# Qwen-Audio Best Practice ## Table of Contents - [Environment Setup](#environment-setup) - [Inference](#inference) - [Fine-tuning](#fine-tuning) - [Inference After Fine-tuning](#inference-after-fine-tuning) ## Environment Setup ```shell pip install 'ms-swift[llm]' -U ``` ## Inference Inference with [qwen-audio-chat](https://modelscope.cn/models/qwen/Qwen-Audio-Chat/summary): ```shell # Experimental environment: A10, 3090, V100... # 21GB GPU memory CUDA_VISIBLE_DEVICES=0 swift infer --model_type qwen-audio-chat ``` Output: (supports passing local path or URL) ```python """ <<< multi-line [INFO:swift] End multi-line input with `#`. [INFO:swift] Input `single-line` to switch to single-line input mode. <<<[M] Who are you?# I am a large language model from DAMO Academy, my name is Tongyee Qianwen. -------------------------------------------------- <<<[M] Audio 1: What kind of music is this?# This is electronic, experimental pop style music. -------------------------------------------------- <<<[M] Audio 1: What did this speech say?# This speech said in Chinese: "The weather is really nice today". -------------------------------------------------- <<<[M] Is this speech male or female?# Based on the timbre, this speech is male. """ ``` **Single-sample Inference** ```python import os os.environ['CUDA_VISIBLE_DEVICES'] = '0' from swift.llm import ( get_model_tokenizer, get_template, inference, ModelType, get_default_template_type, inference_stream ) from swift.utils import seed_everything import torch model_type = ModelType.qwen_audio_chat template_type = get_default_template_type(model_type) print(f'template_type: {template_type}') model, tokenizer = get_model_tokenizer(model_type, torch.float16, model_kwargs={'device_map': 'auto'}) model.generation_config.max_new_tokens = 256 template = get_template(template_type, tokenizer) seed_everything(42) query = """Audio 1: What did this speech say""" response, history = inference(model, template, query) print(f'query: {query}') print(f'response: {response}') # Streaming query = 'Is this speech male or female' gen = inference_stream(model, template, query, history) print_idx = 0 print(f'query: {query}\nresponse: ', end='') for response, history in gen: delta = response[print_idx:] print(delta, end='', flush=True) print_idx = len(response) print() print(f'history: {history}') """ query: Audio 1: What did this speech say response: This speech said in Chinese: "The weather is really nice today". query: Is this speech male or female response: Based on the timbre, this speech is male. history: [['Audio 1:\nWhat did this speech say', 'This speech said in Chinese: "The weather is really nice today".'], ['Is this speech male or female', 'Based on the timbre, this speech is male.']] """ ``` ## Fine-tuning Multimodal large model fine-tuning usually uses **custom datasets** for fine-tuning. Here shows a demo that can be run directly: LoRA fine-tuning: (By default, only the qkv of the LLM part is lora fine-tuned. If you want to fine-tune all linear including the audio model part, you can specify `--lora_target_modules ALL`) ```shell # Experimental environment: A10, 3090, V100... # 22GB GPU memory CUDA_VISIBLE_DEVICES=0 swift sft \ --model_type qwen-audio-chat \ --dataset aishell1-mini-zh \ ``` Full-parameter fine-tuning: ```shell # MP # Experimental environment: 2 * A100 # 2 * 50 GPU memory CUDA_VISIBLE_DEVICES=0,1 swift sft \ --model_type qwen-audio-chat \ --dataset aishell1-mini-zh \ --sft_type full \ # ZeRO2 # Experimental environment: 4 * A100 # 2 * 80 GPU memory NPROC_PER_NODE=4 CUDA_VISIBLE_DEVICES=0,1,2,3 swift sft \ --model_type qwen-audio-chat \ --dataset aishell1-mini-zh \ --sft_type full \ --use_flash_attn true \ --deepspeed default-zero2 ``` [Custom datasets](../LLM/Customization.md#-Recommended-Command-line-arguments) supports json, jsonl styles, the following is an example of a custom dataset: (Supports multi-turn conversations, supports each turn of conversation containing multiple or no audio segments, supports passing local paths or URLs) ```json [ {"conversations": [ {"from": "user", "value": "Audio 1:\n11111"}, {"from": "assistant", "value": "22222"} ]}, {"conversations": [ {"from": "user", "value": "Audio 1:\nAudio 2:\nAudio 3: \naaaaa"}, {"from": "assistant", "value": "bbbbb"}, {"from": "user", "value": "Audio 1:\nccccc"}, {"from": "assistant", "value": "ddddd"} ]}, {"conversations": [ {"from": "user", "value": "AAAAA"}, {"from": "assistant", "value": "BBBBB"}, {"from": "user", "value": "CCCCC"}, {"from": "assistant", "value": "DDDDD"} ]} ] ``` ## Inference After Fine-tuning Direct inference: ```shell CUDA_VISIBLE_DEVICES=0 swift infer \ --ckpt_dir output/qwen-audio-chat/vx-xxx/checkpoint-xxx \ --load_dataset_config true \ ``` **merge-lora** and inference: ```shell CUDA_VISIBLE_DEVICES=0 swift export \ --ckpt_dir output/qwen-audio-chat/vx-xxx/checkpoint-xxx \ --merge_lora true CUDA_VISIBLE_DEVICES=0 swift infer \ --ckpt_dir output/qwen-audio-chat/vx-xxx/checkpoint-xxx-merged \ --load_dataset_config true ```