Commit 1bfbcff0 authored by wanglch's avatar wanglch
Browse files

Initial commit

parents
Pipeline #1204 canceled with stages
# Experimental environment: V100, A10, 3090
# 66GB GPU memory
CUDA_VISIBLE_DEVICES=0 \
swift infer \
--ckpt_dir "output/qwen1half-32b-chat/vx-xxx/checkpoint-xxx" \
--load_dataset_config true \
--use_flash_attn true \
--max_new_tokens 2048 \
--temperature 0.1 \
--top_p 0.7 \
--repetition_penalty 1. \
--do_sample true \
--merge_lora false \
# Experimental environment: A100
# 2*40GB GPU memory
CUDA_VISIBLE_DEVICES=0,1 \
swift sft \
--model_type qwen1half-32b-chat \
--sft_type lora \
--tuner_backend peft \
--dtype AUTO \
--output_dir output \
--dataset alpaca-zh alpaca-en \
--train_dataset_sample 5000 \
--num_train_epochs 2 \
--max_length 2048 \
--check_dataset_strategy warning \
--lora_rank 8 \
--lora_alpha 32 \
--lora_dropout_p 0.05 \
--lora_target_modules DEFAULT \
--gradient_checkpointing true \
--batch_size 1 \
--weight_decay 0.1 \
--learning_rate 1e-4 \
--gradient_accumulation_steps 16 \
--max_grad_norm 0.5 \
--warmup_ratio 0.03 \
--eval_steps 100 \
--save_steps 100 \
--save_total_limit 2 \
--logging_steps 10 \
--use_flash_attn true \
# Experimental environment: A100
CUDA_VISIBLE_DEVICES=0 \
swift infer \
--ckpt_dir "output/qwen1half-72b-chat-int4/vx-xxx/checkpoint-xxx" \
--load_dataset_config true \
--use_flash_attn true \
--max_new_tokens 2048 \
--temperature 0.1 \
--top_p 0.7 \
--repetition_penalty 1. \
--do_sample true \
--merge_lora false \
# Experimental environment: A100
# 50GB GPU memory
CUDA_VISIBLE_DEVICES=0 \
swift sft \
--model_type qwen1half-72b-chat-int4 \
--sft_type lora \
--output_dir output \
--dataset codefuse-python-en \
--train_dataset_sample -1 \
--num_train_epochs 3 \
--max_length 2048 \
--lora_rank 8 \
--lora_alpha 32 \
--lora_dropout_p 0.05 \
--lora_target_modules ALL \
--gradient_checkpointing true \
--batch_size 1 \
--weight_decay 0.1 \
--learning_rate 1e-4 \
--gradient_accumulation_steps 16 \
--max_grad_norm 0.5 \
--warmup_ratio 0.03 \
--eval_steps 100 \
--save_steps 100 \
--save_total_limit 2 \
--logging_steps 10 \
--use_flash_attn true \
# Experimental environment: A100
CUDA_VISIBLE_DEVICES=0 \
swift infer \
--ckpt_dir "output/qwen1half-7b-chat/vx-xxx/checkpoint-xxx" \
--load_dataset_config true \
--use_flash_attn true \
# Experimental environment: A100
# 80GB GPU memory
CUDA_VISIBLE_DEVICES=0 \
swift sft \
--model_type qwen1half-7b-chat \
--sft_type full \
--train_dataset_sample -1 \
--eval_steps 1000 \
--output_dir output \
--num_train_epochs 1 \
--max_length 4096 \
--learning_rate 1e-5 \
--use_flash_attn true \
--save_only_model true \
--dataset codefuse-evol-instruction-zh \
--preprocess_num_proc 4 \
# Experimental environment: A100
CUDA_VISIBLE_DEVICES=0 \
swift infer \
--ckpt_dir "output/qwen1half-7b-chat/vx-xxx/checkpoint-xxx" \
--load_dataset_config true \
--use_flash_attn true \
# Experimental environment: A100
# 40GB GPU memory
CUDA_VISIBLE_DEVICES=0 \
swift sft \
--model_type qwen1half-7b-chat \
--sft_type full \
--use_galore true \
--galore_update_proj_gap 400 \
--train_dataset_sample -1 \
--eval_steps 1000 \
--output_dir output \
--num_train_epochs 1 \
--max_length 4096 \
--learning_rate 1e-5 \
--use_flash_attn true \
--save_only_model true \
--dataset codefuse-evol-instruction-zh \
--preprocess_num_proc 4 \
# Experimental environment: V100, A10, 3090
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0 \
python llm_infer.py \
--ckpt_dir "output/qwen1half-7b-chat/vx-xxx/checkpoint-xxx" \
--load_dataset_config true \
--use_flash_attn false \
--max_new_tokens 2048 \
--temperature 0.1 \
--top_p 0.7 \
--repetition_penalty 1. \
--do_sample true \
--merge_lora false \
# Experimental environment: A100
# 30GB GPU memory
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0 \
python llm_sft.py \
--model_type qwen1half-7b-chat \
--sft_type lora \
--tuner_backend peft \
--dtype AUTO \
--output_dir output \
--dataset alpaca-zh alpaca-en \
--train_dataset_sample 5000 \
--num_train_epochs 2 \
--max_length 1024 \
--check_dataset_strategy warning \
--lora_rank 8 \
--lora_alpha 32 \
--lora_dropout_p 0.05 \
--lora_target_modules ALL \
--gradient_checkpointing true \
--batch_size 1 \
--weight_decay 0.1 \
--learning_rate 1e-4 \
--gradient_accumulation_steps 16 \
--max_grad_norm 0.5 \
--warmup_ratio 0.03 \
--eval_steps 100 \
--save_steps 100 \
--save_total_limit 2 \
--logging_steps 10 \
--use_flash_attn false \
--self_cognition_sample 1000 \
--model_name 卡卡罗特 \
--model_author 陶白白 \
# Experiment env: A10, RTX3090/4090, A100
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0 \
python llm_infer.py \
--ckpt_dir "output/qwen1half-7b-chat-awq/vx-xxx/checkpoint-xxx" \
--load_dataset_config true \
--use_flash_attn false \
--max_new_tokens 2048 \
--temperature 0.1 \
--top_p 0.7 \
--repetition_penalty 1. \
--do_sample true \
--stream false \
--merge_lora false \
# Experiment env: A10, RTX3090/4090, A100
# 1 * 17G GPU memory
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0 \
python llm_sft.py \
--model_type qwen1half-7b-chat-awq \
--dataset ms-agent \
--train_dataset_mix_ratio 3 \
--batch_size 4 \
--max_length 1024 \
--use_loss_scale true \
--gradient_accumulation_steps 2 \
--learning_rate 5e-5 \
--use_flash_attn true \
--eval_steps 2000 \
--save_steps 2000 \
--train_dataset_sample -1 \
--num_train_epochs 1 \
--check_dataset_strategy none \
--gradient_checkpointing true \
--weight_decay 0.1 \
--max_grad_norm 1.0 \
--warmup_ratio 0.03 \
--save_total_limit 2 \
--logging_steps 10 \
--sft_type lora \
--lora_target_modules ALL \
--lora_rank 8 \
--lora_alpha 32
# Experimental environment: V100, A10, 3090
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0 \
python llm_infer.py \
--ckpt_dir "output/qwen1half-7b-chat-int8/vx-xxx/checkpoint-xxx" \
--load_dataset_config true \
--use_flash_attn false \
--max_new_tokens 2048 \
--temperature 0.1 \
--top_p 0.7 \
--repetition_penalty 1. \
--do_sample true \
--merge_lora false \
# Experimental environment: V100, A10, 3090
# 20GB GPU memory
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0 \
python llm_sft.py \
--model_type qwen1half-7b-chat-int8 \
--sft_type lora \
--tuner_backend peft \
--dtype fp16 \
--output_dir output \
--dataset leetcode-python-en \
--train_dataset_sample -1 \
--num_train_epochs 1 \
--max_length 4096 \
--check_dataset_strategy warning \
--lora_rank 8 \
--lora_alpha 32 \
--lora_dropout_p 0.05 \
--lora_target_modules ALL \
--gradient_checkpointing true \
--batch_size 1 \
--weight_decay 0.1 \
--learning_rate 1e-4 \
--gradient_accumulation_steps 16 \
--max_grad_norm 0.5 \
--warmup_ratio 0.03 \
--eval_steps 100 \
--save_steps 100 \
--save_total_limit 2 \
--logging_steps 10 \
--use_flash_attn false \
# Experimental environment: A100
# 36GB GPU memory
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0 \
python llm_infer.py \
--ckpt_dir "output/qwen1half-moe-a2_7b/vx-xxx/checkpoint-xxx" \
--load_dataset_config true \
--use_flash_attn true \
--max_new_tokens 2048 \
--temperature 0.1 \
--top_p 0.7 \
--repetition_penalty 1. \
--do_sample true \
--merge_lora false \
# Experimental environment: A100
# 42GB GPU memory
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0 \
python llm_sft.py \
--model_type qwen1half-moe-a2_7b \
--sft_type lora \
--tuner_backend peft \
--dtype AUTO \
--output_dir output \
--dataset dureader-robust-zh \
--train_dataset_sample -1 \
--num_train_epochs 1 \
--max_length 1024 \
--check_dataset_strategy warning \
--lora_rank 8 \
--lora_alpha 32 \
--lora_dropout_p 0.05 \
--lora_target_modules ALL \
--gradient_checkpointing true \
--batch_size 1 \
--weight_decay 0.1 \
--learning_rate 1e-4 \
--gradient_accumulation_steps 16 \
--max_grad_norm 0.5 \
--warmup_ratio 0.03 \
--eval_steps 100 \
--save_steps 100 \
--save_total_limit 2 \
--logging_steps 10 \
--use_flash_attn true \
# Experimental environment: A100
# 36GB GPU memory
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0 \
python llm_infer.py \
--ckpt_dir "output/qwen1half-moe-a2_7b-chat/vx-xxx/checkpoint-xxx" \
--load_dataset_config true \
--use_flash_attn true \
--max_new_tokens 2048 \
--temperature 0.1 \
--top_p 0.7 \
--repetition_penalty 1. \
--do_sample true \
--merge_lora false \
# Experimental environment: A100
# 42GB GPU memory
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0 \
python llm_sft.py \
--model_type qwen1half-moe-a2_7b-chat \
--sft_type lora \
--tuner_backend peft \
--dtype AUTO \
--output_dir output \
--dataset blossom-math-zh \
--train_dataset_sample -1 \
--num_train_epochs 1 \
--max_length 1024 \
--check_dataset_strategy warning \
--lora_rank 8 \
--lora_alpha 32 \
--lora_dropout_p 0.05 \
--lora_target_modules ALL \
--gradient_checkpointing true \
--batch_size 1 \
--weight_decay 0.1 \
--learning_rate 1e-4 \
--gradient_accumulation_steps 16 \
--max_grad_norm 0.5 \
--warmup_ratio 0.03 \
--eval_steps 100 \
--save_steps 100 \
--save_total_limit 2 \
--logging_steps 10 \
--use_flash_attn true \
# Experimental environment: A100
CUDA_VISIBLE_DEVICES=0 \
swift infer \
--ckpt_dir "output/qwen1half-moe-a2_7b-chat-int4/vx-xxx/checkpoint-xxx" \
--load_dataset_config true \
--use_flash_attn true \
--max_new_tokens 2048 \
--temperature 0.1 \
--top_p 0.7 \
--repetition_penalty 1. \
--do_sample true \
--merge_lora false \
# Experimental environment: A100
# 17GB GPU memory
CUDA_VISIBLE_DEVICES=0 \
swift sft \
--model_type qwen1half-moe-a2_7b-chat-int4 \
--sft_type lora \
--output_dir output \
--dataset blossom-math-zh \
--train_dataset_sample -1 \
--num_train_epochs 3 \
--max_length 2048 \
--lora_rank 8 \
--lora_alpha 32 \
--lora_dropout_p 0.05 \
--lora_target_modules ALL \
--gradient_checkpointing true \
--batch_size 1 \
--weight_decay 0.1 \
--learning_rate 1e-4 \
--gradient_accumulation_steps 16 \
--max_grad_norm 0.5 \
--warmup_ratio 0.03 \
--eval_steps 100 \
--save_steps 100 \
--save_total_limit 2 \
--logging_steps 10 \
--use_flash_attn true \
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment