# coding=utf-8 # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This code is copied fron NVIDIA apex: https://github.com/NVIDIA/apex with some changes. """ import numbers from megatron import get_args from megatron import mpu from packaging import version from torch import nn from torch.nn import init from torch.nn.parameter import Parameter import importlib import torch import torch.nn.functional as F global fused_mix_prec_layer_norm_cuda fused_mix_prec_layer_norm_cuda = None class FusedLayerNormAffineFunction(torch.autograd.Function): @staticmethod def forward(ctx, input, weight, bias, normalized_shape, eps): ctx.normalized_shape = normalized_shape ctx.eps = eps input_ = input.contiguous() weight_ = weight.contiguous() bias_ = bias.contiguous() output, mean, invvar = fused_mix_prec_layer_norm_cuda.forward_affine( input_, ctx.normalized_shape, weight_, bias_, ctx.eps) ctx.save_for_backward(input_, weight_, bias_, mean, invvar) return output @staticmethod def backward(ctx, grad_output): input_, weight_, bias_, mean, invvar = ctx.saved_tensors grad_input = grad_weight = grad_bias = None grad_input, grad_weight, grad_bias \ = fused_mix_prec_layer_norm_cuda.backward_affine( grad_output.contiguous(), mean, invvar, input_, ctx.normalized_shape, weight_, bias_, ctx.eps) return grad_input, grad_weight, grad_bias, None, None class MixedFusedLayerNorm(torch.nn.Module): def __init__(self, normalized_shape, eps=1e-5): super(MixedFusedLayerNorm, self).__init__() global fused_mix_prec_layer_norm_cuda fused_mix_prec_layer_norm_cuda = importlib.import_module( "fused_mix_prec_layer_norm_cuda") if isinstance(normalized_shape, numbers.Integral): normalized_shape = (normalized_shape,) self.normalized_shape = torch.Size(normalized_shape) self.eps = eps self.weight = Parameter(torch.Tensor(*normalized_shape)) self.bias = Parameter(torch.Tensor(*normalized_shape)) self.reset_parameters() args = get_args() self.layernorm_tp_auto_sync = args.sync_tp_duplicated_parameters self.use_meg_ds_fused_layer_norm = ( args.bf16 # Current Meg-DS cuda kernel has better throughput than torch.nn.LayerNorm or version.parse(torch.__version__) >= version.parse("1.11.0") # https://github.com/pytorch/pytorch/pull/66920 ) def reset_parameters(self): init.ones_(self.weight) init.zeros_(self.bias) def forward(self, input): if self.layernorm_tp_auto_sync: torch.distributed.all_reduce(self.weight, op=torch.distributed.ReduceOp.AVG, group=mpu.get_tensor_model_parallel_group()) torch.distributed.all_reduce(self.bias, op=torch.distributed.ReduceOp.AVG, group=mpu.get_tensor_model_parallel_group()) if self.use_meg_ds_fused_layer_norm: return FusedLayerNormAffineFunction.apply( input, self.weight, self.bias, self.normalized_shape, self.eps) else: return F.layer_norm(input, self.normalized_shape, self.weight, self.bias)