import torch from PIL import Image from transformers import AutoModelForCausalLM, AutoTokenizer import os import time os.environ["CUDA_VISIBLE_DEVICES"] = "6" device = "cuda" tokenizer = AutoTokenizer.from_pretrained("/home/wanglch/projects/GLM-4V/glm-4v-b", trust_remote_code=True) query = 'OCR这张图片的文字内容' image = Image.open("/home/wanglch/projects/GLM-4V/images/pic3.jpg").convert('RGB') inputs = tokenizer.apply_chat_template([{"role": "user", "image": image, "content": query}], add_generation_prompt=True, tokenize=True, return_tensors="pt", return_dict=True) # chat mode inputs = inputs.to(device) model = AutoModelForCausalLM.from_pretrained( "/home/wanglch/projects/GLM-4V/glm-4v-b", torch_dtype=torch.float16, low_cpu_mem_usage=True, trust_remote_code=True ).to(device).eval() gen_kwargs = {"max_length": 2500, "do_sample": True, "top_k": 1} with torch.no_grad(): outputs = model.generate(**inputs, **gen_kwargs) outputs = outputs[:, inputs['input_ids'].shape[1]:] print(tokenizer.decode(outputs[0]))