Commit 1bfbcff0 authored by wanglch's avatar wanglch
Browse files

Initial commit

parents
Pipeline #1204 canceled with stages
# Experimental environment: 4 * A100
# 80GB GPU memory
# Note: TorchAcc is currently only available internally.
# MASTER_ADDR=127.0.0.1 \
NPROC_PER_NODE=2 \
CUDA_VISIBLE_DEVICES=0,1,2,3 \
swift sft \
--model_type yi-34b-chat \
--dataset codefuse-python-en \
--sft_type lora \
--dtype AUTO \
--output_dir output \
--num_train_epochs 1 \
--max_length 2048 \
--batch_size 1 \
--use_flash_attn true \
--gradient_accumulation_steps 1 \
--dataset_test_ratio 0 \
--save_strategy no \
--eval_steps 2000000 \
--save_steps 2000000 \
--logging_steps 100 \
--preprocess_num_proc 1 \
--metric_warmup_step 0.1 \
--report_to 'none'
# Experimental environment: 3090
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0 \
python llm_infer.py \
--ckpt_dir "output/xverse-13b/vx-xxx/checkpoint-xxx" \
--load_dataset_config true \
--max_new_tokens 2048 \
--temperature 0.7 \
--top_p 0.7 \
--repetition_penalty 1. \
--do_sample true \
--merge_lora false \
# Experimental environment: 3090
# 12GB GPU memory
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0 \
python llm_sft.py \
--model_id_or_path xverse/XVERSE-13B \
--model_revision master \
--sft_type lora \
--tuner_backend peft \
--template_type default-generation \
--dtype AUTO \
--output_dir output \
--dataset advertise-gen-zh \
--train_dataset_sample 20000 \
--num_train_epochs 1 \
--max_length 2048 \
--check_dataset_strategy warning \
--quantization_bit 4 \
--bnb_4bit_comp_dtype AUTO \
--lora_rank 8 \
--lora_alpha 32 \
--lora_dropout_p 0.05 \
--lora_target_modules ALL \
--gradient_checkpointing true \
--batch_size 1 \
--weight_decay 0.1 \
--learning_rate 1e-4 \
--gradient_accumulation_steps 16 \
--max_grad_norm 0.5 \
--warmup_ratio 0.03 \
--eval_steps 100 \
--save_steps 100 \
--save_total_limit 2 \
--logging_steps 10 \
# Experimental environment: A100
CUDA_VISIBLE_DEVICES=0 \
swift infer \
--ckpt_dir "output/xverse-13b-256k/vx-xxx/checkpoint-xxx" \
--load_dataset_config true \
--max_new_tokens 2048 \
--temperature 0.7 \
--top_p 0.7 \
--repetition_penalty 1. \
--do_sample true \
--merge_lora false \
# Experimental environment: A100
# 40GB GPU memory
CUDA_VISIBLE_DEVICES=0 \
swift sft \
--model_type xverse-13b-256k \
--sft_type lora \
--tuner_backend peft \
--template_type default-generation \
--dtype AUTO \
--output_dir output \
--dataset advertise-gen-zh \
--train_dataset_sample 20000 \
--num_train_epochs 1 \
--max_length 2048 \
--check_dataset_strategy warning \
--lora_rank 8 \
--lora_alpha 32 \
--lora_dropout_p 0.05 \
--lora_target_modules ALL \
--gradient_checkpointing true \
--batch_size 1 \
--weight_decay 0.1 \
--learning_rate 1e-4 \
--gradient_accumulation_steps 16 \
--max_grad_norm 0.5 \
--warmup_ratio 0.03 \
--eval_steps 100 \
--save_steps 100 \
--save_total_limit 2 \
--logging_steps 10 \
# Experimental environment: A100
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0 \
python llm_infer.py \
--ckpt_dir "output/xverse-65b/vx-xxx/checkpoint-xxx" \
--load_dataset_config true \
--max_new_tokens 2048 \
--temperature 0.7 \
--top_p 0.7 \
--repetition_penalty 1. \
--do_sample true \
--merge_lora false \
# Experimental environment: 2 * A100
# 2 * 23GB GPU memory
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0,1 \
python llm_sft.py \
--model_id_or_path xverse/XVERSE-65B \
--model_revision v1.0.0 \
--sft_type lora \
--tuner_backend peft \
--template_type default-generation \
--dtype AUTO \
--output_dir output \
--dataset dureader-robust-zh \
--train_dataset_sample -1 \
--num_train_epochs 1 \
--max_length 2048 \
--check_dataset_strategy warning \
--quantization_bit 4 \
--bnb_4bit_comp_dtype AUTO \
--lora_rank 8 \
--lora_alpha 32 \
--lora_dropout_p 0.05 \
--lora_target_modules ALL \
--gradient_checkpointing true \
--batch_size 1 \
--weight_decay 0.1 \
--learning_rate 1e-4 \
--gradient_accumulation_steps 16 \
--max_grad_norm 0.5 \
--warmup_ratio 0.03 \
--eval_steps 100 \
--save_steps 100 \
--save_total_limit 2 \
--logging_steps 10 \
# Experimental environment: A100
# 60GB GPU memory
CUDA_VISIBLE_DEVICES=0 \
swift infer \
--ckpt_dir "output/xverse-moe-a4_2b/vx-xxx/checkpoint-xxx" \
--load_dataset_config true \
--max_new_tokens 2048 \
--temperature 0.7 \
--top_p 0.7 \
--repetition_penalty 1. \
--do_sample true \
--merge_lora false \
# Experimental environment: A100
# 66GB GPU memory
CUDA_VISIBLE_DEVICES=0 \
swift sft \
--model_type xverse-moe-a4_2b \
--sft_type lora \
--tuner_backend peft \
--dtype fp16 \
--dataset dureader-robust-zh \
--train_dataset_sample -1 \
--num_train_epochs 1 \
--max_length 1024 \
--check_dataset_strategy warning \
--lora_dtype AUTO \
--lora_rank 8 \
--lora_alpha 32 \
--lora_dropout_p 0.05 \
--lora_target_modules DEFAULT \
--gradient_checkpointing true \
--batch_size 1 \
--weight_decay 0.1 \
--learning_rate 1e-4 \
--gradient_accumulation_steps 16 \
--max_grad_norm 0.5 \
--warmup_ratio 0.03 \
--eval_steps 100 \
--save_steps 100 \
--save_total_limit 2 \
--logging_steps 10 \
# Experimental environment: A100
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0 \
python llm_infer.py \
--ckpt_dir "output/yi-34b/vx-xxx/checkpoint-xxx" \
--load_dataset_config true \
--use_flash_attn true \
--max_new_tokens 2048 \
--temperature 0.7 \
--top_p 0.7 \
--repetition_penalty 1. \
--do_sample true \
--merge_lora false \
# Experimental environment: 2 * A100
# 2 * 70GB GPU memory
nproc_per_node=2
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0,1 \
torchrun \
--nproc_per_node=$nproc_per_node \
--master_port 29500 \
llm_sft.py \
--model_id_or_path 01ai/Yi-34B \
--model_revision master \
--sft_type lora \
--tuner_backend peft \
--template_type default-generation \
--dtype AUTO \
--output_dir output \
--dataset dureader-robust-zh \
--train_dataset_sample -1 \
--num_train_epochs 1 \
--max_length 2048 \
--check_dataset_strategy warning \
--lora_rank 8 \
--lora_alpha 32 \
--lora_dropout_p 0.05 \
--lora_target_modules DEFAULT \
--gradient_checkpointing true \
--batch_size 1 \
--weight_decay 0.1 \
--learning_rate 1e-4 \
--gradient_accumulation_steps $(expr 16 / $nproc_per_node) \
--max_grad_norm 0.5 \
--warmup_ratio 0.03 \
--eval_steps 100 \
--save_steps 100 \
--save_total_limit 2 \
--logging_steps 10 \
--use_flash_attn true \
# Experimental environment: A100
CUDA_VISIBLE_DEVICES=0 \
swift infer \
--ckpt_dir "output/yi-34b-chat/vx-xxx/checkpoint-xxx" \
--load_dataset_config true \
--use_flash_attn true \
--max_new_tokens 2048 \
--temperature 0.1 \
--top_p 0.7 \
--repetition_penalty 1. \
--do_sample true \
--merge_lora false \
# Experimental environment: A100
# 70GB GPU memory
CUDA_VISIBLE_DEVICES=0 \
swift sft \
--model_type yi-34b-chat \
--sft_type lora \
--tuner_backend peft \
--template_type AUTO \
--dtype AUTO \
--output_dir output \
--dataset blossom-math-zh \
--train_dataset_sample -1 \
--num_train_epochs 3 \
--max_length 2048 \
--check_dataset_strategy warning \
--lora_rank 8 \
--lora_alpha 32 \
--lora_dropout_p 0.05 \
--lora_target_modules ALL \
--gradient_checkpointing true \
--batch_size 1 \
--weight_decay 0.1 \
--learning_rate 1e-4 \
--gradient_accumulation_steps 16 \
--max_grad_norm 0.5 \
--warmup_ratio 0.03 \
--eval_steps 100 \
--save_steps 100 \
--save_total_limit 2 \
--logging_steps 10 \
--use_flash_attn true \
# Experimental environment: A100
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0 \
python llm_infer.py \
--ckpt_dir "output/yi-34b-chat/vx-xxx/checkpoint-xxx" \
--load_dataset_config true \
--use_flash_attn true \
--max_new_tokens 2048 \
--temperature 0.1 \
--top_p 0.7 \
--repetition_penalty 1. \
--do_sample true \
--merge_lora false \
# Experimental environment: 2 * A100
# 2 * 72GB GPU memory
nproc_per_node=2
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0,1 \
torchrun \
--nproc_per_node=$nproc_per_node \
--master_port 29500 \
llm_sft.py \
--model_type yi-34b-chat \
--sft_type lora \
--tuner_backend peft \
--template_type AUTO \
--dtype AUTO \
--output_dir output \
--dataset blossom-math-zh \
--train_dataset_sample -1 \
--num_train_epochs 1 \
--max_length 2048 \
--check_dataset_strategy warning \
--lora_rank 8 \
--lora_alpha 32 \
--lora_dropout_p 0.05 \
--lora_target_modules DEFAULT \
--gradient_checkpointing true \
--batch_size 1 \
--weight_decay 0.1 \
--learning_rate 1e-4 \
--gradient_accumulation_steps $(expr 16 / $nproc_per_node) \
--max_grad_norm 0.5 \
--warmup_ratio 0.03 \
--eval_steps 100 \
--save_steps 100 \
--save_total_limit 2 \
--logging_steps 10 \
--use_flash_attn true \
# Experimental environment: A10, 3090
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0 \
python llm_infer.py \
--ckpt_dir "output/yi-34b-chat/vx-xxx/checkpoint-xxx" \
--load_dataset_config true \
--use_flash_attn false \
--max_new_tokens 2048 \
--temperature 0.1 \
--top_p 0.7 \
--repetition_penalty 1. \
--do_sample true \
--merge_lora false \
# Experimental environment: A10, 3090
# 21GB GPU memory
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0 \
python llm_sft.py \
--model_type yi-34b-chat \
--sft_type lora \
--tuner_backend peft \
--template_type AUTO \
--dtype AUTO \
--output_dir output \
--dataset blossom-math-zh \
--train_dataset_sample -1 \
--num_train_epochs 1 \
--max_length 2048 \
--check_dataset_strategy warning \
--quantization_bit 4 \
--bnb_4bit_comp_dtype AUTO \
--lora_rank 8 \
--lora_alpha 32 \
--lora_dropout_p 0.05 \
--lora_target_modules DEFAULT \
--gradient_checkpointing true \
--batch_size 1 \
--weight_decay 0.1 \
--learning_rate 1e-4 \
--gradient_accumulation_steps 16 \
--max_grad_norm 0.5 \
--warmup_ratio 0.03 \
--eval_steps 100 \
--save_steps 100 \
--save_total_limit 2 \
--logging_steps 10 \
--use_flash_attn false \
# Experimental environment: A10
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0 \
python llm_infer.py \
--ckpt_dir "output/yi-6b/vx-xxx/checkpoint-xxx" \
--load_dataset_config true \
--max_new_tokens 2048 \
--temperature 0.7 \
--top_p 0.7 \
--repetition_penalty 1. \
--do_sample true \
--merge_lora false \
# Experimental environment: A10
# 15GB GPU memory
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0 \
python llm_sft.py \
--model_id_or_path 01ai/Yi-6B \
--model_revision master \
--sft_type lora \
--tuner_backend peft \
--template_type default-generation \
--dtype AUTO \
--output_dir output \
--dataset dureader-robust-zh \
--train_dataset_sample -1 \
--num_train_epochs 1 \
--max_length 2048 \
--check_dataset_strategy warning \
--lora_rank 8 \
--lora_alpha 32 \
--lora_dropout_p 0.05 \
--lora_target_modules DEFAULT \
--gradient_checkpointing true \
--batch_size 1 \
--weight_decay 0.1 \
--learning_rate 1e-4 \
--gradient_accumulation_steps 16 \
--max_grad_norm 0.5 \
--warmup_ratio 0.03 \
--eval_steps 100 \
--save_steps 100 \
--save_total_limit 2 \
--logging_steps 10 \
# Experimental environment: A10
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0 \
python llm_infer.py \
--ckpt_dir "output/yi-6b-chat/vx-xxx/checkpoint-xxx" \
--load_dataset_config true \
--max_new_tokens 2048 \
--temperature 0.7 \
--top_p 0.7 \
--repetition_penalty 1. \
--do_sample true \
--merge_lora false \
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment