"vscode:/vscode.git/clone" did not exist on "a97a73e0ee83a113cfd194e3aec1826e6cb054b5"
Commit 1bfbcff0 authored by wanglch's avatar wanglch
Browse files

Initial commit

parents
Pipeline #1204 canceled with stages
# Experiment env: A10, RTX3090/4090, A100
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0,1 \
python llm_infer.py \
--ckpt_dir "output/mamba-1.4b/vx-xxx/checkpoint-xxx" \
--load_dataset_config true \
--use_flash_attn true \
--max_new_tokens 2048 \
--temperature 0.5 \
--top_p 0.7 \
--repetition_penalty 1. \
--do_sample true \
--merge_lora false \
# Experiment env: A10, RTX3090/4090, A100
# 1 * 12GB GPU memory
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0 \
python llm_sft.py \
--model_type mamba-1.4b \
--dataset dureader-robust-zh \
--batch_size 4 \
--max_length 1024 \
--gradient_accumulation_steps 2 \
--learning_rate 5e-5 \
--use_flash_attn true \
--eval_steps 1000 \
--save_steps 1000 \
--train_dataset_sample -1 \
--num_train_epochs 2 \
--check_dataset_strategy none \
--gradient_checkpointing true \
--weight_decay 0.1 \
--max_grad_norm 1.0 \
--warmup_ratio 0.03 \
--save_total_limit 2 \
--logging_steps 10 \
--sft_type lora \
--lora_target_modules DEFAULT \
--lora_rank 8 \
--lora_alpha 32
# Experimental environment: A100
# 30GB GPU memory
CUDA_VISIBLE_DEVICES=0 \
swift infer \
--ckpt_dir "output/mengzi3-13b-base/vx-xxx/checkpoint-xxx" \
--load_dataset_config true \
--temperature 0.1 \
--top_p 0.7 \
--repetition_penalty 1. \
--do_sample true \
--merge_lora false \
# Experimental environment: 2 * A100
# 2 * 36GB GPU memory
nproc_per_node=2
CUDA_VISIBLE_DEVICES=0,1 \
NPROC_PER_NODE=$nproc_per_node \
MASTER_PORT=29500 \
swift sft \
--model_id_or_path langboat/Mengzi3-13B-Base \
--model_revision master \
--sft_type lora \
--tuner_backend peft \
--dtype bf16 \
--output_dir output \
--ddp_backend nccl \
--dataset dureader-robust-zh \
--train_dataset_sample -1 \
--num_train_epochs 1 \
--max_length 2048 \
--check_dataset_strategy warning \
--lora_rank 8 \
--lora_alpha 32 \
--lora_dropout_p 0.05 \
--lora_target_modules DEFAULT \
--gradient_checkpointing true \
--batch_size 1 \
--weight_decay 0.1 \
--learning_rate 1e-4 \
--gradient_accumulation_steps $(expr 16 / $nproc_per_node) \
--max_grad_norm 0.5 \
--warmup_ratio 0.03 \
--eval_steps 100 \
--save_steps 100 \
--save_total_limit 2 \
--logging_steps 10 \
--deepspeed default-zero2 \
# Experimental environment: A10
CUDA_VISIBLE_DEVICES=0 \
swift infer \
--ckpt_dir "output/minicpm-2b-sft-chat/vx-xxx/checkpoint-xxx" \
--load_dataset_config true \
--use_flash_attn false \
--max_new_tokens 2048 \
--do_sample false \
# Experimental environment: 2 * A10
# 2 * 12GB GPU memory
nproc_per_node=2
CUDA_VISIBLE_DEVICES=0,1 \
NPROC_PER_NODE=$nproc_per_node \
MASTER_PORT=29500 \
swift sft \
--model_id_or_path OpenBMB/MiniCPM-2B-sft-fp32 \
--model_revision master \
--sft_type lora \
--template_type AUTO \
--dtype AUTO \
--output_dir output \
--ddp_backend nccl \
--dataset jd-sentiment-zh \
--train_dataset_sample -1 \
--val_dataset_sample 1000 \
--num_train_epochs 1 \
--max_length 2048 \
--check_dataset_strategy warning \
--lora_target_modules ALL \
--gradient_checkpointing true \
--batch_size 1 \
--weight_decay 0.1 \
--learning_rate 1e-4 \
--gradient_accumulation_steps $(expr 16 / $nproc_per_node) \
--max_grad_norm 0.5 \
--warmup_ratio 0.03 \
--eval_steps 100 \
--save_steps 100 \
--save_total_limit 2 \
--logging_steps 10 \
--use_flash_attn false \
# Experimental environment: A100
# 30GB GPU memory
CUDA_VISIBLE_DEVICES=0 \
swift infer \
--ckpt_dir "output/minicpm-moe-8x2b/vx-xxx/checkpoint-xxx" \
--load_dataset_config true \
--max_new_tokens 2048 \
--temperature 0.1 \
--top_p 0.7 \
--repetition_penalty 1. \
--do_sample true \
--merge_lora false \
# Experimental environment: 4 * A100
# 4 * 41GB GPU memory
nproc_per_node=4
CUDA_VISIBLE_DEVICES=0,1,2,3 \
NPROC_PER_NODE=$nproc_per_node \
MASTER_PORT=29500 \
swift sft \
--model_id_or_path OpenBMB/MiniCPM-MoE-8x2B \
--model_revision master \
--sft_type lora \
--tuner_backend peft \
--dtype bf16 \
--output_dir output \
--dataset blossom-math-zh \
--train_dataset_sample -1 \
--num_train_epochs 1 \
--max_length 2048 \
--check_dataset_strategy warning \
--lora_rank 8 \
--lora_alpha 32 \
--lora_dropout_p 0.05 \
--lora_target_modules DEFAULT \
--gradient_checkpointing false \
--batch_size 1 \
--weight_decay 0.1 \
--learning_rate 1e-4 \
--gradient_accumulation_steps $(expr 16 / $nproc_per_node) \
--max_grad_norm 0.5 \
--warmup_ratio 0.03 \
--eval_steps 100 \
--save_steps 100 \
--save_total_limit 2 \
--logging_steps 10 \
--use_flash_attn false \
# Experimental environment: A10
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0 \
python llm_infer.py \
--ckpt_dir "output/mistral-7b-instruct/vx-xxx/checkpoint-xxx" \
--load_dataset_config true \
--max_new_tokens 2048 \
--temperature 0.1 \
--top_p 0.7 \
--repetition_penalty 1. \
--do_sample true \
--merge_lora false \
# Experimental environment: 2 * A10
# 2 * 21GB GPU memory
nproc_per_node=2
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0,1 \
torchrun \
--nproc_per_node=$nproc_per_node \
--master_port 29500 \
llm_sft.py \
--model_id_or_path AI-ModelScope/Mistral-7B-Instruct-v0.1 \
--model_revision master \
--sft_type lora \
--tuner_backend peft \
--template_type AUTO \
--dtype AUTO \
--output_dir output \
--ddp_backend nccl \
--dataset leetcode-python-en \
--train_dataset_sample -1 \
--num_train_epochs 1 \
--max_length 4096 \
--check_dataset_strategy warning \
--lora_rank 8 \
--lora_alpha 32 \
--lora_dropout_p 0.05 \
--lora_target_modules ALL \
--gradient_checkpointing true \
--batch_size 1 \
--weight_decay 0.1 \
--learning_rate 1e-4 \
--gradient_accumulation_steps $(expr 16 / $nproc_per_node) \
--max_grad_norm 0.5 \
--warmup_ratio 0.03 \
--eval_steps 100 \
--save_steps 100 \
--save_total_limit 2 \
--logging_steps 10 \
--deepspeed default-zero2 \
# Experimental environment: 3090
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0 \
python llm_infer.py \
--ckpt_dir "output/mistral-7b-instruct/vx-xxx/checkpoint-xxx" \
--load_dataset_config true \
--max_new_tokens 2048 \
--temperature 0.1 \
--top_p 0.7 \
--repetition_penalty 1. \
--do_sample true \
--merge_lora false \
# Experimental environment: 4 * 3090
# 4 * 19GB GPU memory
nproc_per_node=2
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0,1,2,3 \
torchrun \
--nproc_per_node=$nproc_per_node \
--master_port 29500 \
llm_sft.py \
--model_id_or_path AI-ModelScope/Mistral-7B-Instruct-v0.1 \
--model_revision master \
--sft_type lora \
--tuner_backend peft \
--template_type AUTO \
--dtype AUTO \
--output_dir output \
--ddp_backend nccl \
--dataset damo-agent-mini-zh \
--train_dataset_sample 20000 \
--num_train_epochs 1 \
--max_length 4096 \
--check_dataset_strategy warning \
--lora_rank 8 \
--lora_alpha 32 \
--lora_dropout_p 0.05 \
--lora_target_modules DEFAULT \
--gradient_checkpointing true \
--batch_size 1 \
--weight_decay 0.1 \
--learning_rate 1e-4 \
--gradient_accumulation_steps $(expr 16 / $nproc_per_node) \
--max_grad_norm 0.5 \
--warmup_ratio 0.03 \
--eval_steps 100 \
--save_steps 100 \
--save_total_limit 2 \
--logging_steps 10 \
# Experimental environment: A100
# 16GB GPU memory
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0 \
python llm_infer.py \
--ckpt_dir "output/mistral-7b-v2/vx-xxx/checkpoint-xxx" \
--load_dataset_config true \
--use_flash_attn true \
--max_new_tokens 2048 \
--temperature 0.5 \
--top_p 0.7 \
--repetition_penalty 1. \
--do_sample true \
--merge_lora false \
# Experimental environment: A100
# 19GB GPU memory
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0 \
python llm_sft.py \
--model_id_or_path AI-ModelScope/Mistral-7B-v0.2-hf \
--model_revision master \
--sft_type lora \
--tuner_backend peft \
--template_type AUTO \
--dtype AUTO \
--output_dir output \
--dataset dureader-robust-zh \
--train_dataset_sample -1 \
--num_train_epochs 1 \
--max_length 2048 \
--check_dataset_strategy warning \
--lora_rank 8 \
--lora_alpha 32 \
--lora_dropout_p 0.05 \
--lora_target_modules DEFAULT \
--gradient_checkpointing true \
--batch_size 1 \
--weight_decay 0.1 \
--learning_rate 1e-4 \
--gradient_accumulation_steps 16 \
--max_grad_norm 0.5 \
--warmup_ratio 0.03 \
--eval_steps 100 \
--save_steps 100 \
--save_total_limit 2 \
--logging_steps 10 \
--use_flash_attn true \
# Experimental environment: A100
# 2 * 45GB GPU memory
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0,1 \
python llm_infer.py \
--ckpt_dir "output/mixtral-moe-7b/vx-xxx/checkpoint-xxx" \
--load_dataset_config true \
--use_flash_attn true \
--max_new_tokens 2048 \
--temperature 0.5 \
--top_p 0.7 \
--repetition_penalty 1. \
--do_sample true \
--merge_lora false \
# Experimental environment: 2 * A100
# 2 * 60GB GPU memory
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0,1 \
python llm_sft.py \
--model_id_or_path AI-ModelScope/Mixtral-8x7B-v0.1 \
--model_revision master \
--sft_type lora \
--tuner_backend peft \
--template_type AUTO \
--dtype AUTO \
--output_dir output \
--dataset dureader-robust-zh \
--train_dataset_sample -1 \
--num_train_epochs 1 \
--max_length 2048 \
--check_dataset_strategy warning \
--lora_rank 8 \
--lora_alpha 32 \
--lora_dropout_p 0.05 \
--lora_target_modules q_proj k_proj v_proj o_proj \
--gradient_checkpointing false \
--batch_size 1 \
--weight_decay 0.1 \
--learning_rate 1e-4 \
--gradient_accumulation_steps 16 \
--max_grad_norm 0.5 \
--warmup_ratio 0.03 \
--eval_steps 100 \
--save_steps 100 \
--save_total_limit 2 \
--logging_steps 10 \
--use_flash_attn true \
# Experimental environment: A100
# 2 * 45GB GPU memory
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0,1 \
python llm_infer.py \
--ckpt_dir "output/mixtral-moe-7b-instruct/vx-xxx/checkpoint-xxx" \
--load_dataset_config true \
--use_flash_attn true \
--max_new_tokens 2048 \
--temperature 0.5 \
--top_p 0.7 \
--repetition_penalty 1. \
--do_sample true \
--merge_lora false \
# Experimental environment: 2 * A100
# 2 * 60GB GPU memory
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0,1 \
python llm_sft.py \
--model_id_or_path AI-ModelScope/Mixtral-8x7B-Instruct-v0.1 \
--model_revision master \
--sft_type lora \
--tuner_backend peft \
--template_type AUTO \
--dtype AUTO \
--output_dir output \
--dataset dureader-robust-zh \
--train_dataset_sample -1 \
--num_train_epochs 1 \
--max_length 2048 \
--check_dataset_strategy warning \
--lora_rank 8 \
--lora_alpha 32 \
--lora_dropout_p 0.05 \
--lora_target_modules q_proj k_proj v_proj o_proj \
--gradient_checkpointing false \
--batch_size 1 \
--weight_decay 0.1 \
--learning_rate 1e-4 \
--gradient_accumulation_steps 16 \
--max_grad_norm 0.5 \
--warmup_ratio 0.03 \
--eval_steps 100 \
--save_steps 100 \
--save_total_limit 2 \
--logging_steps 10 \
--use_flash_attn true \
# Experimental environment: A100
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python llm_infer.py \
--ckpt_dir "output/mixtral-8x22b-v0.1/vx-xxx/checkpoint-xxx" \
--load_dataset_config true \
--use_flash_attn true \
--max_new_tokens 2048 \
--temperature 0.5 \
--top_p 0.7 \
--repetition_penalty 1. \
--do_sample true \
--merge_lora false \
# Experimental environment: 8 * A100
# 4 * 41GB GPU memory
nproc_per_node=8
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
NPROC_PER_NODE=$nproc_per_node \
MASTER_PORT=29500 \
swift sft \
--model_id_or_path AI-ModelScope/Mixtral-8x22B-v0.1 \
--model_revision master \
--sft_type lora \
--tuner_backend peft \
--dtype bf16 \
--output_dir output \
--dataset blossom-math-zh \
--train_dataset_sample -1 \
--num_train_epochs 1 \
--max_length 2048 \
--check_dataset_strategy warning \
--lora_rank 8 \
--lora_alpha 32 \
--lora_dropout_p 0.05 \
--lora_target_modules DEFAULT \
--gradient_checkpointing false \
--batch_size 1 \
--weight_decay 0.1 \
--learning_rate 1e-4 \
--gradient_accumulation_steps $(expr 16 / $nproc_per_node) \
--max_grad_norm 0.5 \
--warmup_ratio 0.03 \
--eval_steps 100 \
--save_steps 100 \
--save_total_limit 2 \
--logging_steps 10 \
--use_flash_attn false \
--deepspeed default-zero3
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment