from typing import Any import datasets import torch import torch.distributed as dist from datasets import Dataset from torch.utils.data import DataLoader from transformers.trainer_utils import seed_worker def assert_xtuner_runtime_condition(): from swift.llm.utils.utils import is_xtuner_available assert is_xtuner_available(), \ ('Please install XTuner first to pack dataset to `max_length`.' '`pip install -U \'xtuner[deepspeed]\'`') assert dist.is_initialized(), 'pack_to_max_length is only available with distributed training.' def pack_dataset_xtuner(dataset: Dataset, args: Any) -> Any: assert_xtuner_runtime_condition() if dist.get_rank() == 0: ds = [i[0] for i in dataset.data] train_dataset = Dataset.from_list(ds) from xtuner.dataset.huggingface import pack_dataset train_dataset = pack_dataset( train_dataset, max_length=args.max_length, use_varlen_attn=False, shuffle_before_pack=True, map_num_proc=16) objects = [train_dataset] train_dataset.save_to_disk('alpaca_pack') else: objects = [None] dist.broadcast_object_list(objects, src=0) train_dataset = objects[0] return train_dataset def init_sequence_parallel_xtuner(sequence_parallel_size: int): assert_xtuner_runtime_condition() from xtuner.parallel.sequence import init_sequence_parallel init_sequence_parallel(sequence_parallel_size) def dispatch_module_xtuner(module): assert_xtuner_runtime_condition() from xtuner.model.modules.dispatch import dispatch_modules dispatch_modules(module) def pad_and_split_for_sequence_parallel(tokenizer, input_ids, labels, position_ids, attention_mask, loss_scale): assert_xtuner_runtime_condition() from xtuner.parallel.sequence import (pad_for_sequence_parallel, split_for_sequence_parallel, get_sequence_parallel_group) input_ids = pad_for_sequence_parallel(input_ids, padding_value=tokenizer.pad_token_id, dim=-1) labels = pad_for_sequence_parallel(labels, padding_value=-100, dim=-1) position_ids = pad_for_sequence_parallel(position_ids, padding_value=0, dim=-1) attention_mask = pad_for_sequence_parallel(attention_mask, padding_value=0, dim=-1) sp_group = get_sequence_parallel_group() input_ids = split_for_sequence_parallel(input_ids, dim=1, sp_group=sp_group) labels = split_for_sequence_parallel(labels, dim=1, sp_group=sp_group) position_ids = split_for_sequence_parallel(position_ids, dim=1, sp_group=sp_group) attention_mask = split_for_sequence_parallel(attention_mask, dim=-1, sp_group=sp_group) if loss_scale is not None: loss_scale = pad_for_sequence_parallel(loss_scale, padding_value=0., dim=-1) loss_scale = split_for_sequence_parallel(loss_scale, dim=1, sp_group=sp_group) return input_ids, labels, position_ids, attention_mask, loss_scale def get_xtuner_sequence_parallel_world_size(): assert_xtuner_runtime_condition() from xtuner.parallel.sequence import get_sequence_parallel_world_size return get_sequence_parallel_world_size() def reduce_xtuner_sequence_parallel_loss(loss, labels): from xtuner.parallel.sequence import (reduce_sequence_parallel_loss, get_sequence_parallel_group) # reduce loss for logging correctly num_tokens = (labels != -100).sum() return reduce_sequence_parallel_loss(loss, num_tokens, get_sequence_parallel_group()) def get_xtuner_train_dataloader(trainer): # modified from HFTrainer.get_train_dataloader # RandomSampler -> SequenceParallelSampler assert_xtuner_runtime_condition() if trainer.train_dataset is None: raise ValueError('Trainer: training requires a train_dataset.') train_dataset = trainer.train_dataset data_collator = trainer.data_collator if isinstance(train_dataset, datasets.Dataset): train_dataset = trainer._remove_unused_columns(train_dataset, description='training') else: data_collator = trainer._get_collator_with_removed_columns(data_collator, description='training') dataloader_params = { 'batch_size': trainer._train_batch_size, 'collate_fn': data_collator, 'num_workers': trainer.args.dataloader_num_workers, 'pin_memory': trainer.args.dataloader_pin_memory, 'persistent_workers': trainer.args.dataloader_persistent_workers, } if not isinstance(train_dataset, torch.utils.data.IterableDataset): from xtuner.parallel import SequenceParallelSampler dataloader_params['sampler'] = SequenceParallelSampler(train_dataset, seed=1024) dataloader_params['drop_last'] = trainer.args.dataloader_drop_last dataloader_params['worker_init_fn'] = seed_worker return DataLoader(train_dataset, **dataloader_params)