# InternVL Best Practice ## Table of Contents - [Environment Setup](#environment-setup) - [Inference](#inference) - [Fine-tuning](#fine-tuning) - [Inference after Fine-tuning](#inference-after-fine-tuning) ## Environment Setup ```shell git clone https://github.com/modelscope/swift.git cd swift pip install -e '.[llm]' pip install Pillow ``` ## Inference Inference for [internvl-chat-v1.5](https://www.modelscope.cn/models/AI-ModelScope/InternVL-Chat-V1-5/summary) (To use a local model file, add the argument `--model_id_or_path /path/to/model`) Inference with [internvl-chat-v1.5](https://www.modelscope.cn/models/AI-ModelScope/InternVL-Chat-V1-5/summary) and [internvl-chat-v1.5-int8](https://www.modelscope.cn/models/AI-ModelScope/InternVL-Chat-V1-5-int8/summary). The tutorial below takes `internvl-chat-v1.5` as an example, and you can change to `--model_type internvl-chat-v1_5-int8` to select the INT8 version of the model. Alternatively, select the Mini-Internvl model by choosing either `mini-internvl-chat-2b-v1_5` or `mini-internvl-chat-4b-v1_5`. **Note** - If you want to use a local model file, add the argument --model_id_or_path /path/to/model. - If your GPU does not support flash attention, use the argument --use_flash_attn false. And for int8 models, it is necessary to specify `dtype --bf16` during inference, otherwise the output may be garbled. - The model's configuration specifies a relatively small max_length of 2048, which can be modified by setting `--max_length`. - Memory consumption can be reduced by using the parameter `--gradient_checkpointing true`. - The InternVL series of models only support training on datasets that include images. ```shell # Experimental environment: A100 # 55GB GPU memory CUDA_VISIBLE_DEVICES=0 swift infer --model_type internvl-chat-v1_5 --dtype bf16 --max_length 4096 # 2*30GB GPU memory CUDA_VISIBLE_DEVICES=0,1 swift infer --model_type internvl-chat-v1_5 --dtype bf16 --max_length 4096 ``` Output: (supports passing in local path or URL) ```python """ <<< Describe this image. Input a media path or URL <<< http://modelscope-open.oss-cn-hangzhou.aliyuncs.com/images/cat.png This is a high-resolution image of a kitten. The kitten has striking blue eyes and a fluffy white and grey coat. The fur pattern suggests that it may be a Maine Coon or a similar breed. The kitten's ears are perked up, and it has a curious and innocent expression. The background is blurred, which brings the focus to the kitten's face. -------------------------------------------------- <<< How many sheep are in the picture? Input a media path or URL <<< http://modelscope-open.oss-cn-hangzhou.aliyuncs.com/images/animal.png There are four sheep in the picture. -------------------------------------------------- <<< What is the calculation result? Input a media path or URL <<< http://modelscope-open.oss-cn-hangzhou.aliyuncs.com/images/math.png The calculation result is 59,856. -------------------------------------------------- <<< Write a poem based on the content of the picture. Input a media path or URL <<< http://modelscope-open.oss-cn-hangzhou.aliyuncs.com/images/poem.png Token indices sequence length is longer than the specified maximum sequence length for this model (5142 > 4096). Running this sequence through the model will result in indexing errors In the still of the night, A lone boat sails on the light. The stars above, a twinkling sight, Reflecting in the water's might. The trees stand tall, a silent guard, Their leaves rustling in the yard. The boatman's lantern, a beacon bright, Guiding him through the night. The river flows, a gentle stream, Carrying the boatman's dream. His journey long, his heart serene, In the beauty of the scene. The stars above, a guiding light, Leading him through the night. The boatman's journey, a tale to tell, Of courage, hope, and love as well. """ ``` Example images are as follows: cat: animal: math: poem: **Single Sample Inference** ```python import os os.environ['CUDA_VISIBLE_DEVICES'] = '0' from swift.llm import ( get_model_tokenizer, get_template, inference, ModelType, get_default_template_type, inference_stream ) from swift.utils import seed_everything import torch model_type = ModelType.internvl_chat_v1_5 template_type = get_default_template_type(model_type) print(f'template_type: {template_type}') model, tokenizer = get_model_tokenizer(model_type, torch.bfloat16, model_kwargs={'device_map': 'auto'}) # for GPUs that do not support flash attention # model, tokenizer = get_model_tokenizer(model_type, torch.float16, # model_kwargs={'device_map': 'auto'}, # use_flash_attn = False) model.generation_config.max_new_tokens = 256 template = get_template(template_type, tokenizer) seed_everything(42) images = ['http://modelscope-open.oss-cn-hangzhou.aliyuncs.com/images/road.png'] query = 'How far is it from each city?' response, history = inference(model, template, query, images=images) # chat with image print(f'query: {query}') print(f'response: {response}') # 流式 query = 'Which city is the farthest?' gen = inference_stream(model, template, query, history) # chat withoud image print_idx = 0 print(f'query: {query}\nresponse: ', end='') for response, history in gen: delta = response[print_idx:] print(delta, end='', flush=True) print_idx = len(response) print() print(f'history: {history}') """ query: How far is it from each city? response: The distances from the location of the sign to each city are as follows: - Mata: 14 kilometers - Yangjiang: 62 kilometers - Guangzhou: 293 kilometers These distances are indicated on the road sign in the image. query: Which city is the farthest? response: The city that is farthest from the location of the sign is Guangzhou, which is 293 kilometers away. history: [['How far is it from each city?', 'The distances from the location of the sign to each city are as follows:\n\n- Mata: 14 kilometers\n- Yangjiang: 62 kilometers\n- Guangzhou: 293 kilometers\n\nThese distances are indicated on the road sign in the image. '], ['Which city is the farthest?', 'The city that is farthest from the location of the sign is Guangzhou, which is 293 kilometers away. ']] """ ``` Example image is as follows: road: ## Fine-tuning Multimodal large model fine-tuning usually uses **custom datasets** for fine-tuning. Here is a demo that can be run directly: LoRA fine-tuning: **note** - If your GPU does not support flash attention, use the argument --use_flash_attn false. - By default, only the qkv of the LLM part is fine-tuned using LoRA. If you want to fine-tune all linear layers including the vision model part, you can specify `--lora_target_modules ALL`. ```shell # Experimental environment: A100 # 80GB GPU memory CUDA_VISIBLE_DEVICES=0 swift sft \ --model_type internvl-chat-v1_5 \ --dataset coco-en-2-mini \ --max_length 4096 # device_map # Experimental environment: 2*A100... # 2*43GB GPU memory CUDA_VISIBLE_DEVICES=0,1 swift sft \ --model_type internvl-chat-v1_5 \ --dataset coco-en-2-mini \ --max_length 4096 # ddp + deepspeed-zero2 # Experimental environment: 2*A100... # 2*80GB GPU memory NPROC_PER_NODE=2 \ CUDA_VISIBLE_DEVICES=0,1 swift sft \ --model_type internvl-chat-v1_5 \ --dataset coco-en-2-mini \ --max_length 4096 \ --deepspeed default-zero2 ``` Full parameter fine-tuning: ```shell # Experimental environment: 4 * A100 # device map # 4 * 72 GPU memory CUDA_VISIBLE_DEVICES=0,1,2,3 swift sft \ --model_type internvl-chat-v1_5 \ --dataset coco-en-2-mini \ --sft_type full \ --max_length 4096 ``` [Custom datasets](../LLM/Customization.md#-Recommended-Command-line-arguments) support json, jsonl formats. Here is an example of a custom dataset: (Only single-turn dialogue is supported. Each turn of dialogue must contain one image. Local paths or URLs can be passed in.) ```jsonl {"query": "55555", "response": "66666", "images": ["image_path"]} {"query": "eeeee", "response": "fffff", "images": ["image_path"]} {"query": "EEEEE", "response": "FFFFF", "images": ["image_path"]} ``` ## Inference after Fine-tuning Direct inference: ```shell CUDA_VISIBLE_DEVICES=0 swift infer \ --ckpt_dir output/internvl-chat-v1_5/vx-xxx/checkpoint-xxx \ --load_dataset_config true \ --max_length 4096 ``` **merge-lora** and inference: ```shell CUDA_VISIBLE_DEVICES=0 swift export \ --ckpt_dir "output/internvl-chat-v1_5/vx-xxx/checkpoint-xxx" \ --merge_lora true CUDA_VISIBLE_DEVICES=0 swift infer \ --ckpt_dir "output/internvl-chat-v1_5/vx-xxx/checkpoint-xxx-merged" \ --load_dataset_config true \ --max_length 4096 # device map CUDA_VISIBLE_DEVICES=0,1 swift infer \ --ckpt_dir "output/internvl-chat-v1_5/vx-xxx/checkpoint-xxx-merged" \ --load_dataset_config true \ --max_length 4096 ```