
[
dict
(
keep_ratio
=
True
,
scales
=
[
(
480
,
1333
,
),
(
512
,
1333
,
),
(
544
,
1333
,
),
(
576
,
1333
,
),
(
608
,
1333
,
),
(
640
,
1333
,
),
(
672
,
1333
,
),
(
704
,
1333
,
),
(
736
,
1333
,
),
(
768
,
1333
,
),
(
800
,
1333
,
),
],
type
=
'RandomChoiceResize'
),
],
[
dict
(
keep_ratio
=
True
,
scales
=
[
(
400
,
4200
,
),
(
500
,
4200
,
),
(
600
,
4200
,
),
],
type
=
'RandomChoiceResize'
),
dict
(
allow_negative_crop
=
True
,
crop_size
=
(
384
,
600
,
),
crop_type
=
'absolute_range'
,
type
=
'RandomCrop'
),
dict
(
keep_ratio
=
True
,
scales
=
[
(
480
,
1333
,
),
(
512
,
1333
,
),
(
544
,
1333
,
),
(
576
,
1333
,
),
(
608
,
1333
,
),
(
640
,
1333
,
),
(
672
,
1333
,
),
(
704
,
1333
,
),
(
736
,
1333
,
),
(
768
,
1333
,
),
(
800
,
1333
,
),
],
type
=
'RandomChoiceResize'
),
],
],
type
=
'RandomChoice'
),
dict
(
meta_keys
=
(
'img_id'
,
'img_path'
,
'ori_shape'
,
'img_shape'
,
'scale_factor'
,
'flip'
,
'flip_direction'
,
'text'
,
'custom_entities'
,
),
type
=
'PackDetInputs'
),
]
val_cfg
=
dict
(
type
=
'ValLoop'
)
val_dataloader
=
dict
(
batch_size
=
test_batch_size
,
dataset
=
dict
(
ann_file
=
val_anno
,
backend_args
=
None
,
data_prefix
=
dict
(
img
=
val_image_dir
),
data_root
=
data_root
,
pipeline
=
[
dict
(
backend_args
=
None
,
type
=
'LoadImageFromFile'
),
dict
(
keep_ratio
=
True
,
scale
=
(
800
,
1333
,
),
type
=
'FixScaleResize'
),
dict
(
type
=
'LoadAnnotations'
,
with_bbox
=
True
),
dict
(
meta_keys
=
(
'img_id'
,
'img_path'
,
'ori_shape'
,
'img_shape'
,
'scale_factor'
,
'text'
,
'custom_entities'
,
),
type
=
'PackDetInputs'
),
],
return_classes
=
True
,
test_mode
=
True
,
type
=
'CocoDataset'
),
drop_last
=
False
,
num_workers
=
2
,
persistent_workers
=
True
,
sampler
=
dict
(
shuffle
=
False
,
type
=
'DefaultSampler'
))
val_evaluator
=
dict
(
ann_file
=
data_root
+
val_anno
,
backend_args
=
None
,
format_only
=
False
,
metric
=
'bbox'
,
type
=
'CocoMetric'
)
vis_backends
=
[
dict
(
type
=
'LocalVisBackend'
),
]
visualizer
=
dict
(
name
=
'visualizer'
,
type
=
'DetLocalVisualizer'
,
vis_backends
=
[
dict
(
type
=
'LocalVisBackend'
),
])
configs/grounding_dino/grounding_dino_swin-b_finetune_16xb2_1x_coco.py
0 → 100644
View file @
b12850fe
_base_
=
[
'./grounding_dino_swin-t_finetune_16xb2_1x_coco.py'
,
]
load_from
=
'https://download.openmmlab.com/mmdetection/v3.0/grounding_dino/groundingdino_swinb_cogcoor_mmdet-55949c9c.pth'
# noqa
model
=
dict
(
type
=
'GroundingDINO'
,
backbone
=
dict
(
pretrain_img_size
=
384
,
embed_dims
=
128
,
depths
=
[
2
,
2
,
18
,
2
],
num_heads
=
[
4
,
8
,
16
,
32
],
window_size
=
12
,
drop_path_rate
=
0.3
,
patch_norm
=
True
),
neck
=
dict
(
in_channels
=
[
256
,
512
,
1024
]),
)
configs/grounding_dino/grounding_dino_swin-b_pretrain_mixeddata.py
0 → 100644
View file @
b12850fe
_base_
=
[
'./grounding_dino_swin-t_pretrain_obj365_goldg_cap4m.py'
,
]
model
=
dict
(
type
=
'GroundingDINO'
,
backbone
=
dict
(
pretrain_img_size
=
384
,
embed_dims
=
128
,
depths
=
[
2
,
2
,
18
,
2
],
num_heads
=
[
4
,
8
,
16
,
32
],
window_size
=
12
,
drop_path_rate
=
0.3
,
patch_norm
=
True
),
neck
=
dict
(
in_channels
=
[
256
,
512
,
1024
]),
)
configs/grounding_dino/grounding_dino_swin-t_finetune_16xb2_1x_coco.py
0 → 100644
View file @
b12850fe
_base_
=
[
'../_base_/datasets/coco_detection.py'
,
'../_base_/schedules/schedule_1x.py'
,
'../_base_/default_runtime.py'
]
load_from
=
'https://download.openmmlab.com/mmdetection/v3.0/grounding_dino/groundingdino_swint_ogc_mmdet-822d7e9d.pth'
# noqa
lang_model_name
=
'bert-base-uncased'
model
=
dict
(
type
=
'GroundingDINO'
,
num_queries
=
900
,
with_box_refine
=
True
,
as_two_stage
=
True
,
data_preprocessor
=
dict
(
type
=
'DetDataPreprocessor'
,
mean
=
[
123.675
,
116.28
,
103.53
],
std
=
[
58.395
,
57.12
,
57.375
],
bgr_to_rgb
=
True
,
pad_mask
=
False
,
),
language_model
=
dict
(
type
=
'BertModel'
,
name
=
lang_model_name
,
pad_to_max
=
False
,
use_sub_sentence_represent
=
True
,
special_tokens_list
=
[
'[CLS]'
,
'[SEP]'
,
'.'
,
'?'
],
add_pooling_layer
=
False
,
),
backbone
=
dict
(
type
=
'SwinTransformer'
,
embed_dims
=
96
,
depths
=
[
2
,
2
,
6
,
2
],
num_heads
=
[
3
,
6
,
12
,
24
],
window_size
=
7
,
mlp_ratio
=
4
,
qkv_bias
=
True
,
qk_scale
=
None
,
drop_rate
=
0.
,
attn_drop_rate
=
0.
,
drop_path_rate
=
0.2
,
patch_norm
=
True
,
out_indices
=
(
1
,
2
,
3
),
with_cp
=
True
,
convert_weights
=
False
),
neck
=
dict
(
type
=
'ChannelMapper'
,
in_channels
=
[
192
,
384
,
768
],
kernel_size
=
1
,
out_channels
=
256
,
act_cfg
=
None
,
bias
=
True
,
norm_cfg
=
dict
(
type
=
'GN'
,
num_groups
=
32
),
num_outs
=
4
),
encoder
=
dict
(
num_layers
=
6
,
num_cp
=
6
,
# visual layer config
layer_cfg
=
dict
(
self_attn_cfg
=
dict
(
embed_dims
=
256
,
num_levels
=
4
,
dropout
=
0.0
),
ffn_cfg
=
dict
(
embed_dims
=
256
,
feedforward_channels
=
2048
,
ffn_drop
=
0.0
)),
# text layer config
text_layer_cfg
=
dict
(
self_attn_cfg
=
dict
(
num_heads
=
4
,
embed_dims
=
256
,
dropout
=
0.0
),
ffn_cfg
=
dict
(
embed_dims
=
256
,
feedforward_channels
=
1024
,
ffn_drop
=
0.0
)),
# fusion layer config
fusion_layer_cfg
=
dict
(
v_dim
=
256
,
l_dim
=
256
,
embed_dim
=
1024
,
num_heads
=
4
,
init_values
=
1e-4
),
),
decoder
=
dict
(
num_layers
=
6
,
return_intermediate
=
True
,
layer_cfg
=
dict
(
# query self attention layer
self_attn_cfg
=
dict
(
embed_dims
=
256
,
num_heads
=
8
,
dropout
=
0.0
),
# cross attention layer query to text
cross_attn_text_cfg
=
dict
(
embed_dims
=
256
,
num_heads
=
8
,
dropout
=
0.0
),
# cross attention layer query to image
cross_attn_cfg
=
dict
(
embed_dims
=
256
,
num_heads
=
8
,
dropout
=
0.0
),
ffn_cfg
=
dict
(
embed_dims
=
256
,
feedforward_channels
=
2048
,
ffn_drop
=
0.0
)),
post_norm_cfg
=
None
),
positional_encoding
=
dict
(
num_feats
=
128
,
normalize
=
True
,
offset
=
0.0
,
temperature
=
20
),
bbox_head
=
dict
(
type
=
'GroundingDINOHead'
,
num_classes
=
80
,
sync_cls_avg_factor
=
True
,
contrastive_cfg
=
dict
(
max_text_len
=
256
,
log_scale
=
0.0
,
bias
=
False
),
loss_cls
=
dict
(
type
=
'FocalLoss'
,
use_sigmoid
=
True
,
gamma
=
2.0
,
alpha
=
0.25
,
loss_weight
=
1.0
),
# 2.0 in DeformDETR
loss_bbox
=
dict
(
type
=
'L1Loss'
,
loss_weight
=
5.0
),
loss_iou
=
dict
(
type
=
'GIoULoss'
,
loss_weight
=
2.0
)),
dn_cfg
=
dict
(
# TODO: Move to model.train_cfg ?
label_noise_scale
=
0.5
,
box_noise_scale
=
1.0
,
# 0.4 for DN-DETR
group_cfg
=
dict
(
dynamic
=
True
,
num_groups
=
None
,
num_dn_queries
=
100
)),
# TODO: half num_dn_queries
# training and testing settings
train_cfg
=
dict
(
assigner
=
dict
(
type
=
'HungarianAssigner'
,
match_costs
=
[
dict
(
type
=
'BinaryFocalLossCost'
,
weight
=
2.0
),
dict
(
type
=
'BBoxL1Cost'
,
weight
=
5.0
,
box_format
=
'xywh'
),
dict
(
type
=
'IoUCost'
,
iou_mode
=
'giou'
,
weight
=
2.0
)
])),
test_cfg
=
dict
(
max_per_img
=
300
))
# dataset settings
train_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
,
backend_args
=
_base_
.
backend_args
),
dict
(
type
=
'LoadAnnotations'
,
with_bbox
=
True
),
dict
(
type
=
'RandomFlip'
,
prob
=
0.5
),
dict
(
type
=
'RandomChoice'
,
transforms
=
[
[
dict
(
type
=
'RandomChoiceResize'
,
scales
=
[(
480
,
1333
),
(
512
,
1333
),
(
544
,
1333
),
(
576
,
1333
),
(
608
,
1333
),
(
640
,
1333
),
(
672
,
1333
),
(
704
,
1333
),
(
736
,
1333
),
(
768
,
1333
),
(
800
,
1333
)],
keep_ratio
=
True
)
],
[
dict
(
type
=
'RandomChoiceResize'
,
# The radio of all image in train dataset < 7
# follow the original implement
scales
=
[(
400
,
4200
),
(
500
,
4200
),
(
600
,
4200
)],
keep_ratio
=
True
),
dict
(
type
=
'RandomCrop'
,
crop_type
=
'absolute_range'
,
crop_size
=
(
384
,
600
),
allow_negative_crop
=
True
),
dict
(
type
=
'RandomChoiceResize'
,
scales
=
[(
480
,
1333
),
(
512
,
1333
),
(
544
,
1333
),
(
576
,
1333
),
(
608
,
1333
),
(
640
,
1333
),
(
672
,
1333
),
(
704
,
1333
),
(
736
,
1333
),
(
768
,
1333
),
(
800
,
1333
)],
keep_ratio
=
True
)
]
]),
dict
(
type
=
'PackDetInputs'
,
meta_keys
=
(
'img_id'
,
'img_path'
,
'ori_shape'
,
'img_shape'
,
'scale_factor'
,
'flip'
,
'flip_direction'
,
'text'
,
'custom_entities'
))
]
test_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
,
backend_args
=
_base_
.
backend_args
),
dict
(
type
=
'FixScaleResize'
,
scale
=
(
800
,
1333
),
keep_ratio
=
True
),
dict
(
type
=
'LoadAnnotations'
,
with_bbox
=
True
),
dict
(
type
=
'PackDetInputs'
,
meta_keys
=
(
'img_id'
,
'img_path'
,
'ori_shape'
,
'img_shape'
,
'scale_factor'
,
'text'
,
'custom_entities'
))
]
train_dataloader
=
dict
(
dataset
=
dict
(
filter_cfg
=
dict
(
filter_empty_gt
=
False
),
pipeline
=
train_pipeline
,
return_classes
=
True
))
val_dataloader
=
dict
(
dataset
=
dict
(
pipeline
=
test_pipeline
,
return_classes
=
True
))
test_dataloader
=
val_dataloader
optim_wrapper
=
dict
(
_delete_
=
True
,
type
=
'OptimWrapper'
,
optimizer
=
dict
(
type
=
'AdamW'
,
lr
=
0.0001
,
weight_decay
=
0.0001
),
clip_grad
=
dict
(
max_norm
=
0.1
,
norm_type
=
2
),
paramwise_cfg
=
dict
(
custom_keys
=
{
'absolute_pos_embed'
:
dict
(
decay_mult
=
0.
),
'backbone'
:
dict
(
lr_mult
=
0.1
)
}))
# learning policy
max_epochs
=
12
param_scheduler
=
[
dict
(
type
=
'MultiStepLR'
,
begin
=
0
,
end
=
max_epochs
,
by_epoch
=
True
,
milestones
=
[
11
],
gamma
=
0.1
)
]
# NOTE: `auto_scale_lr` is for automatically scaling LR,
# USER SHOULD NOT CHANGE ITS VALUES.
# base_batch_size = (16 GPUs) x (2 samples per GPU)
auto_scale_lr
=
dict
(
base_batch_size
=
32
)
configs/grounding_dino/grounding_dino_swin-t_finetune_8xb2_20e_cat.py
0 → 100644
View file @
b12850fe
_base_
=
'grounding_dino_swin-t_finetune_16xb2_1x_coco.py'
data_root
=
'data/cat/'
class_name
=
(
'cat'
,
)
num_classes
=
len
(
class_name
)
metainfo
=
dict
(
classes
=
class_name
,
palette
=
[(
220
,
20
,
60
)])
model
=
dict
(
bbox_head
=
dict
(
num_classes
=
num_classes
))
train_dataloader
=
dict
(
dataset
=
dict
(
data_root
=
data_root
,
metainfo
=
metainfo
,
ann_file
=
'annotations/trainval.json'
,
data_prefix
=
dict
(
img
=
'images/'
)))
val_dataloader
=
dict
(
dataset
=
dict
(
metainfo
=
metainfo
,
data_root
=
data_root
,
ann_file
=
'annotations/test.json'
,
data_prefix
=
dict
(
img
=
'images/'
)))
test_dataloader
=
val_dataloader
val_evaluator
=
dict
(
ann_file
=
data_root
+
'annotations/test.json'
)
test_evaluator
=
val_evaluator
max_epoch
=
20
default_hooks
=
dict
(
checkpoint
=
dict
(
interval
=
1
,
max_keep_ckpts
=
1
,
save_best
=
'auto'
),
logger
=
dict
(
type
=
'LoggerHook'
,
interval
=
5
))
train_cfg
=
dict
(
max_epochs
=
max_epoch
,
val_interval
=
1
)
param_scheduler
=
[
dict
(
type
=
'LinearLR'
,
start_factor
=
0.001
,
by_epoch
=
False
,
begin
=
0
,
end
=
30
),
dict
(
type
=
'MultiStepLR'
,
begin
=
0
,
end
=
max_epoch
,
by_epoch
=
True
,
milestones
=
[
15
],
gamma
=
0.1
)
]
optim_wrapper
=
dict
(
optimizer
=
dict
(
lr
=
0.00005
),
paramwise_cfg
=
dict
(
custom_keys
=
{
'absolute_pos_embed'
:
dict
(
decay_mult
=
0.
),
'backbone'
:
dict
(
lr_mult
=
0.1
),
'language_model'
:
dict
(
lr_mult
=
0
),
}))
auto_scale_lr
=
dict
(
base_batch_size
=
16
)
configs/grounding_dino/grounding_dino_swin-t_pretrain_obj365_goldg_cap4m.py
0 → 100644
View file @
b12850fe
_base_
=
[
'../_base_/datasets/coco_detection.py'
,
'../_base_/schedules/schedule_1x.py'
,
'../_base_/default_runtime.py'
]
lang_model_name
=
'bert-base-uncased'
model
=
dict
(
type
=
'GroundingDINO'
,
num_queries
=
900
,
with_box_refine
=
True
,
as_two_stage
=
True
,
data_preprocessor
=
dict
(
type
=
'DetDataPreprocessor'
,
mean
=
[
123.675
,
116.28
,
103.53
],
std
=
[
58.395
,
57.12
,
57.375
],
bgr_to_rgb
=
True
,
pad_mask
=
False
,
),
language_model
=
dict
(
type
=
'BertModel'
,
name
=
lang_model_name
,
pad_to_max
=
False
,
use_sub_sentence_represent
=
True
,
special_tokens_list
=
[
'[CLS]'
,
'[SEP]'
,
'.'
,
'?'
],
add_pooling_layer
=
True
,
),
backbone
=
dict
(
type
=
'SwinTransformer'
,
embed_dims
=
96
,
depths
=
[
2
,
2
,
6
,
2
],
num_heads
=
[
3
,
6
,
12
,
24
],
window_size
=
7
,
mlp_ratio
=
4
,
qkv_bias
=
True
,
qk_scale
=
None
,
drop_rate
=
0.
,
attn_drop_rate
=
0.
,
drop_path_rate
=
0.2
,
patch_norm
=
True
,
out_indices
=
(
1
,
2
,
3
),
with_cp
=
False
,
convert_weights
=
False
),
neck
=
dict
(
type
=
'ChannelMapper'
,
in_channels
=
[
192
,
384
,
768
],
kernel_size
=
1
,
out_channels
=
256
,
act_cfg
=
None
,
bias
=
True
,
norm_cfg
=
dict
(
type
=
'GN'
,
num_groups
=
32
),
num_outs
=
4
),
encoder
=
dict
(
num_layers
=
6
,
# visual layer config
layer_cfg
=
dict
(
self_attn_cfg
=
dict
(
embed_dims
=
256
,
num_levels
=
4
,
dropout
=
0.0
),
ffn_cfg
=
dict
(
embed_dims
=
256
,
feedforward_channels
=
2048
,
ffn_drop
=
0.0
)),
# text layer config
text_layer_cfg
=
dict
(
self_attn_cfg
=
dict
(
num_heads
=
4
,
embed_dims
=
256
,
dropout
=
0.0
),
ffn_cfg
=
dict
(
embed_dims
=
256
,
feedforward_channels
=
1024
,
ffn_drop
=
0.0
)),
# fusion layer config
fusion_layer_cfg
=
dict
(
v_dim
=
256
,
l_dim
=
256
,
embed_dim
=
1024
,
num_heads
=
4
,
init_values
=
1e-4
),
),
decoder
=
dict
(
num_layers
=
6
,
return_intermediate
=
True
,
layer_cfg
=
dict
(
# query self attention layer
self_attn_cfg
=
dict
(
embed_dims
=
256
,
num_heads
=
8
,
dropout
=
0.0
),
# cross attention layer query to text
cross_attn_text_cfg
=
dict
(
embed_dims
=
256
,
num_heads
=
8
,
dropout
=
0.0
),
# cross attention layer query to image
cross_attn_cfg
=
dict
(
embed_dims
=
256
,
num_heads
=
8
,
dropout
=
0.0
),
ffn_cfg
=
dict
(
embed_dims
=
256
,
feedforward_channels
=
2048
,
ffn_drop
=
0.0
)),
post_norm_cfg
=
None
),
positional_encoding
=
dict
(
num_feats
=
128
,
normalize
=
True
,
offset
=
0.0
,
temperature
=
20
),
bbox_head
=
dict
(
type
=
'GroundingDINOHead'
,
num_classes
=
80
,
sync_cls_avg_factor
=
True
,
contrastive_cfg
=
dict
(
max_text_len
=
256
),
loss_cls
=
dict
(
type
=
'FocalLoss'
,
use_sigmoid
=
True
,
gamma
=
2.0
,
alpha
=
0.25
,
loss_weight
=
1.0
),
# 2.0 in DeformDETR
loss_bbox
=
dict
(
type
=
'L1Loss'
,
loss_weight
=
5.0
)),
dn_cfg
=
dict
(
# TODO: Move to model.train_cfg ?
label_noise_scale
=
0.5
,
box_noise_scale
=
1.0
,
# 0.4 for DN-DETR
group_cfg
=
dict
(
dynamic
=
True
,
num_groups
=
None
,
num_dn_queries
=
100
)),
# TODO: half num_dn_queries
# training and testing settings
train_cfg
=
None
,
test_cfg
=
dict
(
max_per_img
=
300
))
test_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
,
backend_args
=
None
,
imdecode_backend
=
'pillow'
),
dict
(
type
=
'FixScaleResize'
,
scale
=
(
800
,
1333
),
keep_ratio
=
True
,
backend
=
'pillow'
),
dict
(
type
=
'LoadAnnotations'
,
with_bbox
=
True
),
dict
(
type
=
'PackDetInputs'
,
meta_keys
=
(
'img_id'
,
'img_path'
,
'ori_shape'
,
'img_shape'
,
'scale_factor'
,
'text'
,
'custom_entities'
,
'tokens_positive'
))
]
val_dataloader
=
dict
(
dataset
=
dict
(
pipeline
=
test_pipeline
,
return_classes
=
True
))
test_dataloader
=
val_dataloader
configs/grounding_dino/lvis/grounding_dino_swin-b_pretrain_zeroshot_lvis.py
0 → 100644
View file @
b12850fe
_base_
=
'./grounding_dino_swin-t_pretrain_zeroshot_lvis.py'
model
=
dict
(
type
=
'GroundingDINO'
,
backbone
=
dict
(
pretrain_img_size
=
384
,
embed_dims
=
128
,
depths
=
[
2
,
2
,
18
,
2
],
num_heads
=
[
4
,
8
,
16
,
32
],
window_size
=
12
,
drop_path_rate
=
0.3
,
patch_norm
=
True
),
neck
=
dict
(
in_channels
=
[
256
,
512
,
1024
]),
)
configs/grounding_dino/lvis/grounding_dino_swin-b_pretrain_zeroshot_mini-lvis.py
0 → 100644
View file @
b12850fe
_base_
=
'./grounding_dino_swin-t_pretrain_zeroshot_mini-lvis.py'
model
=
dict
(
type
=
'GroundingDINO'
,
backbone
=
dict
(
pretrain_img_size
=
384
,
embed_dims
=
128
,
depths
=
[
2
,
2
,
18
,
2
],
num_heads
=
[
4
,
8
,
16
,
32
],
window_size
=
12
,
drop_path_rate
=
0.3
,
patch_norm
=
True
),
neck
=
dict
(
in_channels
=
[
256
,
512
,
1024
]),
)
configs/grounding_dino/lvis/grounding_dino_swin-t_pretrain_zeroshot_lvis.py
0 → 100644
View file @
b12850fe
_base_
=
'../grounding_dino_swin-t_pretrain_obj365_goldg_cap4m.py'
model
=
dict
(
test_cfg
=
dict
(
max_per_img
=
300
,
chunked_size
=
40
,
))
dataset_type
=
'LVISV1Dataset'
data_root
=
'data/coco/'
val_dataloader
=
dict
(
dataset
=
dict
(
data_root
=
data_root
,
type
=
dataset_type
,
ann_file
=
'annotations/lvis_od_val.json'
,
data_prefix
=
dict
(
img
=
''
)))
test_dataloader
=
val_dataloader
# numpy < 1.24.0
val_evaluator
=
dict
(
_delete_
=
True
,
type
=
'LVISFixedAPMetric'
,
ann_file
=
data_root
+
'annotations/lvis_od_val.json'
)
test_evaluator
=
val_evaluator
configs/grounding_dino/lvis/grounding_dino_swin-t_pretrain_zeroshot_mini-lvis.py
0 → 100644
View file @
b12850fe
_base_
=
'../grounding_dino_swin-t_pretrain_obj365_goldg_cap4m.py'
model
=
dict
(
test_cfg
=
dict
(
max_per_img
=
300
,
chunked_size
=
40
,
))
dataset_type
=
'LVISV1Dataset'
data_root
=
'data/coco/'
val_dataloader
=
dict
(
dataset
=
dict
(
data_root
=
data_root
,
type
=
dataset_type
,
ann_file
=
'annotations/lvis_v1_minival_inserted_image_name.json'
,
data_prefix
=
dict
(
img
=
''
)))
test_dataloader
=
val_dataloader
# numpy < 1.24.0
val_evaluator
=
dict
(
_delete_
=
True
,
type
=
'LVISFixedAPMetric'
,
ann_file
=
data_root
+
'annotations/lvis_v1_minival_inserted_image_name.json'
)
test_evaluator
=
val_evaluator
configs/grounding_dino/metafile.yml
0 → 100644
View file @
b12850fe
Collections
:
-
Name
:
Grounding DINO
Metadata
:
Training Data
:
Objects365, GoldG, CC3M and COCO
Training Techniques
:
-
AdamW
-
Multi Scale Train
-
Gradient Clip
Training Resources
:
3090 GPUs
Architecture
:
-
Swin Transformer
-
BERT
Paper
:
URL
:
https://arxiv.org/abs/2303.05499
Title
:
'
Grounding
DINO:
Marrying
DINO
with
Grounded
Pre-Training
for
Open-Set
Object
Detection
'
README
:
configs/grounding_dino/README.md
Code
:
URL
:
Version
:
v3.0.0
Models
:
-
Name
:
grounding_dino_swin-t_pretrain_obj365_goldg_cap4m
In Collection
:
Grounding DINO
Config
:
configs/grounding_dino/grounding_dino_swin-t_pretrain_obj365_goldg_cap4m.py
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
48.5
Weights
:
https://download.openmmlab.com/mmdetection/v3.0/grounding_dino/groundingdino_swint_ogc_mmdet-822d7e9d.pth
-
Name
:
grounding_dino_swin-b_pretrain_mixeddata
In Collection
:
Grounding DINO
Config
:
configs/grounding_dino/grounding_dino_swin-b_pretrain_mixeddata.py
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
56.9
Weights
:
https://download.openmmlab.com/mmdetection/v3.0/grounding_dino/groundingdino_swinb_cogcoor_mmdet-55949c9c.pth
-
Name
:
grounding_dino_swin-t_finetune_16xb2_1x_coco
In Collection
:
Grounding DINO
Config
:
configs/grounding_dino/grounding_dino_swin-t_finetune_16xb2_1x_coco.py
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
58.1
Weights
:
https://download.openmmlab.com/mmdetection/v3.0/grounding_dino/grounding_dino_swin-t_finetune_16xb2_1x_coco/grounding_dino_swin-t_finetune_16xb2_1x_coco_20230921_152544-5f234b20.pth
-
Name
:
grounding_dino_swin-b_finetune_16xb2_1x_coco
In Collection
:
Grounding DINO
Config
:
configs/grounding_dino/grounding_dino_swin-b_finetune_16xb2_1x_coco.py
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
59.7
Weights
:
https://download.openmmlab.com/mmdetection/v3.0/grounding_dino/grounding_dino_swin-b_finetune_16xb2_1x_coco/grounding_dino_swin-b_finetune_16xb2_1x_coco_20230921_153201-f219e0c0.pth
-
Name
:
grounding_dino_r50_scratch_8xb2_1x_coco
In Collection
:
Grounding DINO
Config
:
configs/grounding_dino/grounding_dino_r50_scratch_8xb2_1x_coco.py
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
48.9
Weights
:
https://download.openmmlab.com/mmdetection/v3.0/grounding_dino/grounding_dino_r50_scratch_8xb2_1x_coco/grounding_dino_r50_scratch_1x_coco-fe0002f2.pth
configs/grounding_dino/odinw/grounding_dino_swin-b_pretrain_odinw13.py
0 → 100644
View file @
b12850fe
_base_
=
'../grounding_dino_swin-b_pretrain_mixeddata.py'
dataset_type
=
'CocoDataset'
data_root
=
'data/odinw/'
base_test_pipeline
=
_base_
.
test_pipeline
base_test_pipeline
[
-
1
][
'meta_keys'
]
=
(
'img_id'
,
'img_path'
,
'ori_shape'
,
'img_shape'
,
'scale_factor'
,
'text'
,
'custom_entities'
,
'caption_prompt'
)
# ---------------------1 AerialMaritimeDrone---------------------#
class_name
=
(
'boat'
,
'car'
,
'dock'
,
'jetski'
,
'lift'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'AerialMaritimeDrone/large/'
dataset_AerialMaritimeDrone
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
test_mode
=
True
,
pipeline
=
base_test_pipeline
,
return_classes
=
True
)
val_evaluator_AerialMaritimeDrone
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------2 Aquarium---------------------#
class_name
=
(
'fish'
,
'jellyfish'
,
'penguin'
,
'puffin'
,
'shark'
,
'starfish'
,
'stingray'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'Aquarium/Aquarium Combined.v2-raw-1024.coco/'
caption_prompt
=
None
# caption_prompt = {
# 'penguin': {
# 'suffix': ', which is black and white'
# },
# 'puffin': {
# 'suffix': ' with orange beaks'
# },
# 'stingray': {
# 'suffix': ' which is flat and round'
# },
# }
dataset_Aquarium
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
base_test_pipeline
,
caption_prompt
=
caption_prompt
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_Aquarium
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------3 CottontailRabbits---------------------#
class_name
=
(
'Cottontail-Rabbit'
,
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'CottontailRabbits/'
caption_prompt
=
None
# caption_prompt = {'Cottontail-Rabbit': {'name': 'rabbit'}}
dataset_CottontailRabbits
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
base_test_pipeline
,
caption_prompt
=
caption_prompt
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_CottontailRabbits
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------4 EgoHands---------------------#
class_name
=
(
'hand'
,
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'EgoHands/generic/'
caption_prompt
=
None
# caption_prompt = {'hand': {'suffix': ' of a person'}}
dataset_EgoHands
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
base_test_pipeline
,
caption_prompt
=
caption_prompt
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_EgoHands
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------5 NorthAmericaMushrooms---------------------#
class_name
=
(
'CoW'
,
'chanterelle'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'NorthAmericaMushrooms/North American Mushrooms.v1-416x416.coco/'
# noqa
caption_prompt
=
None
# caption_prompt = {
# 'CoW': {
# 'name': 'flat mushroom'
# },
# 'chanterelle': {
# 'name': 'yellow mushroom'
# }
# }
dataset_NorthAmericaMushrooms
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
base_test_pipeline
,
caption_prompt
=
caption_prompt
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_NorthAmericaMushrooms
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------6 Packages---------------------#
class_name
=
(
'package'
,
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'Packages/Raw/'
caption_prompt
=
None
# caption_prompt = {
# 'package': {
# 'prefix': 'there is a ',
# 'suffix': ' on the porch'
# }
# }
dataset_Packages
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
base_test_pipeline
,
caption_prompt
=
caption_prompt
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_Packages
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------7 PascalVOC---------------------#
class_name
=
(
'aeroplane'
,
'bicycle'
,
'bird'
,
'boat'
,
'bottle'
,
'bus'
,
'car'
,
'cat'
,
'chair'
,
'cow'
,
'diningtable'
,
'dog'
,
'horse'
,
'motorbike'
,
'person'
,
'pottedplant'
,
'sheep'
,
'sofa'
,
'train'
,
'tvmonitor'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'PascalVOC/'
dataset_PascalVOC
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
base_test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_PascalVOC
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------8 pistols---------------------#
class_name
=
(
'pistol'
,
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'pistols/export/'
dataset_pistols
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'val_annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
''
),
pipeline
=
base_test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_pistols
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'val_annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------9 pothole---------------------#
class_name
=
(
'pothole'
,
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'pothole/'
caption_prompt
=
None
# caption_prompt = {
# 'pothole': {
# 'prefix': 'there are some ',
# 'name': 'holes',
# 'suffix': ' on the road'
# }
# }
dataset_pothole
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
base_test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_pothole
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------10 Raccoon---------------------#
class_name
=
(
'raccoon'
,
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'Raccoon/Raccoon.v2-raw.coco/'
dataset_Raccoon
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
base_test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_Raccoon
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------11 ShellfishOpenImages---------------------#
class_name
=
(
'Crab'
,
'Lobster'
,
'Shrimp'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'ShellfishOpenImages/raw/'
dataset_ShellfishOpenImages
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
base_test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_ShellfishOpenImages
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------12 thermalDogsAndPeople---------------------#
class_name
=
(
'dog'
,
'person'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'thermalDogsAndPeople/'
dataset_thermalDogsAndPeople
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
base_test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_thermalDogsAndPeople
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------13 VehiclesOpenImages---------------------#
class_name
=
(
'Ambulance'
,
'Bus'
,
'Car'
,
'Motorcycle'
,
'Truck'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'VehiclesOpenImages/416x416/'
dataset_VehiclesOpenImages
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
base_test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_VehiclesOpenImages
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# --------------------- Config---------------------#
dataset_prefixes
=
[
'AerialMaritimeDrone'
,
'Aquarium'
,
'CottontailRabbits'
,
'EgoHands'
,
'NorthAmericaMushrooms'
,
'Packages'
,
'PascalVOC'
,
'pistols'
,
'pothole'
,
'Raccoon'
,
'ShellfishOpenImages'
,
'thermalDogsAndPeople'
,
'VehiclesOpenImages'
]
datasets
=
[
dataset_AerialMaritimeDrone
,
dataset_Aquarium
,
dataset_CottontailRabbits
,
dataset_EgoHands
,
dataset_NorthAmericaMushrooms
,
dataset_Packages
,
dataset_PascalVOC
,
dataset_pistols
,
dataset_pothole
,
dataset_Raccoon
,
dataset_ShellfishOpenImages
,
dataset_thermalDogsAndPeople
,
dataset_VehiclesOpenImages
]
metrics
=
[
val_evaluator_AerialMaritimeDrone
,
val_evaluator_Aquarium
,
val_evaluator_CottontailRabbits
,
val_evaluator_EgoHands
,
val_evaluator_NorthAmericaMushrooms
,
val_evaluator_Packages
,
val_evaluator_PascalVOC
,
val_evaluator_pistols
,
val_evaluator_pothole
,
val_evaluator_Raccoon
,
val_evaluator_ShellfishOpenImages
,
val_evaluator_thermalDogsAndPeople
,
val_evaluator_VehiclesOpenImages
]
# -------------------------------------------------#
val_dataloader
=
dict
(
dataset
=
dict
(
_delete_
=
True
,
type
=
'ConcatDataset'
,
datasets
=
datasets
))
test_dataloader
=
val_dataloader
val_evaluator
=
dict
(
_delete_
=
True
,
type
=
'MultiDatasetsEvaluator'
,
metrics
=
metrics
,
dataset_prefixes
=
dataset_prefixes
)
test_evaluator
=
val_evaluator
configs/grounding_dino/odinw/grounding_dino_swin-b_pretrain_odinw35.py
0 → 100644
View file @
b12850fe
_base_
=
'../grounding_dino_swin-b_pretrain_mixeddata.py'
dataset_type
=
'CocoDataset'
data_root
=
'data/odinw/'
base_test_pipeline
=
_base_
.
test_pipeline
base_test_pipeline
[
-
1
][
'meta_keys'
]
=
(
'img_id'
,
'img_path'
,
'ori_shape'
,
'img_shape'
,
'scale_factor'
,
'text'
,
'custom_entities'
,
'caption_prompt'
)
# ---------------------1 AerialMaritimeDrone_large---------------------#
class_name
=
(
'boat'
,
'car'
,
'dock'
,
'jetski'
,
'lift'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'AerialMaritimeDrone/large/'
dataset_AerialMaritimeDrone_large
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
_base_
.
test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_AerialMaritimeDrone_large
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------2 AerialMaritimeDrone_tiled---------------------#
class_name
=
(
'boat'
,
'car'
,
'dock'
,
'jetski'
,
'lift'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'AerialMaritimeDrone/tiled/'
dataset_AerialMaritimeDrone_tiled
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
_base_
.
test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_AerialMaritimeDrone_tiled
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------3 AmericanSignLanguageLetters---------------------#
class_name
=
(
'A'
,
'B'
,
'C'
,
'D'
,
'E'
,
'F'
,
'G'
,
'H'
,
'I'
,
'J'
,
'K'
,
'L'
,
'M'
,
'N'
,
'O'
,
'P'
,
'Q'
,
'R'
,
'S'
,
'T'
,
'U'
,
'V'
,
'W'
,
'X'
,
'Y'
,
'Z'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'AmericanSignLanguageLetters/American Sign Language Letters.v1-v1.coco/'
# noqa
dataset_AmericanSignLanguageLetters
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
_base_
.
test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_AmericanSignLanguageLetters
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------4 Aquarium---------------------#
class_name
=
(
'fish'
,
'jellyfish'
,
'penguin'
,
'puffin'
,
'shark'
,
'starfish'
,
'stingray'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'Aquarium/Aquarium Combined.v2-raw-1024.coco/'
dataset_Aquarium
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
_base_
.
test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_Aquarium
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------5 BCCD---------------------#
class_name
=
(
'Platelets'
,
'RBC'
,
'WBC'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'BCCD/BCCD.v3-raw.coco/'
dataset_BCCD
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
_base_
.
test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_BCCD
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------6 boggleBoards---------------------#
class_name
=
(
'Q'
,
'a'
,
'an'
,
'b'
,
'c'
,
'd'
,
'e'
,
'er'
,
'f'
,
'g'
,
'h'
,
'he'
,
'i'
,
'in'
,
'j'
,
'k'
,
'l'
,
'm'
,
'n'
,
'o'
,
'o '
,
'p'
,
'q'
,
'qu'
,
'r'
,
's'
,
't'
,
't
\\
'
,
'th'
,
'u'
,
'v'
,
'w'
,
'wild'
,
'x'
,
'y'
,
'z'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'boggleBoards/416x416AutoOrient/export/'
dataset_boggleBoards
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'val_annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
''
),
pipeline
=
_base_
.
test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_boggleBoards
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'val_annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------7 brackishUnderwater---------------------#
class_name
=
(
'crab'
,
'fish'
,
'jellyfish'
,
'shrimp'
,
'small_fish'
,
'starfish'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'brackishUnderwater/960x540/'
dataset_brackishUnderwater
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
_base_
.
test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_brackishUnderwater
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------8 ChessPieces---------------------#
class_name
=
(
' '
,
'black bishop'
,
'black king'
,
'black knight'
,
'black pawn'
,
'black queen'
,
'black rook'
,
'white bishop'
,
'white king'
,
'white knight'
,
'white pawn'
,
'white queen'
,
'white rook'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'ChessPieces/Chess Pieces.v23-raw.coco/'
dataset_ChessPieces
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/new_annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
_base_
.
test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_ChessPieces
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/new_annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------9 CottontailRabbits---------------------#
class_name
=
(
'rabbit'
,
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'CottontailRabbits/'
dataset_CottontailRabbits
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/new_annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
_base_
.
test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_CottontailRabbits
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/new_annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------10 dice---------------------#
class_name
=
(
'1'
,
'2'
,
'3'
,
'4'
,
'5'
,
'6'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'dice/mediumColor/export/'
dataset_dice
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'val_annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
''
),
pipeline
=
_base_
.
test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_dice
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'val_annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------11 DroneControl---------------------#
class_name
=
(
'follow'
,
'follow_hand'
,
'land'
,
'land_hand'
,
'null'
,
'object'
,
'takeoff'
,
'takeoff-hand'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'DroneControl/Drone Control.v3-raw.coco/'
dataset_DroneControl
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
_base_
.
test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_DroneControl
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------12 EgoHands_generic---------------------#
class_name
=
(
'hand'
,
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'EgoHands/generic/'
caption_prompt
=
{
'hand'
:
{
'suffix'
:
' of a person'
}}
dataset_EgoHands_generic
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
base_test_pipeline
,
# NOTE w. prompt 0.548; wo. prompt 0.764
# caption_prompt=caption_prompt,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_EgoHands_generic
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------13 EgoHands_specific---------------------#
class_name
=
(
'myleft'
,
'myright'
,
'yourleft'
,
'yourright'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'EgoHands/specific/'
dataset_EgoHands_specific
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
_base_
.
test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_EgoHands_specific
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------14 HardHatWorkers---------------------#
class_name
=
(
'head'
,
'helmet'
,
'person'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'HardHatWorkers/raw/'
dataset_HardHatWorkers
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
_base_
.
test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_HardHatWorkers
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------15 MaskWearing---------------------#
class_name
=
(
'mask'
,
'no-mask'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'MaskWearing/raw/'
dataset_MaskWearing
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
_base_
.
test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_MaskWearing
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------16 MountainDewCommercial---------------------#
class_name
=
(
'bottle'
,
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'MountainDewCommercial/'
dataset_MountainDewCommercial
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
_base_
.
test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_MountainDewCommercial
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------17 NorthAmericaMushrooms---------------------#
class_name
=
(
'flat mushroom'
,
'yellow mushroom'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'NorthAmericaMushrooms/North American Mushrooms.v1-416x416.coco/'
# noqa
dataset_NorthAmericaMushrooms
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/new_annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
_base_
.
test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_NorthAmericaMushrooms
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/new_annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------18 openPoetryVision---------------------#
class_name
=
(
'American Typewriter'
,
'Andale Mono'
,
'Apple Chancery'
,
'Arial'
,
'Avenir'
,
'Baskerville'
,
'Big Caslon'
,
'Bradley Hand'
,
'Brush Script MT'
,
'Chalkboard'
,
'Comic Sans MS'
,
'Copperplate'
,
'Courier'
,
'Didot'
,
'Futura'
,
'Geneva'
,
'Georgia'
,
'Gill Sans'
,
'Helvetica'
,
'Herculanum'
,
'Impact'
,
'Kefa'
,
'Lucida Grande'
,
'Luminari'
,
'Marker Felt'
,
'Menlo'
,
'Monaco'
,
'Noteworthy'
,
'Optima'
,
'PT Sans'
,
'PT Serif'
,
'Palatino'
,
'Papyrus'
,
'Phosphate'
,
'Rockwell'
,
'SF Pro'
,
'SignPainter'
,
'Skia'
,
'Snell Roundhand'
,
'Tahoma'
,
'Times New Roman'
,
'Trebuchet MS'
,
'Verdana'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'openPoetryVision/512x512/'
dataset_openPoetryVision
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
_base_
.
test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_openPoetryVision
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------19 OxfordPets_by_breed---------------------#
class_name
=
(
'cat-Abyssinian'
,
'cat-Bengal'
,
'cat-Birman'
,
'cat-Bombay'
,
'cat-British_Shorthair'
,
'cat-Egyptian_Mau'
,
'cat-Maine_Coon'
,
'cat-Persian'
,
'cat-Ragdoll'
,
'cat-Russian_Blue'
,
'cat-Siamese'
,
'cat-Sphynx'
,
'dog-american_bulldog'
,
'dog-american_pit_bull_terrier'
,
'dog-basset_hound'
,
'dog-beagle'
,
'dog-boxer'
,
'dog-chihuahua'
,
'dog-english_cocker_spaniel'
,
'dog-english_setter'
,
'dog-german_shorthaired'
,
'dog-great_pyrenees'
,
'dog-havanese'
,
'dog-japanese_chin'
,
'dog-keeshond'
,
'dog-leonberger'
,
'dog-miniature_pinscher'
,
'dog-newfoundland'
,
'dog-pomeranian'
,
'dog-pug'
,
'dog-saint_bernard'
,
'dog-samoyed'
,
'dog-scottish_terrier'
,
'dog-shiba_inu'
,
'dog-staffordshire_bull_terrier'
,
'dog-wheaten_terrier'
,
'dog-yorkshire_terrier'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'OxfordPets/by-breed/'
# noqa
dataset_OxfordPets_by_breed
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
_base_
.
test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_OxfordPets_by_breed
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------20 OxfordPets_by_species---------------------#
class_name
=
(
'cat'
,
'dog'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'OxfordPets/by-species/'
# noqa
dataset_OxfordPets_by_species
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
_base_
.
test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_OxfordPets_by_species
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------21 PKLot---------------------#
class_name
=
(
'space-empty'
,
'space-occupied'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'PKLot/640/'
# noqa
dataset_PKLot
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
_base_
.
test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_PKLot
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------22 Packages---------------------#
class_name
=
(
'package'
,
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'Packages/Raw/'
caption_prompt
=
{
'package'
:
{
'prefix'
:
'there is a '
,
'suffix'
:
' on the porch'
}
}
dataset_Packages
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
base_test_pipeline
,
caption_prompt
=
caption_prompt
,
# NOTE w. prompt 0.728; wo. prompt 0.670
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_Packages
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------23 PascalVOC---------------------#
class_name
=
(
'aeroplane'
,
'bicycle'
,
'bird'
,
'boat'
,
'bottle'
,
'bus'
,
'car'
,
'cat'
,
'chair'
,
'cow'
,
'diningtable'
,
'dog'
,
'horse'
,
'motorbike'
,
'person'
,
'pottedplant'
,
'sheep'
,
'sofa'
,
'train'
,
'tvmonitor'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'PascalVOC/'
dataset_PascalVOC
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
_base_
.
test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_PascalVOC
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------24 pistols---------------------#
class_name
=
(
'pistol'
,
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'pistols/export/'
dataset_pistols
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'val_annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
''
),
pipeline
=
_base_
.
test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_pistols
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'val_annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------25 plantdoc---------------------#
class_name
=
(
'Apple Scab Leaf'
,
'Apple leaf'
,
'Apple rust leaf'
,
'Bell_pepper leaf'
,
'Bell_pepper leaf spot'
,
'Blueberry leaf'
,
'Cherry leaf'
,
'Corn Gray leaf spot'
,
'Corn leaf blight'
,
'Corn rust leaf'
,
'Peach leaf'
,
'Potato leaf'
,
'Potato leaf early blight'
,
'Potato leaf late blight'
,
'Raspberry leaf'
,
'Soyabean leaf'
,
'Soybean leaf'
,
'Squash Powdery mildew leaf'
,
'Strawberry leaf'
,
'Tomato Early blight leaf'
,
'Tomato Septoria leaf spot'
,
'Tomato leaf'
,
'Tomato leaf bacterial spot'
,
'Tomato leaf late blight'
,
'Tomato leaf mosaic virus'
,
'Tomato leaf yellow virus'
,
'Tomato mold leaf'
,
'Tomato two spotted spider mites leaf'
,
'grape leaf'
,
'grape leaf black rot'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'plantdoc/416x416/'
dataset_plantdoc
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
_base_
.
test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_plantdoc
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------26 pothole---------------------#
class_name
=
(
'pothole'
,
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'pothole/'
caption_prompt
=
{
'pothole'
:
{
'name'
:
'holes'
,
'prefix'
:
'there are some '
,
'suffix'
:
' on the road'
}
}
dataset_pothole
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
# NOTE w. prompt 0.221; wo. prompt 0.478
# caption_prompt=caption_prompt,
pipeline
=
base_test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_pothole
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------27 Raccoon---------------------#
class_name
=
(
'raccoon'
,
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'Raccoon/Raccoon.v2-raw.coco/'
dataset_Raccoon
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
_base_
.
test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_Raccoon
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------28 selfdrivingCar---------------------#
class_name
=
(
'biker'
,
'car'
,
'pedestrian'
,
'trafficLight'
,
'trafficLight-Green'
,
'trafficLight-GreenLeft'
,
'trafficLight-Red'
,
'trafficLight-RedLeft'
,
'trafficLight-Yellow'
,
'trafficLight-YellowLeft'
,
'truck'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'selfdrivingCar/fixedLarge/export/'
dataset_selfdrivingCar
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'val_annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
''
),
pipeline
=
_base_
.
test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_selfdrivingCar
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'val_annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------29 ShellfishOpenImages---------------------#
class_name
=
(
'Crab'
,
'Lobster'
,
'Shrimp'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'ShellfishOpenImages/raw/'
dataset_ShellfishOpenImages
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
_base_
.
test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_ShellfishOpenImages
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------30 ThermalCheetah---------------------#
class_name
=
(
'cheetah'
,
'human'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'ThermalCheetah/'
dataset_ThermalCheetah
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
_base_
.
test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_ThermalCheetah
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------31 thermalDogsAndPeople---------------------#
class_name
=
(
'dog'
,
'person'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'thermalDogsAndPeople/'
dataset_thermalDogsAndPeople
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
_base_
.
test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_thermalDogsAndPeople
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------32 UnoCards---------------------#
class_name
=
(
'0'
,
'1'
,
'2'
,
'3'
,
'4'
,
'5'
,
'6'
,
'7'
,
'8'
,
'9'
,
'10'
,
'11'
,
'12'
,
'13'
,
'14'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'UnoCards/raw/'
dataset_UnoCards
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
_base_
.
test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_UnoCards
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------33 VehiclesOpenImages---------------------#
class_name
=
(
'Ambulance'
,
'Bus'
,
'Car'
,
'Motorcycle'
,
'Truck'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'VehiclesOpenImages/416x416/'
dataset_VehiclesOpenImages
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
_base_
.
test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_VehiclesOpenImages
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------34 WildfireSmoke---------------------#
class_name
=
(
'smoke'
,
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'WildfireSmoke/'
dataset_WildfireSmoke
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
_base_
.
test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_WildfireSmoke
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------35 websiteScreenshots---------------------#
class_name
=
(
'button'
,
'field'
,
'heading'
,
'iframe'
,
'image'
,
'label'
,
'link'
,
'text'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'websiteScreenshots/'
dataset_websiteScreenshots
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
_base_
.
test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_websiteScreenshots
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# --------------------- Config---------------------#
dataset_prefixes
=
[
'AerialMaritimeDrone_large'
,
'AerialMaritimeDrone_tiled'
,
'AmericanSignLanguageLetters'
,
'Aquarium'
,
'BCCD'
,
'boggleBoards'
,
'brackishUnderwater'
,
'ChessPieces'
,
'CottontailRabbits'
,
'dice'
,
'DroneControl'
,
'EgoHands_generic'
,
'EgoHands_specific'
,
'HardHatWorkers'
,
'MaskWearing'
,
'MountainDewCommercial'
,
'NorthAmericaMushrooms'
,
'openPoetryVision'
,
'OxfordPets_by_breed'
,
'OxfordPets_by_species'
,
'PKLot'
,
'Packages'
,
'PascalVOC'
,
'pistols'
,
'plantdoc'
,
'pothole'
,
'Raccoons'
,
'selfdrivingCar'
,
'ShellfishOpenImages'
,
'ThermalCheetah'
,
'thermalDogsAndPeople'
,
'UnoCards'
,
'VehiclesOpenImages'
,
'WildfireSmoke'
,
'websiteScreenshots'
,
]
datasets
=
[
dataset_AerialMaritimeDrone_large
,
dataset_AerialMaritimeDrone_tiled
,
dataset_AmericanSignLanguageLetters
,
dataset_Aquarium
,
dataset_BCCD
,
dataset_boggleBoards
,
dataset_brackishUnderwater
,
dataset_ChessPieces
,
dataset_CottontailRabbits
,
dataset_dice
,
dataset_DroneControl
,
dataset_EgoHands_generic
,
dataset_EgoHands_specific
,
dataset_HardHatWorkers
,
dataset_MaskWearing
,
dataset_MountainDewCommercial
,
dataset_NorthAmericaMushrooms
,
dataset_openPoetryVision
,
dataset_OxfordPets_by_breed
,
dataset_OxfordPets_by_species
,
dataset_PKLot
,
dataset_Packages
,
dataset_PascalVOC
,
dataset_pistols
,
dataset_plantdoc
,
dataset_pothole
,
dataset_Raccoon
,
dataset_selfdrivingCar
,
dataset_ShellfishOpenImages
,
dataset_ThermalCheetah
,
dataset_thermalDogsAndPeople
,
dataset_UnoCards
,
dataset_VehiclesOpenImages
,
dataset_WildfireSmoke
,
dataset_websiteScreenshots
]
metrics
=
[
val_evaluator_AerialMaritimeDrone_large
,
val_evaluator_AerialMaritimeDrone_tiled
,
val_evaluator_AmericanSignLanguageLetters
,
val_evaluator_Aquarium
,
val_evaluator_BCCD
,
val_evaluator_boggleBoards
,
val_evaluator_brackishUnderwater
,
val_evaluator_ChessPieces
,
val_evaluator_CottontailRabbits
,
val_evaluator_dice
,
val_evaluator_DroneControl
,
val_evaluator_EgoHands_generic
,
val_evaluator_EgoHands_specific
,
val_evaluator_HardHatWorkers
,
val_evaluator_MaskWearing
,
val_evaluator_MountainDewCommercial
,
val_evaluator_NorthAmericaMushrooms
,
val_evaluator_openPoetryVision
,
val_evaluator_OxfordPets_by_breed
,
val_evaluator_OxfordPets_by_species
,
val_evaluator_PKLot
,
val_evaluator_Packages
,
val_evaluator_PascalVOC
,
val_evaluator_pistols
,
val_evaluator_plantdoc
,
val_evaluator_pothole
,
val_evaluator_Raccoon
,
val_evaluator_selfdrivingCar
,
val_evaluator_ShellfishOpenImages
,
val_evaluator_ThermalCheetah
,
val_evaluator_thermalDogsAndPeople
,
val_evaluator_UnoCards
,
val_evaluator_VehiclesOpenImages
,
val_evaluator_WildfireSmoke
,
val_evaluator_websiteScreenshots
]
# -------------------------------------------------#
val_dataloader
=
dict
(
dataset
=
dict
(
_delete_
=
True
,
type
=
'ConcatDataset'
,
datasets
=
datasets
))
test_dataloader
=
val_dataloader
val_evaluator
=
dict
(
_delete_
=
True
,
type
=
'MultiDatasetsEvaluator'
,
metrics
=
metrics
,
dataset_prefixes
=
dataset_prefixes
)
test_evaluator
=
val_evaluator
configs/grounding_dino/odinw/grounding_dino_swin-t_pretrain_odinw13.py
0 → 100644
View file @
b12850fe
_base_
=
'../grounding_dino_swin-t_pretrain_obj365_goldg_cap4m.py'
# noqa
dataset_type
=
'CocoDataset'
data_root
=
'data/odinw/'
base_test_pipeline
=
_base_
.
test_pipeline
base_test_pipeline
[
-
1
][
'meta_keys'
]
=
(
'img_id'
,
'img_path'
,
'ori_shape'
,
'img_shape'
,
'scale_factor'
,
'text'
,
'custom_entities'
,
'caption_prompt'
)
# ---------------------1 AerialMaritimeDrone---------------------#
class_name
=
(
'boat'
,
'car'
,
'dock'
,
'jetski'
,
'lift'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'AerialMaritimeDrone/large/'
dataset_AerialMaritimeDrone
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
test_mode
=
True
,
pipeline
=
base_test_pipeline
,
return_classes
=
True
)
val_evaluator_AerialMaritimeDrone
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------2 Aquarium---------------------#
class_name
=
(
'fish'
,
'jellyfish'
,
'penguin'
,
'puffin'
,
'shark'
,
'starfish'
,
'stingray'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'Aquarium/Aquarium Combined.v2-raw-1024.coco/'
caption_prompt
=
None
# caption_prompt = {
# 'penguin': {
# 'suffix': ', which is black and white'
# },
# 'puffin': {
# 'suffix': ' with orange beaks'
# },
# 'stingray': {
# 'suffix': ' which is flat and round'
# },
# }
dataset_Aquarium
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
base_test_pipeline
,
caption_prompt
=
caption_prompt
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_Aquarium
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------3 CottontailRabbits---------------------#
class_name
=
(
'Cottontail-Rabbit'
,
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'CottontailRabbits/'
caption_prompt
=
None
# caption_prompt = {'Cottontail-Rabbit': {'name': 'rabbit'}}
dataset_CottontailRabbits
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
base_test_pipeline
,
caption_prompt
=
caption_prompt
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_CottontailRabbits
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------4 EgoHands---------------------#
class_name
=
(
'hand'
,
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'EgoHands/generic/'
caption_prompt
=
None
# caption_prompt = {'hand': {'suffix': ' of a person'}}
dataset_EgoHands
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
base_test_pipeline
,
caption_prompt
=
caption_prompt
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_EgoHands
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------5 NorthAmericaMushrooms---------------------#
class_name
=
(
'CoW'
,
'chanterelle'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'NorthAmericaMushrooms/North American Mushrooms.v1-416x416.coco/'
# noqa
caption_prompt
=
None
# caption_prompt = {
# 'CoW': {
# 'name': 'flat mushroom'
# },
# 'chanterelle': {
# 'name': 'yellow mushroom'
# }
# }
dataset_NorthAmericaMushrooms
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
base_test_pipeline
,
caption_prompt
=
caption_prompt
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_NorthAmericaMushrooms
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------6 Packages---------------------#
class_name
=
(
'package'
,
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'Packages/Raw/'
caption_prompt
=
None
# caption_prompt = {
# 'package': {
# 'prefix': 'there is a ',
# 'suffix': ' on the porch'
# }
# }
dataset_Packages
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
base_test_pipeline
,
caption_prompt
=
caption_prompt
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_Packages
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------7 PascalVOC---------------------#
class_name
=
(
'aeroplane'
,
'bicycle'
,
'bird'
,
'boat'
,
'bottle'
,
'bus'
,
'car'
,
'cat'
,
'chair'
,
'cow'
,
'diningtable'
,
'dog'
,
'horse'
,
'motorbike'
,
'person'
,
'pottedplant'
,
'sheep'
,
'sofa'
,
'train'
,
'tvmonitor'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'PascalVOC/'
dataset_PascalVOC
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
base_test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_PascalVOC
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------8 pistols---------------------#
class_name
=
(
'pistol'
,
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'pistols/export/'
dataset_pistols
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'val_annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
''
),
pipeline
=
base_test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_pistols
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'val_annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------9 pothole---------------------#
class_name
=
(
'pothole'
,
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'pothole/'
caption_prompt
=
None
# caption_prompt = {
# 'pothole': {
# 'prefix': 'there are some ',
# 'name': 'holes',
# 'suffix': ' on the road'
# }
# }
dataset_pothole
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
base_test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_pothole
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------10 Raccoon---------------------#
class_name
=
(
'raccoon'
,
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'Raccoon/Raccoon.v2-raw.coco/'
dataset_Raccoon
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
base_test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_Raccoon
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------11 ShellfishOpenImages---------------------#
class_name
=
(
'Crab'
,
'Lobster'
,
'Shrimp'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'ShellfishOpenImages/raw/'
dataset_ShellfishOpenImages
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
base_test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_ShellfishOpenImages
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------12 thermalDogsAndPeople---------------------#
class_name
=
(
'dog'
,
'person'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'thermalDogsAndPeople/'
dataset_thermalDogsAndPeople
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
base_test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_thermalDogsAndPeople
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------13 VehiclesOpenImages---------------------#
class_name
=
(
'Ambulance'
,
'Bus'
,
'Car'
,
'Motorcycle'
,
'Truck'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'VehiclesOpenImages/416x416/'
dataset_VehiclesOpenImages
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
base_test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_VehiclesOpenImages
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# --------------------- Config---------------------#
dataset_prefixes
=
[
'AerialMaritimeDrone'
,
'Aquarium'
,
'CottontailRabbits'
,
'EgoHands'
,
'NorthAmericaMushrooms'
,
'Packages'
,
'PascalVOC'
,
'pistols'
,
'pothole'
,
'Raccoon'
,
'ShellfishOpenImages'
,
'thermalDogsAndPeople'
,
'VehiclesOpenImages'
]
datasets
=
[
dataset_AerialMaritimeDrone
,
dataset_Aquarium
,
dataset_CottontailRabbits
,
dataset_EgoHands
,
dataset_NorthAmericaMushrooms
,
dataset_Packages
,
dataset_PascalVOC
,
dataset_pistols
,
dataset_pothole
,
dataset_Raccoon
,
dataset_ShellfishOpenImages
,
dataset_thermalDogsAndPeople
,
dataset_VehiclesOpenImages
]
metrics
=
[
val_evaluator_AerialMaritimeDrone
,
val_evaluator_Aquarium
,
val_evaluator_CottontailRabbits
,
val_evaluator_EgoHands
,
val_evaluator_NorthAmericaMushrooms
,
val_evaluator_Packages
,
val_evaluator_PascalVOC
,
val_evaluator_pistols
,
val_evaluator_pothole
,
val_evaluator_Raccoon
,
val_evaluator_ShellfishOpenImages
,
val_evaluator_thermalDogsAndPeople
,
val_evaluator_VehiclesOpenImages
]
# -------------------------------------------------#
val_dataloader
=
dict
(
dataset
=
dict
(
_delete_
=
True
,
type
=
'ConcatDataset'
,
datasets
=
datasets
))
test_dataloader
=
val_dataloader
val_evaluator
=
dict
(
_delete_
=
True
,
type
=
'MultiDatasetsEvaluator'
,
metrics
=
metrics
,
dataset_prefixes
=
dataset_prefixes
)
test_evaluator
=
val_evaluator
configs/grounding_dino/odinw/grounding_dino_swin-t_pretrain_odinw35.py
0 → 100644
View file @
b12850fe
_base_
=
'../grounding_dino_swin-t_pretrain_obj365_goldg_cap4m.py'
# noqa
dataset_type
=
'CocoDataset'
data_root
=
'data/odinw/'
base_test_pipeline
=
_base_
.
test_pipeline
base_test_pipeline
[
-
1
][
'meta_keys'
]
=
(
'img_id'
,
'img_path'
,
'ori_shape'
,
'img_shape'
,
'scale_factor'
,
'text'
,
'custom_entities'
,
'caption_prompt'
)
# ---------------------1 AerialMaritimeDrone_large---------------------#
class_name
=
(
'boat'
,
'car'
,
'dock'
,
'jetski'
,
'lift'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'AerialMaritimeDrone/large/'
dataset_AerialMaritimeDrone_large
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
_base_
.
test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_AerialMaritimeDrone_large
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------2 AerialMaritimeDrone_tiled---------------------#
class_name
=
(
'boat'
,
'car'
,
'dock'
,
'jetski'
,
'lift'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'AerialMaritimeDrone/tiled/'
dataset_AerialMaritimeDrone_tiled
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
_base_
.
test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_AerialMaritimeDrone_tiled
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------3 AmericanSignLanguageLetters---------------------#
class_name
=
(
'A'
,
'B'
,
'C'
,
'D'
,
'E'
,
'F'
,
'G'
,
'H'
,
'I'
,
'J'
,
'K'
,
'L'
,
'M'
,
'N'
,
'O'
,
'P'
,
'Q'
,
'R'
,
'S'
,
'T'
,
'U'
,
'V'
,
'W'
,
'X'
,
'Y'
,
'Z'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'AmericanSignLanguageLetters/American Sign Language Letters.v1-v1.coco/'
# noqa
dataset_AmericanSignLanguageLetters
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
_base_
.
test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_AmericanSignLanguageLetters
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------4 Aquarium---------------------#
class_name
=
(
'fish'
,
'jellyfish'
,
'penguin'
,
'puffin'
,
'shark'
,
'starfish'
,
'stingray'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'Aquarium/Aquarium Combined.v2-raw-1024.coco/'
dataset_Aquarium
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
_base_
.
test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_Aquarium
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------5 BCCD---------------------#
class_name
=
(
'Platelets'
,
'RBC'
,
'WBC'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'BCCD/BCCD.v3-raw.coco/'
dataset_BCCD
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
_base_
.
test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_BCCD
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------6 boggleBoards---------------------#
class_name
=
(
'Q'
,
'a'
,
'an'
,
'b'
,
'c'
,
'd'
,
'e'
,
'er'
,
'f'
,
'g'
,
'h'
,
'he'
,
'i'
,
'in'
,
'j'
,
'k'
,
'l'
,
'm'
,
'n'
,
'o'
,
'o '
,
'p'
,
'q'
,
'qu'
,
'r'
,
's'
,
't'
,
't
\\
'
,
'th'
,
'u'
,
'v'
,
'w'
,
'wild'
,
'x'
,
'y'
,
'z'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'boggleBoards/416x416AutoOrient/export/'
dataset_boggleBoards
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'val_annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
''
),
pipeline
=
_base_
.
test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_boggleBoards
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'val_annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------7 brackishUnderwater---------------------#
class_name
=
(
'crab'
,
'fish'
,
'jellyfish'
,
'shrimp'
,
'small_fish'
,
'starfish'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'brackishUnderwater/960x540/'
dataset_brackishUnderwater
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
_base_
.
test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_brackishUnderwater
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------8 ChessPieces---------------------#
class_name
=
(
' '
,
'black bishop'
,
'black king'
,
'black knight'
,
'black pawn'
,
'black queen'
,
'black rook'
,
'white bishop'
,
'white king'
,
'white knight'
,
'white pawn'
,
'white queen'
,
'white rook'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'ChessPieces/Chess Pieces.v23-raw.coco/'
dataset_ChessPieces
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/new_annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
_base_
.
test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_ChessPieces
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/new_annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------9 CottontailRabbits---------------------#
class_name
=
(
'rabbit'
,
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'CottontailRabbits/'
dataset_CottontailRabbits
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/new_annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
_base_
.
test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_CottontailRabbits
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/new_annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------10 dice---------------------#
class_name
=
(
'1'
,
'2'
,
'3'
,
'4'
,
'5'
,
'6'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'dice/mediumColor/export/'
dataset_dice
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'val_annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
''
),
pipeline
=
_base_
.
test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_dice
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'val_annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------11 DroneControl---------------------#
class_name
=
(
'follow'
,
'follow_hand'
,
'land'
,
'land_hand'
,
'null'
,
'object'
,
'takeoff'
,
'takeoff-hand'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'DroneControl/Drone Control.v3-raw.coco/'
dataset_DroneControl
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
_base_
.
test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_DroneControl
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------12 EgoHands_generic---------------------#
class_name
=
(
'hand'
,
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'EgoHands/generic/'
caption_prompt
=
{
'hand'
:
{
'suffix'
:
' of a person'
}}
dataset_EgoHands_generic
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
base_test_pipeline
,
# NOTE w. prompt 0.526, wo. prompt 0.608
# caption_prompt=caption_prompt,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_EgoHands_generic
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------13 EgoHands_specific---------------------#
class_name
=
(
'myleft'
,
'myright'
,
'yourleft'
,
'yourright'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'EgoHands/specific/'
dataset_EgoHands_specific
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
_base_
.
test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_EgoHands_specific
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------14 HardHatWorkers---------------------#
class_name
=
(
'head'
,
'helmet'
,
'person'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'HardHatWorkers/raw/'
dataset_HardHatWorkers
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
_base_
.
test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_HardHatWorkers
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------15 MaskWearing---------------------#
class_name
=
(
'mask'
,
'no-mask'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'MaskWearing/raw/'
dataset_MaskWearing
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
_base_
.
test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_MaskWearing
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------16 MountainDewCommercial---------------------#
class_name
=
(
'bottle'
,
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'MountainDewCommercial/'
dataset_MountainDewCommercial
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
_base_
.
test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_MountainDewCommercial
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------17 NorthAmericaMushrooms---------------------#
class_name
=
(
'flat mushroom'
,
'yellow mushroom'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'NorthAmericaMushrooms/North American Mushrooms.v1-416x416.coco/'
# noqa
dataset_NorthAmericaMushrooms
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/new_annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
_base_
.
test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_NorthAmericaMushrooms
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/new_annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------18 openPoetryVision---------------------#
class_name
=
(
'American Typewriter'
,
'Andale Mono'
,
'Apple Chancery'
,
'Arial'
,
'Avenir'
,
'Baskerville'
,
'Big Caslon'
,
'Bradley Hand'
,
'Brush Script MT'
,
'Chalkboard'
,
'Comic Sans MS'
,
'Copperplate'
,
'Courier'
,
'Didot'
,
'Futura'
,
'Geneva'
,
'Georgia'
,
'Gill Sans'
,
'Helvetica'
,
'Herculanum'
,
'Impact'
,
'Kefa'
,
'Lucida Grande'
,
'Luminari'
,
'Marker Felt'
,
'Menlo'
,
'Monaco'
,
'Noteworthy'
,
'Optima'
,
'PT Sans'
,
'PT Serif'
,
'Palatino'
,
'Papyrus'
,
'Phosphate'
,
'Rockwell'
,
'SF Pro'
,
'SignPainter'
,
'Skia'
,
'Snell Roundhand'
,
'Tahoma'
,
'Times New Roman'
,
'Trebuchet MS'
,
'Verdana'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'openPoetryVision/512x512/'
dataset_openPoetryVision
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
_base_
.
test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_openPoetryVision
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------19 OxfordPets_by_breed---------------------#
class_name
=
(
'cat-Abyssinian'
,
'cat-Bengal'
,
'cat-Birman'
,
'cat-Bombay'
,
'cat-British_Shorthair'
,
'cat-Egyptian_Mau'
,
'cat-Maine_Coon'
,
'cat-Persian'
,
'cat-Ragdoll'
,
'cat-Russian_Blue'
,
'cat-Siamese'
,
'cat-Sphynx'
,
'dog-american_bulldog'
,
'dog-american_pit_bull_terrier'
,
'dog-basset_hound'
,
'dog-beagle'
,
'dog-boxer'
,
'dog-chihuahua'
,
'dog-english_cocker_spaniel'
,
'dog-english_setter'
,
'dog-german_shorthaired'
,
'dog-great_pyrenees'
,
'dog-havanese'
,
'dog-japanese_chin'
,
'dog-keeshond'
,
'dog-leonberger'
,
'dog-miniature_pinscher'
,
'dog-newfoundland'
,
'dog-pomeranian'
,
'dog-pug'
,
'dog-saint_bernard'
,
'dog-samoyed'
,
'dog-scottish_terrier'
,
'dog-shiba_inu'
,
'dog-staffordshire_bull_terrier'
,
'dog-wheaten_terrier'
,
'dog-yorkshire_terrier'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'OxfordPets/by-breed/'
# noqa
dataset_OxfordPets_by_breed
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
_base_
.
test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_OxfordPets_by_breed
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------20 OxfordPets_by_species---------------------#
class_name
=
(
'cat'
,
'dog'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'OxfordPets/by-species/'
# noqa
dataset_OxfordPets_by_species
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
_base_
.
test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_OxfordPets_by_species
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------21 PKLot---------------------#
class_name
=
(
'space-empty'
,
'space-occupied'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'PKLot/640/'
# noqa
dataset_PKLot
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
_base_
.
test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_PKLot
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------22 Packages---------------------#
class_name
=
(
'package'
,
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'Packages/Raw/'
caption_prompt
=
{
'package'
:
{
'prefix'
:
'there is a '
,
'suffix'
:
' on the porch'
}
}
dataset_Packages
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
base_test_pipeline
,
caption_prompt
=
caption_prompt
,
# NOTE w. prompt 0.695; wo. prompt 0.687
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_Packages
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------23 PascalVOC---------------------#
class_name
=
(
'aeroplane'
,
'bicycle'
,
'bird'
,
'boat'
,
'bottle'
,
'bus'
,
'car'
,
'cat'
,
'chair'
,
'cow'
,
'diningtable'
,
'dog'
,
'horse'
,
'motorbike'
,
'person'
,
'pottedplant'
,
'sheep'
,
'sofa'
,
'train'
,
'tvmonitor'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'PascalVOC/'
dataset_PascalVOC
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
_base_
.
test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_PascalVOC
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------24 pistols---------------------#
class_name
=
(
'pistol'
,
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'pistols/export/'
dataset_pistols
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'val_annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
''
),
pipeline
=
_base_
.
test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_pistols
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'val_annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------25 plantdoc---------------------#
class_name
=
(
'Apple Scab Leaf'
,
'Apple leaf'
,
'Apple rust leaf'
,
'Bell_pepper leaf'
,
'Bell_pepper leaf spot'
,
'Blueberry leaf'
,
'Cherry leaf'
,
'Corn Gray leaf spot'
,
'Corn leaf blight'
,
'Corn rust leaf'
,
'Peach leaf'
,
'Potato leaf'
,
'Potato leaf early blight'
,
'Potato leaf late blight'
,
'Raspberry leaf'
,
'Soyabean leaf'
,
'Soybean leaf'
,
'Squash Powdery mildew leaf'
,
'Strawberry leaf'
,
'Tomato Early blight leaf'
,
'Tomato Septoria leaf spot'
,
'Tomato leaf'
,
'Tomato leaf bacterial spot'
,
'Tomato leaf late blight'
,
'Tomato leaf mosaic virus'
,
'Tomato leaf yellow virus'
,
'Tomato mold leaf'
,
'Tomato two spotted spider mites leaf'
,
'grape leaf'
,
'grape leaf black rot'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'plantdoc/416x416/'
dataset_plantdoc
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
_base_
.
test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_plantdoc
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------26 pothole---------------------#
class_name
=
(
'pothole'
,
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'pothole/'
caption_prompt
=
{
'pothole'
:
{
'name'
:
'holes'
,
'prefix'
:
'there are some '
,
'suffix'
:
' on the road'
}
}
dataset_pothole
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
# NOTE w. prompt 0.137; wo. prompt 0.215
# caption_prompt=caption_prompt,
pipeline
=
base_test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_pothole
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------27 Raccoon---------------------#
class_name
=
(
'raccoon'
,
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'Raccoon/Raccoon.v2-raw.coco/'
dataset_Raccoon
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
_base_
.
test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_Raccoon
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------28 selfdrivingCar---------------------#
class_name
=
(
'biker'
,
'car'
,
'pedestrian'
,
'trafficLight'
,
'trafficLight-Green'
,
'trafficLight-GreenLeft'
,
'trafficLight-Red'
,
'trafficLight-RedLeft'
,
'trafficLight-Yellow'
,
'trafficLight-YellowLeft'
,
'truck'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'selfdrivingCar/fixedLarge/export/'
dataset_selfdrivingCar
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'val_annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
''
),
pipeline
=
_base_
.
test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_selfdrivingCar
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'val_annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------29 ShellfishOpenImages---------------------#
class_name
=
(
'Crab'
,
'Lobster'
,
'Shrimp'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'ShellfishOpenImages/raw/'
dataset_ShellfishOpenImages
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
_base_
.
test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_ShellfishOpenImages
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------30 ThermalCheetah---------------------#
class_name
=
(
'cheetah'
,
'human'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'ThermalCheetah/'
dataset_ThermalCheetah
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
_base_
.
test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_ThermalCheetah
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------31 thermalDogsAndPeople---------------------#
class_name
=
(
'dog'
,
'person'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'thermalDogsAndPeople/'
dataset_thermalDogsAndPeople
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
_base_
.
test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_thermalDogsAndPeople
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------32 UnoCards---------------------#
class_name
=
(
'0'
,
'1'
,
'2'
,
'3'
,
'4'
,
'5'
,
'6'
,
'7'
,
'8'
,
'9'
,
'10'
,
'11'
,
'12'
,
'13'
,
'14'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'UnoCards/raw/'
dataset_UnoCards
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
_base_
.
test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_UnoCards
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------33 VehiclesOpenImages---------------------#
class_name
=
(
'Ambulance'
,
'Bus'
,
'Car'
,
'Motorcycle'
,
'Truck'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'VehiclesOpenImages/416x416/'
dataset_VehiclesOpenImages
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
_base_
.
test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_VehiclesOpenImages
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------34 WildfireSmoke---------------------#
class_name
=
(
'smoke'
,
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'WildfireSmoke/'
dataset_WildfireSmoke
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
_base_
.
test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_WildfireSmoke
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# ---------------------35 websiteScreenshots---------------------#
class_name
=
(
'button'
,
'field'
,
'heading'
,
'iframe'
,
'image'
,
'label'
,
'link'
,
'text'
)
metainfo
=
dict
(
classes
=
class_name
)
_data_root
=
data_root
+
'websiteScreenshots/'
dataset_websiteScreenshots
=
dict
(
type
=
dataset_type
,
metainfo
=
metainfo
,
data_root
=
_data_root
,
ann_file
=
'valid/annotations_without_background.json'
,
data_prefix
=
dict
(
img
=
'valid/'
),
pipeline
=
_base_
.
test_pipeline
,
test_mode
=
True
,
return_classes
=
True
)
val_evaluator_websiteScreenshots
=
dict
(
type
=
'CocoMetric'
,
ann_file
=
_data_root
+
'valid/annotations_without_background.json'
,
metric
=
'bbox'
)
# --------------------- Config---------------------#
dataset_prefixes
=
[
'AerialMaritimeDrone_large'
,
'AerialMaritimeDrone_tiled'
,
'AmericanSignLanguageLetters'
,
'Aquarium'
,
'BCCD'
,
'boggleBoards'
,
'brackishUnderwater'
,
'ChessPieces'
,
'CottontailRabbits'
,
'dice'
,
'DroneControl'
,
'EgoHands_generic'
,
'EgoHands_specific'
,
'HardHatWorkers'
,
'MaskWearing'
,
'MountainDewCommercial'
,
'NorthAmericaMushrooms'
,
'openPoetryVision'
,
'OxfordPets_by_breed'
,
'OxfordPets_by_species'
,
'PKLot'
,
'Packages'
,
'PascalVOC'
,
'pistols'
,
'plantdoc'
,
'pothole'
,
'Raccoons'
,
'selfdrivingCar'
,
'ShellfishOpenImages'
,
'ThermalCheetah'
,
'thermalDogsAndPeople'
,
'UnoCards'
,
'VehiclesOpenImages'
,
'WildfireSmoke'
,
'websiteScreenshots'
,
]
datasets
=
[
dataset_AerialMaritimeDrone_large
,
dataset_AerialMaritimeDrone_tiled
,
dataset_AmericanSignLanguageLetters
,
dataset_Aquarium
,
dataset_BCCD
,
dataset_boggleBoards
,
dataset_brackishUnderwater
,
dataset_ChessPieces
,
dataset_CottontailRabbits
,
dataset_dice
,
dataset_DroneControl
,
dataset_EgoHands_generic
,
dataset_EgoHands_specific
,
dataset_HardHatWorkers
,
dataset_MaskWearing
,
dataset_MountainDewCommercial
,
dataset_NorthAmericaMushrooms
,
dataset_openPoetryVision
,
dataset_OxfordPets_by_breed
,
dataset_OxfordPets_by_species
,
dataset_PKLot
,
dataset_Packages
,
dataset_PascalVOC
,
dataset_pistols
,
dataset_plantdoc
,
dataset_pothole
,
dataset_Raccoon
,
dataset_selfdrivingCar
,
dataset_ShellfishOpenImages
,
dataset_ThermalCheetah
,
dataset_thermalDogsAndPeople
,
dataset_UnoCards
,
dataset_VehiclesOpenImages
,
dataset_WildfireSmoke
,
dataset_websiteScreenshots
]
metrics
=
[
val_evaluator_AerialMaritimeDrone_large
,
val_evaluator_AerialMaritimeDrone_tiled
,
val_evaluator_AmericanSignLanguageLetters
,
val_evaluator_Aquarium
,
val_evaluator_BCCD
,
val_evaluator_boggleBoards
,
val_evaluator_brackishUnderwater
,
val_evaluator_ChessPieces
,
val_evaluator_CottontailRabbits
,
val_evaluator_dice
,
val_evaluator_DroneControl
,
val_evaluator_EgoHands_generic
,
val_evaluator_EgoHands_specific
,
val_evaluator_HardHatWorkers
,
val_evaluator_MaskWearing
,
val_evaluator_MountainDewCommercial
,
val_evaluator_NorthAmericaMushrooms
,
val_evaluator_openPoetryVision
,
val_evaluator_OxfordPets_by_breed
,
val_evaluator_OxfordPets_by_species
,
val_evaluator_PKLot
,
val_evaluator_Packages
,
val_evaluator_PascalVOC
,
val_evaluator_pistols
,
val_evaluator_plantdoc
,
val_evaluator_pothole
,
val_evaluator_Raccoon
,
val_evaluator_selfdrivingCar
,
val_evaluator_ShellfishOpenImages
,
val_evaluator_ThermalCheetah
,
val_evaluator_thermalDogsAndPeople
,
val_evaluator_UnoCards
,
val_evaluator_VehiclesOpenImages
,
val_evaluator_WildfireSmoke
,
val_evaluator_websiteScreenshots
]
# -------------------------------------------------#
val_dataloader
=
dict
(
dataset
=
dict
(
_delete_
=
True
,
type
=
'ConcatDataset'
,
datasets
=
datasets
))
test_dataloader
=
val_dataloader
val_evaluator
=
dict
(
_delete_
=
True
,
type
=
'MultiDatasetsEvaluator'
,
metrics
=
metrics
,
dataset_prefixes
=
dataset_prefixes
)
test_evaluator
=
val_evaluator
Prev
1
2
3
4
5
6
7
8
…
19
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment