"tests/tokenization_t5_test.py" did not exist on "73f2c342f53f2ff02124da23ba029d80c386e7ce"
Commit 1bfbcff0 authored by wanglch's avatar wanglch
Browse files

Initial commit

parents
Pipeline #1204 canceled with stages
# Experimental environment: 2 * A10
# 2 * 19GB GPU memory
nproc_per_node=2
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0,1 \
torchrun \
--nproc_per_node=$nproc_per_node \
--master_port 29500 \
llm_sft.py \
--model_id_or_path qwen/Qwen-7B-Chat-Int8 \
--model_revision master \
--sft_type lora \
--tuner_backend peft \
--template_type AUTO \
--dtype fp16 \
--output_dir output \
--ddp_backend nccl \
--dataset damo-agent-mini-zh \
--train_dataset_sample 20000 \
--num_train_epochs 1 \
--max_length 4096 \
--check_dataset_strategy warning \
--lora_rank 8 \
--lora_alpha 32 \
--lora_dropout_p 0.05 \
--lora_target_modules ALL \
--gradient_checkpointing true \
--batch_size 1 \
--weight_decay 0.1 \
--learning_rate 1e-4 \
--gradient_accumulation_steps $(expr 16 / $nproc_per_node) \
--max_grad_norm 0.5 \
--warmup_ratio 0.03 \
--eval_steps 100 \
--save_steps 100 \
--save_total_limit 2 \
--logging_steps 10 \
--use_flash_attn false \
--deepspeed default-zero2 \
# Experimental environment: A100
CUDA_VISIBLE_DEVICES=0 \
swift infer \
--ckpt_dir "output/qwen-audio-chat/vx-xxx/checkpoint-xxx" \
--load_dataset_config true \
--use_flash_attn true \
# Experimental environment: 2 * A100
# 2 * 50GB GPU memory
CUDA_VISIBLE_DEVICES=0,1 \
swift sft \
--model_type qwen-audio-chat \
--sft_type full \
--train_dataset_sample -1 \
--eval_steps 100 \
--output_dir output \
--num_train_epochs 1 \
--max_length 2048 \
--learning_rate 1e-5 \
--use_flash_attn true \
--save_only_model true \
--dataset aishell1-mini-zh \
--lazy_tokenize true \
# Experimental environment: A100
CUDA_VISIBLE_DEVICES=0 \
swift infer \
--ckpt_dir "output/qwen-audio-chat/vx-xxx/checkpoint-xxx" \
--load_dataset_config true \
--use_flash_attn true \
# Experimental environment: 4 * A100
# 4 * 50GB GPU memory
NPROC_PER_NODE=2 \
CUDA_VISIBLE_DEVICES=0,1,2,3 \
swift sft \
--model_type qwen-audio-chat \
--sft_type full \
--train_dataset_sample -1 \
--eval_steps 100 \
--output_dir output \
--num_train_epochs 1 \
--max_length 2048 \
--learning_rate 1e-5 \
--use_flash_attn true \
--save_only_model true \
--dataset aishell1-mini-zh \
--lazy_tokenize true \
# Experimental environment: V100, A10, 3090
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0 \
python llm_infer.py \
--ckpt_dir "output/qwen-audio-chat/vx-xxx/checkpoint-xxx" \
--load_dataset_config true \
--use_flash_attn false \
--max_new_tokens 2048 \
--temperature 0.3 \
--top_p 0.7 \
--repetition_penalty 1. \
--do_sample true \
--merge_lora false \
# Experimental environment: V100, A10, 3090
# 21GB GPU memory
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0 \
python llm_sft.py \
--model_id_or_path qwen/Qwen-Audio-Chat \
--model_revision master \
--sft_type lora \
--tuner_backend peft \
--template_type AUTO \
--dtype AUTO \
--output_dir output \
--dataset aishell1-mini-zh \
--train_dataset_sample -1 \
--num_train_epochs 1 \
--max_length 2048 \
--check_dataset_strategy warning \
--lora_rank 8 \
--lora_alpha 32 \
--lora_dropout_p 0.05 \
--lora_target_modules DEFAULT \
--gradient_checkpointing true \
--batch_size 1 \
--weight_decay 0.1 \
--learning_rate 1e-4 \
--gradient_accumulation_steps 16 \
--max_grad_norm 0.5 \
--warmup_ratio 0.03 \
--eval_steps 100 \
--save_steps 100 \
--save_total_limit 2 \
--logging_steps 10 \
--use_flash_attn false \
--lazy_tokenize true \
# Experimental environment: A10
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0 \
python llm_infer.py \
--ckpt_dir "output/qwen-audio-chat/vx-xxx/checkpoint-xxx" \
--load_dataset_config true \
--use_flash_attn false \
--max_new_tokens 2048 \
--temperature 0.3 \
--top_p 0.7 \
--repetition_penalty 1. \
--do_sample true \
--merge_lora false \
# Experimental environment: 2 * A10
# 2 * 21GB GPU memory
nproc_per_node=2
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0,1 \
torchrun \
--nproc_per_node=$nproc_per_node \
--master_port 29500 \
llm_sft.py \
--model_type qwen-audio-chat \
--sft_type lora \
--tuner_backend peft \
--template_type AUTO \
--dtype AUTO \
--output_dir output \
--ddp_backend nccl \
--dataset aishell1-mini-zh \
--train_dataset_sample -1 \
--num_train_epochs 1 \
--max_length 2048 \
--check_dataset_strategy warning \
--lora_rank 8 \
--lora_alpha 32 \
--lora_dropout_p 0.05 \
--lora_target_modules DEFAULT \
--gradient_checkpointing true \
--batch_size 1 \
--weight_decay 0.1 \
--learning_rate 1e-4 \
--gradient_accumulation_steps $(expr 16 / $nproc_per_node) \
--max_grad_norm 0.5 \
--warmup_ratio 0.03 \
--eval_steps 100 \
--save_steps 100 \
--save_total_limit 2 \
--logging_steps 10 \
--use_flash_attn false \
--deepspeed default-zero2 \
--lazy_tokenize true \
# Experimental environment: A10
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0 \
python llm_infer.py \
--ckpt_dir "output/qwen-vl/vx-xxx/checkpoint-xxx" \
--load_dataset_config true \
--use_flash_attn false \
--max_new_tokens 2048 \
--temperature 0.7 \
--top_p 0.7 \
--repetition_penalty 1. \
--do_sample true \
--merge_lora false \
# Experimental environment: 2 * A10
# 2 * 21GB GPU memory
nproc_per_node=2
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0,1 \
torchrun \
--nproc_per_node=$nproc_per_node \
--master_port 29500 \
llm_sft.py \
--model_id_or_path qwen/Qwen-VL \
--model_revision master \
--sft_type lora \
--tuner_backend peft \
--template_type default \
--dtype AUTO \
--output_dir output \
--ddp_backend nccl \
--dataset coco-en-mini \
--train_dataset_sample -1 \
--num_train_epochs 1 \
--max_length 2048 \
--check_dataset_strategy warning \
--lora_rank 8 \
--lora_alpha 32 \
--lora_dropout_p 0.05 \
--lora_target_modules c_attn attn.c_proj \
--gradient_checkpointing true \
--batch_size 1 \
--weight_decay 0.1 \
--learning_rate 1e-4 \
--gradient_accumulation_steps $(expr 16 / $nproc_per_node) \
--max_grad_norm 0.5 \
--warmup_ratio 0.03 \
--eval_steps 100 \
--save_steps 100 \
--save_total_limit 2 \
--logging_steps 10 \
--use_flash_attn false \
--deepspeed default-zero2 \
# Experimental environment: A100
CUDA_VISIBLE_DEVICES=0 \
swift infer \
--ckpt_dir "output/qwen-vl-chat/vx-xxx/checkpoint-xxx" \
--load_dataset_config true \
--use_flash_attn true \
# Experimental environment: 2 * A100
# 2 * 55GB GPU memory
CUDA_VISIBLE_DEVICES=0,1 \
swift sft \
--model_type qwen-vl-chat \
--sft_type full \
--train_dataset_sample -1 \
--eval_steps 100 \
--output_dir output \
--num_train_epochs 1 \
--max_length 2048 \
--learning_rate 1e-5 \
--use_flash_attn true \
--save_only_model true \
--dataset coco-en-mini \
# Experimental environment: A100
CUDA_VISIBLE_DEVICES=0 \
swift infer \
--ckpt_dir "output/qwen-vl-chat/vx-xxx/checkpoint-xxx" \
--load_dataset_config true \
--use_flash_attn true \
# Experimental environment: 4 * A100
# 4 * 55GB GPU memory
NPROC_PER_NODE=2 \
CUDA_VISIBLE_DEVICES=0,1,2,3 \
swift sft \
--model_type qwen-vl-chat \
--sft_type full \
--train_dataset_sample -1 \
--eval_steps 100 \
--output_dir output \
--num_train_epochs 1 \
--max_length 2048 \
--learning_rate 1e-5 \
--use_flash_attn true \
--save_only_model true \
--dataset coco-en-mini \
# Experimental environment: V100, A10, 3090
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0 \
python llm_infer.py \
--ckpt_dir "output/qwen-vl-chat/vx-xxx/checkpoint-xxx" \
--load_dataset_config true \
--use_flash_attn false \
--max_new_tokens 2048 \
--temperature 0.7 \
--top_p 0.7 \
--repetition_penalty 1. \
--do_sample true \
--merge_lora false \
# Experimental environment: V100, A10, 3090
# 21GB GPU memory
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0 \
python llm_sft.py \
--model_id_or_path qwen/Qwen-VL-Chat \
--model_revision master \
--sft_type lora \
--tuner_backend peft \
--template_type AUTO \
--dtype AUTO \
--output_dir output \
--dataset coco-en-mini \
--train_dataset_sample -1 \
--num_train_epochs 1 \
--max_length 2048 \
--check_dataset_strategy warning \
--lora_rank 8 \
--lora_alpha 32 \
--lora_dropout_p 0.05 \
--lora_target_modules DEFAULT \
--gradient_checkpointing true \
--batch_size 1 \
--weight_decay 0.1 \
--learning_rate 1e-4 \
--gradient_accumulation_steps 16 \
--max_grad_norm 0.5 \
--warmup_ratio 0.03 \
--eval_steps 100 \
--save_steps 100 \
--save_total_limit 2 \
--logging_steps 10 \
--use_flash_attn false \
# Experimental environment: A10
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0 \
python llm_infer.py \
--ckpt_dir "output/qwen-vl-chat/vx-xxx/checkpoint-xxx" \
--load_dataset_config true \
--use_flash_attn false \
--max_new_tokens 2048 \
--temperature 0.7 \
--top_p 0.7 \
--repetition_penalty 1. \
--do_sample true \
--merge_lora false \
# Experimental environment: 2 * A10
# 2 * 21GB GPU memory
nproc_per_node=2
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0,1 \
torchrun \
--nproc_per_node=$nproc_per_node \
--master_port 29500 \
llm_sft.py \
--model_id_or_path qwen/Qwen-VL-Chat \
--model_revision master \
--sft_type lora \
--tuner_backend peft \
--template_type AUTO \
--dtype AUTO \
--output_dir output \
--ddp_backend nccl \
--dataset coco-en-mini \
--train_dataset_sample -1 \
--num_train_epochs 1 \
--max_length 2048 \
--check_dataset_strategy warning \
--lora_rank 8 \
--lora_alpha 32 \
--lora_dropout_p 0.05 \
--lora_target_modules c_attn attn.c_proj \
--gradient_checkpointing true \
--batch_size 1 \
--weight_decay 0.1 \
--learning_rate 1e-4 \
--gradient_accumulation_steps $(expr 16 / $nproc_per_node) \
--max_grad_norm 0.5 \
--warmup_ratio 0.03 \
--eval_steps 100 \
--save_steps 100 \
--save_total_limit 2 \
--logging_steps 10 \
--use_flash_attn false \
--deepspeed default-zero2 \
# Experimental environment: A10
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0 \
python llm_infer.py \
--ckpt_dir "output/qwen-vl-chat/vx-xxx/checkpoint-xxx" \
--load_dataset_config true \
--use_flash_attn false \
--max_new_tokens 2048 \
--temperature 0.7 \
--top_p 0.7 \
--repetition_penalty 1. \
--do_sample true \
--merge_lora false \
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment