import argparse from transformers import AutoModelForCausalLM, AutoTokenizer def get_args(): parser = argparse.ArgumentParser() parser.add_argument("--model_path", type=str, default="THUDM/GLM-Z1-9B-0414") parser.add_argument("--message", type=str, default="Let a, b be positive real numbers such that ab = a + b + 3. Determine the range of possible values for a + b.") args = parser.parse_args() return args if __name__ == "__main__": # 获取参数信息 args = get_args() tokenizer = AutoTokenizer.from_pretrained(args.model_path) model = AutoModelForCausalLM.from_pretrained(args.model_path, device_map="auto") message = [{"role": "user", "content": args.message}] inputs = tokenizer.apply_chat_template( message, return_tensors="pt", add_generation_prompt=True, return_dict=True, ).to(model.device) generate_kwargs = { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "max_new_tokens": 4096, "do_sample": False, } out = model.generate(**generate_kwargs) print(tokenizer.decode(out[0][inputs["input_ids"].shape[1]:], skip_special_tokens=True))