Commit 1bfbcff0 authored by wanglch's avatar wanglch
Browse files

Initial commit

parents
Pipeline #1204 canceled with stages
# Experimental environment: A100
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0 \
python llm_infer.py \
--ckpt_dir "output/qwen-14b/vx-xxx/checkpoint-xxx" \
--load_dataset_config true \
--use_flash_attn true \
--max_new_tokens 2048 \
--temperature 0.7 \
--top_p 0.7 \
--repetition_penalty 1. \
--do_sample true \
--merge_lora false \
# Experimental environment: 2 * A100
# 2 * 32B GPU memory (use flash_attn)
nproc_per_node=2
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0,1 \
torchrun \
--nproc_per_node=$nproc_per_node \
--master_port 29500 \
llm_sft.py \
--model_id_or_path qwen/Qwen-14B \
--model_revision master \
--sft_type lora \
--tuner_backend peft \
--template_type default-generation \
--dtype AUTO \
--output_dir output \
--ddp_backend nccl \
--dataset dureader-robust-zh \
--train_dataset_sample -1 \
--num_train_epochs 1 \
--max_length 2048 \
--check_dataset_strategy warning \
--lora_rank 8 \
--lora_alpha 32 \
--lora_dropout_p 0.05 \
--lora_target_modules ALL \
--gradient_checkpointing true \
--batch_size 1 \
--weight_decay 0.1 \
--learning_rate 1e-4 \
--gradient_accumulation_steps $(expr 16 / $nproc_per_node) \
--max_grad_norm 0.5 \
--warmup_ratio 0.03 \
--eval_steps 100 \
--save_steps 100 \
--save_total_limit 2 \
--logging_steps 10 \
--use_flash_attn true \
--deepspeed default-zero2 \
# Experimental environment: A10
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0 \
python llm_infer.py \
--ckpt_dir "output/qwen-14b/vx-xxx/checkpoint-xxx" \
--load_dataset_config true \
--use_flash_attn false \
--max_new_tokens 2048 \
--temperature 0.7 \
--top_p 0.7 \
--repetition_penalty 1. \
--do_sample true \
--merge_lora false \
# Experimental environment: A10
# 17GB GPU memory
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0 \
python llm_sft.py \
--model_id_or_path qwen/Qwen-14B \
--model_revision master \
--sft_type lora \
--tuner_backend peft \
--template_type default-generation \
--dtype AUTO \
--output_dir output \
--dataset dureader-robust-zh \
--train_dataset_sample -1 \
--num_train_epochs 1 \
--max_length 2048 \
--check_dataset_strategy warning \
--quantization_bit 4 \
--bnb_4bit_comp_dtype AUTO \
--lora_rank 8 \
--lora_alpha 32 \
--lora_dropout_p 0.05 \
--lora_target_modules ALL \
--gradient_checkpointing true \
--batch_size 1 \
--weight_decay 0.1 \
--learning_rate 1e-4 \
--gradient_accumulation_steps 16 \
--max_grad_norm 0.5 \
--warmup_ratio 0.03 \
--eval_steps 100 \
--save_steps 100 \
--save_total_limit 2 \
--logging_steps 10 \
--use_flash_attn false \
# Experimental environment: A10
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0 \
python llm_infer.py \
--ckpt_dir "output/qwen-14b/vx-xxx/checkpoint-xxx" \
--load_dataset_config true \
--use_flash_attn false \
--max_new_tokens 2048 \
--temperature 0.7 \
--top_p 0.7 \
--repetition_penalty 1. \
--do_sample true \
--merge_lora false \
# Experimental environment: 2 * A10
# 2 * 14GB GPU memory
nproc_per_node=2
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0,1 \
torchrun \
--nproc_per_node=$nproc_per_node \
--master_port 29500 \
llm_sft.py \
--model_id_or_path qwen/Qwen-14B \
--model_revision master \
--sft_type lora \
--tuner_backend peft \
--template_type default-generation \
--dtype AUTO \
--output_dir output \
--ddp_backend nccl \
--dataset dureader-robust-zh \
--train_dataset_sample -1 \
--num_train_epochs 1 \
--max_length 2048 \
--check_dataset_strategy warning \
--quantization_bit 4 \
--bnb_4bit_comp_dtype AUTO \
--lora_rank 8 \
--lora_alpha 32 \
--lora_dropout_p 0.05 \
--lora_target_modules ALL \
--gradient_checkpointing true \
--batch_size 1 \
--weight_decay 0.1 \
--learning_rate 1e-4 \
--gradient_accumulation_steps $(expr 16 / $nproc_per_node) \
--max_grad_norm 0.5 \
--warmup_ratio 0.03 \
--eval_steps 100 \
--save_steps 100 \
--save_total_limit 2 \
--logging_steps 10 \
--use_flash_attn false \
--deepspeed default-zero2 \
# Experimental environment: A100
CUDA_VISIBLE_DEVICES=0 \
swift infer \
--ckpt_dir "output/qwen-14b-chat/vx-xxx/checkpoint-xxx" \
--load_dataset_config true \
--use_flash_attn true \
--max_new_tokens 2048 \
--temperature 0.1 \
--top_p 0.7 \
--repetition_penalty 1. \
--do_sample true \
--merge_lora false \
# Experimental environment: 4 * A100
# 4 * 78GB GPU memory
nproc_per_node=4
NPROC_PER_NODE=$nproc_per_node \
MASTER_PORT=29500 \
CUDA_VISIBLE_DEVICES=0,1,2,3 \
swift sft \
--model_id_or_path qwen/Qwen-14B-Chat \
--model_revision master \
--sft_type full \
--tuner_backend peft \
--template_type AUTO \
--dtype AUTO \
--output_dir output \
--ddp_backend nccl \
--dataset blossom-math-zh \
--train_dataset_sample -1 \
--num_train_epochs 5 \
--max_length 2048 \
--check_dataset_strategy warning \
--gradient_checkpointing true \
--batch_size 1 \
--weight_decay 0.1 \
--learning_rate 1e-4 \
--gradient_accumulation_steps $(expr 64 / $nproc_per_node) \
--max_grad_norm 0.5 \
--warmup_ratio 0.03 \
--eval_steps 100 \
--save_steps 100 \
--save_total_limit 2 \
--logging_steps 10 \
--use_flash_attn true \
--deepspeed 'default-zero3' \
--save_only_model true \
# Experimental environment: A100
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0 \
python llm_infer.py \
--ckpt_dir "output/qwen-14b-chat/vx-xxx/checkpoint-xxx" \
--load_dataset_config true \
--use_flash_attn true \
--max_new_tokens 2048 \
--temperature 0.1 \
--top_p 0.7 \
--repetition_penalty 1. \
--do_sample true \
--merge_lora false \
# Experimental environment: 2 * A100
# 2 * 30GB GPU memory (use flash_attn)
nproc_per_node=2
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0,1 \
torchrun \
--nproc_per_node=$nproc_per_node \
--master_port 29500 \
llm_sft.py \
--model_id_or_path qwen/Qwen-14B-Chat \
--model_revision master \
--sft_type lora \
--tuner_backend peft \
--template_type AUTO \
--dtype AUTO \
--output_dir output \
--ddp_backend nccl \
--dataset blossom-math-zh \
--train_dataset_sample -1 \
--num_train_epochs 1 \
--max_length 2048 \
--check_dataset_strategy warning \
--lora_rank 8 \
--lora_alpha 32 \
--lora_dropout_p 0.05 \
--lora_target_modules ALL \
--gradient_checkpointing true \
--batch_size 1 \
--weight_decay 0.1 \
--learning_rate 1e-4 \
--gradient_accumulation_steps $(expr 16 / $nproc_per_node) \
--max_grad_norm 0.5 \
--warmup_ratio 0.03 \
--eval_steps 100 \
--save_steps 100 \
--save_total_limit 2 \
--logging_steps 10 \
--use_flash_attn true \
--deepspeed default-zero2 \
# Experimental environment: 2 * 3090
CUDA_VISIBLE_DEVICES=0,1 \
swift infer \
--ckpt_dir "output/qwen-14b-chat/vx-xxx/checkpoint-xxx" \
--load_dataset_config true \
--use_flash_attn false \
--max_new_tokens 2048 \
--temperature 0.1 \
--top_p 0.7 \
--repetition_penalty 1. \
--do_sample true \
--merge_lora false \
# Experimental environment: 4 * 3090
# 4 * 24GB GPU memory
nproc_per_node=4
CUDA_VISIBLE_DEVICES=0,1,2,3 \
NPROC_PER_NODE=$nproc_per_node \
MASTER_PORT=29500 \
swift sft \
--model_id_or_path qwen/Qwen-14B-Chat \
--model_revision master \
--sft_type lora \
--tuner_backend peft \
--template_type AUTO \
--dtype AUTO \
--output_dir output \
--ddp_backend nccl \
--dataset blossom-math-zh \
--train_dataset_sample -1 \
--num_train_epochs 5 \
--max_length 2048 \
--check_dataset_strategy warning \
--lora_rank 8 \
--lora_alpha 32 \
--lora_dropout_p 0.05 \
--lora_target_modules ALL \
--gradient_checkpointing true \
--batch_size 1 \
--weight_decay 0.1 \
--learning_rate 1e-4 \
--gradient_accumulation_steps $(expr 16 / $nproc_per_node) \
--max_grad_norm 0.5 \
--warmup_ratio 0.03 \
--eval_steps 100 \
--save_steps 100 \
--save_total_limit 2 \
--logging_steps 10 \
--use_flash_attn false \
--deepspeed default-zero3 \
# Experimental environment: A10, 3090
CUDA_VISIBLE_DEVICES=0 \
swift infer \
--ckpt_dir "output/qwen-14b-chat/vx-xxx/checkpoint-xxx" \
--load_dataset_config true \
--use_flash_attn false \
--max_new_tokens 2048 \
--temperature 0.1 \
--top_p 0.7 \
--repetition_penalty 1. \
--do_sample true \
--merge_lora false \
# Experimental environment: A10, 3090
# 16GB GPU memory
# Recommended to use `qwen_14b_chat_int4`
CUDA_VISIBLE_DEVICES=0 \
swift sft \
--model_id_or_path qwen/Qwen-14B-Chat \
--model_revision master \
--sft_type lora \
--tuner_backend peft \
--template_type AUTO \
--dtype AUTO \
--output_dir output \
--dataset blossom-math-zh \
--train_dataset_sample -1 \
--num_train_epochs 1 \
--max_length 2048 \
--check_dataset_strategy warning \
--quantization_bit 4 \
--bnb_4bit_comp_dtype AUTO \
--lora_rank 8 \
--lora_alpha 32 \
--lora_dropout_p 0.05 \
--lora_target_modules ALL \
--gradient_checkpointing true \
--batch_size 1 \
--weight_decay 0.1 \
--learning_rate 1e-4 \
--gradient_accumulation_steps 16 \
--max_grad_norm 0.5 \
--warmup_ratio 0.03 \
--eval_steps 100 \
--save_steps 100 \
--save_total_limit 2 \
--logging_steps 10 \
--use_flash_attn false \
# Experimental environment: A10
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0 \
python llm_infer.py \
--ckpt_dir "output/qwen-14b-chat/vx-xxx/checkpoint-xxx" \
--load_dataset_config true \
--use_flash_attn false \
--max_new_tokens 2048 \
--temperature 0.1 \
--top_p 0.7 \
--repetition_penalty 1. \
--do_sample true \
--merge_lora false \
# Experimental environment: 2 * A10
# 2 * 16GB GPU memory
# Recommended to use `qwen_14b_chat_int4`
nproc_per_node=2
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0,1 \
torchrun \
--nproc_per_node=$nproc_per_node \
--master_port 29500 \
llm_sft.py \
--model_id_or_path qwen/Qwen-14B-Chat \
--model_revision master \
--sft_type lora \
--tuner_backend peft \
--template_type AUTO \
--dtype AUTO \
--output_dir output \
--ddp_backend nccl \
--dataset blossom-math-zh \
--train_dataset_sample -1 \
--num_train_epochs 1 \
--max_length 2048 \
--check_dataset_strategy warning \
--quantization_bit 4 \
--bnb_4bit_comp_dtype AUTO \
--lora_rank 8 \
--lora_alpha 32 \
--lora_dropout_p 0.05 \
--lora_target_modules ALL \
--gradient_checkpointing true \
--batch_size 1 \
--weight_decay 0.1 \
--learning_rate 1e-4 \
--gradient_accumulation_steps $(expr 16 / $nproc_per_node) \
--max_grad_norm 0.5 \
--warmup_ratio 0.03 \
--eval_steps 100 \
--save_steps 100 \
--save_total_limit 2 \
--logging_steps 10 \
--use_flash_attn false \
--deepspeed default-zero2 \
# Experimental environment: V100, A10, 3090
CUDA_VISIBLE_DEVICES=0 \
swift infer \
--ckpt_dir "output/qwen-14b-chat-int4/vx_xxx/checkpoint-xxx" \
--load_dataset_config true \
--use_flash_attn false \
--max_new_tokens 2048 \
--temperature 0.1 \
--top_p 0.7 \
--repetition_penalty 1. \
--do_sample true \
--merge_lora false \
# Experimental environment: V100, A10, 3090
# 21GB GPU memory
CUDA_VISIBLE_DEVICES=0 \
swift sft \
--model_id_or_path qwen/Qwen-14B-Chat-Int4 \
--model_revision master \
--sft_type lora \
--tuner_backend peft \
--template_type AUTO \
--dtype fp16 \
--output_dir output \
--dataset leetcode-python-en \
--train_dataset_sample -1 \
--num_train_epochs 1 \
--max_length 4096 \
--check_dataset_strategy warning \
--lora_rank 8 \
--lora_alpha 32 \
--lora_dropout_p 0.05 \
--lora_target_modules ALL \
--gradient_checkpointing true \
--batch_size 1 \
--weight_decay 0.1 \
--learning_rate 1e-4 \
--gradient_accumulation_steps 16 \
--max_grad_norm 0.5 \
--warmup_ratio 0.03 \
--eval_steps 100 \
--save_steps 100 \
--save_total_limit 2 \
--logging_steps 10 \
--use_flash_attn false \
--push_to_hub false \
--hub_model_id qwen-14b-chat-int4-qlora \
--hub_private_repo true \
--hub_token 'your-sdk-token' \
# Experimental environment: V100, A10, 3090
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0 \
python llm_infer.py \
--ckpt_dir "output/qwen-14b-chat-int4/vx_xxx/checkpoint-xxx" \
--load_dataset_config true \
--use_flash_attn false \
--max_new_tokens 2048 \
--temperature 0.1 \
--top_p 0.7 \
--repetition_penalty 1. \
--do_sample true \
--merge_lora false \
# Experimental environment: 2 * A10
# 2 * 16GB GPU memory
nproc_per_node=2
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0,1 \
torchrun \
--nproc_per_node=$nproc_per_node \
--master_port 29500 \
llm_sft.py \
--model_id_or_path qwen/Qwen-14B-Chat-Int4 \
--model_revision master \
--sft_type lora \
--tuner_backend peft \
--template_type AUTO \
--dtype fp16 \
--output_dir output \
--ddp_backend nccl \
--dataset damo-agent-mini-zh \
--train_dataset_sample 20000 \
--num_train_epochs 1 \
--max_length 4096 \
--check_dataset_strategy warning \
--lora_rank 8 \
--lora_alpha 32 \
--lora_dropout_p 0.05 \
--lora_target_modules ALL \
--gradient_checkpointing true \
--batch_size 1 \
--weight_decay 0.1 \
--learning_rate 1e-4 \
--gradient_accumulation_steps $(expr 16 / $nproc_per_node) \
--max_grad_norm 0.5 \
--warmup_ratio 0.03 \
--eval_steps 100 \
--save_steps 100 \
--save_total_limit 2 \
--logging_steps 10 \
--use_flash_attn false \
--push_to_hub false \
--hub_model_id qwen-14b-chat-int4-qlora \
--hub_private_repo true \
--hub_token 'your-sdk-token' \
--deepspeed default-zero2 \
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment