# LLM Quantization Documentation Swift supports the use of awq, gptq, bnb, hqq, and eetq technologies to quantize models. Among them, awq and gptq quantization technologies support vllm for accelerated inference, requiring the use of a calibration dataset for better quantization performance, but with slower quantization speed. On the other hand, bnb, hqq, and eetq do not require calibration data and have faster quantization speed. All five quantization methods support qlora fine-tuning. Quantization using awq and gptq requires the use of 'swift export', while bnb, hqq, and eetq can be quickly quantized during sft and infer. From the perspective of vllm inference acceleration support, it is more recommended to use awq and gptq for quantization. From the perspective of quantization effectiveness, it is more recommended to use awq, hqq, and gptq for quantization. And from the perspective of quantization speed, it is more recommended to use hqq for quantization. ## Table of Contents - [Environment Preparation](#environment-preparation) - [Original Model](#original-model) - [Fine-tuned Model](#fine-tuned-model) - [QLoRA](#QLoRA) - [Pushing Models](#pushing-models) ## Environment Preparation GPU devices: A10, 3090, V100, A100 are all supported. ```bash # Install ms-swift git clone https://github.com/modelscope/swift.git cd swift pip install -e '.[llm]' # Using AWQ quantization: # AutoAWQ and CUDA versions have a corresponding relationship, please select the version according to `https://github.com/casper-hansen/AutoAWQ` pip install autoawq -U # Using GPTQ quantization: # Auto_GPTQ and CUDA versions have a corresponding relationship, please select the version according to `https://github.com/PanQiWei/AutoGPTQ#quick-installation` pip install auto_gptq -U # Using bnb quantization: pip install bitsandbytes -U # Using hqq quantization: # Requires transformers version >4.40, install from source pip install git+https://github.com/huggingface/transformers pip install hqq # If compatibility with training is desired, install peft from source pip install git+https://github.com/huggingface/peft.git # Using eetq quantization: # Requires transformers version >4.40, install from source pip install git+https://github.com/huggingface/transformers # See https://github.com/NetEase-FuXi/EETQ for reference git clone https://github.com/NetEase-FuXi/EETQ.git cd EETQ/ git submodule update --init --recursive pip install . # If compatibility with training is desired, install peft from source pip install git+https://github.com/huggingface/peft.git # Environment alignment (usually not needed. If you encounter errors, you can run the code below, the repository uses the latest environment for testing) pip install -r requirements/framework.txt -U pip install -r requirements/llm.txt -U ``` ## Original Model ### awq, gptq Here we demonstrate AWQ and GPTQ quantization on the qwen1half-7b-chat model. ```bash # AWQ-INT4 quantization (takes about 18 minutes using A100, memory usage: 13GB) # If OOM occurs during quantization, you can appropriately reduce `--quant_n_samples` (default 256) and `--quant_seqlen` (default 2048). # GPTQ-INT4 quantization (takes about 20 minutes using A100, memory usage: 7GB) # AWQ: Use `alpaca-zh alpaca-en sharegpt-gpt4:default` as the quantization dataset CUDA_VISIBLE_DEVICES=0 swift export \ --model_type qwen1half-7b-chat --quant_bits 4 \ --dataset alpaca-zh alpaca-en sharegpt-gpt4:default --quant_method awq # GPTQ: Use `alpaca-zh alpaca-en sharegpt-gpt4:default` as the quantization dataset # For GPTQ quantization, please first refer to this issue: https://github.com/AutoGPTQ/AutoGPTQ/issues/439 OMP_NUM_THREADS=14 CUDA_VISIBLE_DEVICES=0 swift export \ --model_type qwen1half-7b-chat --quant_bits 4 \ --dataset alpaca-zh alpaca-en sharegpt-gpt4:default --quant_method gptq # AWQ: Use custom quantization dataset # Same for GPTQ CUDA_VISIBLE_DEVICES=0 swift export \ --model_type qwen1half-7b-chat --quant_bits 4 \ --dataset xxx.jsonl \ --quant_method awq # Inference using swift quantized model # AWQ CUDA_VISIBLE_DEVICES=0 swift infer \ --model_type qwen1half-7b-chat \ --model_id_or_path qwen1half-7b-chat-awq-int4 # GPTQ CUDA_VISIBLE_DEVICES=0 swift infer \ --model_type qwen1half-7b-chat \ --model_id_or_path qwen1half-7b-chat-gptq-int4 # Inference using original model CUDA_VISIBLE_DEVICES=0 swift infer --model_type qwen1half-7b-chat ``` ### bnb, hqq, eetq For bnb, hqq, and eetq, we only need to use `swift infer` for rapid quantization and inference. ```bash CUDA_VISIBLE_DEVICES=0 swift infer \ --model_type qwen1half-7b-chat \ --quant_method bnb \ --quantization_bit 4 CUDA_VISIBLE_DEVICES=0 swift infer \ --model_type qwen1half-7b-chat \ --quant_method hqq \ --quantization_bit 4 CUDA_VISIBLE_DEVICES=0 swift infer \ --model_type qwen1half-7b-chat \ --quant_method eetq \ --dtype fp16 ``` ## Fine-tuned Model Assume you fine-tuned qwen1half-4b-chat using LoRA, and the model weights directory is: `output/qwen1half-4b-chat/vx-xxx/checkpoint-xxx`. Here we only introduce using the AWQ technique to quantize the fine-tuned model. Using GPTQ for quantization would be similar. **Merge-LoRA & Quantization** ```shell # Use `alpaca-zh alpaca-en sharegpt-gpt4:default` as the quantization dataset CUDA_VISIBLE_DEVICES=0 swift export \ --ckpt_dir 'output/qwen1half-4b-chat/vx-xxx/checkpoint-xxx' \ --merge_lora true --quant_bits 4 \ --dataset alpaca-zh alpaca-en sharegpt-gpt4:default --quant_method awq # Use the dataset from fine-tuning as the quantization dataset CUDA_VISIBLE_DEVICES=0 swift export \ --ckpt_dir 'output/qwen1half-4b-chat/vx-xxx/checkpoint-xxx' \ --merge_lora true --quant_bits 4 \ --load_dataset_config true --quant_method awq ``` **Inference using quantized model** ```shell # AWQ/GPTQ quantized models support VLLM inference acceleration. They also support model deployment. CUDA_VISIBLE_DEVICES=0 swift infer --ckpt_dir 'output/qwen1half-4b-chat/vx-xxx/checkpoint-xxx-merged-awq-int4' ``` **Deploying the quantized model** Server: ```shell CUDA_VISIBLE_DEVICES=0 swift deploy --ckpt_dir 'output/qwen1half-4b-chat/vx-xxx/checkpoint-xxx-merged-awq-int4' ``` Testing: ```shell curl http://localhost:8000/v1/chat/completions \ -H "Content-Type: application/json" \ -d '{ "model": "qwen1half-4b-chat", "messages": [{"role": "user", "content": "How to fall asleep at night?"}], "max_tokens": 256, "temperature": 0 }' ``` ## QLoRA ### awq, gptq If you want to fine-tune the models quantized with awq and gptq using QLoRA, you need to perform pre-quantization. For example, you can use `swift export` to quantize the original model. Then, for fine-tuning, you need to specify `--quant_method` to specify the corresponding quantization method using the following command: ```bash # awq CUDA_VISIBLE_DEVICES=0 swift sft \ --model_type qwen1half-7b-chat \ --model_id_or_path qwen1half-7b-chat-awq-int4 \ --quant_method awq \ --sft_type lora \ --dataset alpaca-zh#5000 \ # gptq CUDA_VISIBLE_DEVICES=0 swift sft \ --model_type qwen1half-7b-chat \ --model_id_or_path qwen1half-7b-chat-gptq-int4 \ --quant_method gptq \ --sft_type lora \ --dataset alpaca-zh#5000 \ ``` ### bnb, hqq, eetq If you want to use bnb, hqq, eetq for QLoRA fine-tuning, you need to specify `--quant_method` and `--quantization_bit` during training: ```bash # bnb CUDA_VISIBLE_DEVICES=0 swift sft \ --model_type qwen1half-7b-chat \ --sft_type lora \ --dataset alpaca-zh#5000 \ --quant_method bnb \ --quantization_bit 4 \ --dtype fp16 \ # hqq CUDA_VISIBLE_DEVICES=0 swift sft \ --model_type qwen1half-7b-chat \ --sft_type lora \ --dataset alpaca-zh#5000 \ --quant_method hqq \ --quantization_bit 4 \ # eetq CUDA_VISIBLE_DEVICES=0 swift sft \ --model_type qwen1half-7b-chat \ --sft_type lora \ --dataset alpaca-zh#5000 \ --quant_method eetq \ --dtype fp16 \ ``` **Note** - hqq supports more customizable parameters, such as specifying different quantization configurations for different network layers. For details, please see [Command Line Arguments](https://github.com/modelscope/swift/blob/main/docs/source_en/LLM/Command-line-parameters.md). - eetq quantization uses 8-bit quantization, and there's no need to specify quantization_bit. Currently, bf16 is not supported; you need to specify dtype as fp16. - Currently, eetq's qlora speed is relatively slow; it is recommended to use hqq instead. For reference, see the [issue](https://github.com/NetEase-FuXi/EETQ/issues/17). ## Pushing Models Assume you fine-tuned qwen1half-4b-chat using LoRA, and the model weights directory is: `output/qwen1half-4b-chat/vx-xxx/checkpoint-xxx`. ```shell # Push the original quantized model CUDA_VISIBLE_DEVICES=0 swift export \ --model_type qwen1half-7b-chat \ --model_id_or_path qwen1half-7b-chat-gptq-int4 \ --push_to_hub true \ --hub_model_id qwen1half-7b-chat-gptq-int4 \ --hub_token '' # Push LoRA incremental model CUDA_VISIBLE_DEVICES=0 swift export \ --ckpt_dir output/qwen1half-4b-chat/vx-xxx/checkpoint-xxx \ --push_to_hub true \ --hub_model_id qwen1half-4b-chat-lora \ --hub_token '' # Push merged model CUDA_VISIBLE_DEVICES=0 swift export \ --ckpt_dir output/qwen1half-4b-chat/vx-xxx/checkpoint-xxx \ --push_to_hub true \ --hub_model_id qwen1half-4b-chat-lora \ --hub_token '' \ --merge_lora true # Push quantized model CUDA_VISIBLE_DEVICES=0 swift export \ --ckpt_dir output/qwen1half-4b-chat/vx-xxx/checkpoint-xxx \ --push_to_hub true \ --hub_model_id qwen1half-4b-chat-lora \ --hub_token '' \ --merge_lora true \ --quant_bits 4 ```