Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
GLM-4V_pytorch
Commits
1bfbcff0
Commit
1bfbcff0
authored
Jun 13, 2024
by
wanglch
Browse files
Initial commit
parents
Pipeline
#1204
canceled with stages
Changes
707
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
466 additions
and
0 deletions
+466
-0
swift-main/examples/pytorch/llm/scripts/mamba-1.4b/lora/infer.sh
...ain/examples/pytorch/llm/scripts/mamba-1.4b/lora/infer.sh
+13
-0
swift-main/examples/pytorch/llm/scripts/mamba-1.4b/lora/sft.sh
...-main/examples/pytorch/llm/scripts/mamba-1.4b/lora/sft.sh
+27
-0
swift-main/examples/pytorch/llm/scripts/mengzi3_13b_base/lora_ddp_ds/infer.sh
...pytorch/llm/scripts/mengzi3_13b_base/lora_ddp_ds/infer.sh
+11
-0
swift-main/examples/pytorch/llm/scripts/mengzi3_13b_base/lora_ddp_ds/sft.sh
...s/pytorch/llm/scripts/mengzi3_13b_base/lora_ddp_ds/sft.sh
+36
-0
swift-main/examples/pytorch/llm/scripts/minicpm_2b_sft_chat/lora_ddp/infer.sh
...pytorch/llm/scripts/minicpm_2b_sft_chat/lora_ddp/infer.sh
+8
-0
swift-main/examples/pytorch/llm/scripts/minicpm_2b_sft_chat/lora_ddp/sft.sh
...s/pytorch/llm/scripts/minicpm_2b_sft_chat/lora_ddp/sft.sh
+34
-0
swift-main/examples/pytorch/llm/scripts/minicpm_moe_8x2b/lora_ddp/infer.sh
...es/pytorch/llm/scripts/minicpm_moe_8x2b/lora_ddp/infer.sh
+13
-0
swift-main/examples/pytorch/llm/scripts/minicpm_moe_8x2b/lora_ddp/sft.sh
...ples/pytorch/llm/scripts/minicpm_moe_8x2b/lora_ddp/sft.sh
+34
-0
swift-main/examples/pytorch/llm/scripts/mistral_7b_instruct/lora_ddp_ds/infer.sh
...orch/llm/scripts/mistral_7b_instruct/lora_ddp_ds/infer.sh
+12
-0
swift-main/examples/pytorch/llm/scripts/mistral_7b_instruct/lora_ddp_ds/sft.sh
...ytorch/llm/scripts/mistral_7b_instruct/lora_ddp_ds/sft.sh
+39
-0
swift-main/examples/pytorch/llm/scripts/mistral_7b_instruct/lora_mp_ddp/infer.sh
...orch/llm/scripts/mistral_7b_instruct/lora_mp_ddp/infer.sh
+12
-0
swift-main/examples/pytorch/llm/scripts/mistral_7b_instruct/lora_mp_ddp/sft.sh
...ytorch/llm/scripts/mistral_7b_instruct/lora_mp_ddp/sft.sh
+38
-0
swift-main/examples/pytorch/llm/scripts/mistral_7b_v2/lora/infer.sh
.../examples/pytorch/llm/scripts/mistral_7b_v2/lora/infer.sh
+14
-0
swift-main/examples/pytorch/llm/scripts/mistral_7b_v2/lora/sft.sh
...in/examples/pytorch/llm/scripts/mistral_7b_v2/lora/sft.sh
+33
-0
swift-main/examples/pytorch/llm/scripts/mixtral_moe_7b/lora/infer.sh
...examples/pytorch/llm/scripts/mixtral_moe_7b/lora/infer.sh
+14
-0
swift-main/examples/pytorch/llm/scripts/mixtral_moe_7b/lora/sft.sh
...n/examples/pytorch/llm/scripts/mixtral_moe_7b/lora/sft.sh
+33
-0
swift-main/examples/pytorch/llm/scripts/mixtral_moe_7b_instruct/lora/infer.sh
...pytorch/llm/scripts/mixtral_moe_7b_instruct/lora/infer.sh
+14
-0
swift-main/examples/pytorch/llm/scripts/mixtral_moe_7b_instruct/lora/sft.sh
...s/pytorch/llm/scripts/mixtral_moe_7b_instruct/lora/sft.sh
+33
-0
swift-main/examples/pytorch/llm/scripts/mixtral_moe_8x22b_v1/lora_ddp_ds/infer.sh
...rch/llm/scripts/mixtral_moe_8x22b_v1/lora_ddp_ds/infer.sh
+13
-0
swift-main/examples/pytorch/llm/scripts/mixtral_moe_8x22b_v1/lora_ddp_ds/sft.sh
...torch/llm/scripts/mixtral_moe_8x22b_v1/lora_ddp_ds/sft.sh
+35
-0
No files found.
Too many changes to show.
To preserve performance only
707 of 707+
files are displayed.
Plain diff
Email patch
swift-main/examples/pytorch/llm/scripts/mamba-1.4b/lora/infer.sh
0 → 100644
View file @
1bfbcff0
# Experiment env: A10, RTX3090/4090, A100
PYTHONPATH
=
../../..
\
CUDA_VISIBLE_DEVICES
=
0,1
\
python llm_infer.py
\
--ckpt_dir
"output/mamba-1.4b/vx-xxx/checkpoint-xxx"
\
--load_dataset_config
true
\
--use_flash_attn
true
\
--max_new_tokens
2048
\
--temperature
0.5
\
--top_p
0.7
\
--repetition_penalty
1.
\
--do_sample
true
\
--merge_lora
false
\
swift-main/examples/pytorch/llm/scripts/mamba-1.4b/lora/sft.sh
0 → 100644
View file @
1bfbcff0
# Experiment env: A10, RTX3090/4090, A100
# 1 * 12GB GPU memory
PYTHONPATH
=
../../..
\
CUDA_VISIBLE_DEVICES
=
0
\
python llm_sft.py
\
--model_type
mamba-1.4b
\
--dataset
dureader-robust-zh
\
--batch_size
4
\
--max_length
1024
\
--gradient_accumulation_steps
2
\
--learning_rate
5e-5
\
--use_flash_attn
true
\
--eval_steps
1000
\
--save_steps
1000
\
--train_dataset_sample
-1
\
--num_train_epochs
2
\
--check_dataset_strategy
none
\
--gradient_checkpointing
true
\
--weight_decay
0.1
\
--max_grad_norm
1.0
\
--warmup_ratio
0.03
\
--save_total_limit
2
\
--logging_steps
10
\
--sft_type
lora
\
--lora_target_modules
DEFAULT
\
--lora_rank
8
\
--lora_alpha
32
swift-main/examples/pytorch/llm/scripts/mengzi3_13b_base/lora_ddp_ds/infer.sh
0 → 100644
View file @
1bfbcff0
# Experimental environment: A100
# 30GB GPU memory
CUDA_VISIBLE_DEVICES
=
0
\
swift infer
\
--ckpt_dir
"output/mengzi3-13b-base/vx-xxx/checkpoint-xxx"
\
--load_dataset_config
true
\
--temperature
0.1
\
--top_p
0.7
\
--repetition_penalty
1.
\
--do_sample
true
\
--merge_lora
false
\
swift-main/examples/pytorch/llm/scripts/mengzi3_13b_base/lora_ddp_ds/sft.sh
0 → 100644
View file @
1bfbcff0
# Experimental environment: 2 * A100
# 2 * 36GB GPU memory
nproc_per_node
=
2
CUDA_VISIBLE_DEVICES
=
0,1
\
NPROC_PER_NODE
=
$nproc_per_node
\
MASTER_PORT
=
29500
\
swift sft
\
--model_id_or_path
langboat/Mengzi3-13B-Base
\
--model_revision
master
\
--sft_type
lora
\
--tuner_backend
peft
\
--dtype
bf16
\
--output_dir
output
\
--ddp_backend
nccl
\
--dataset
dureader-robust-zh
\
--train_dataset_sample
-1
\
--num_train_epochs
1
\
--max_length
2048
\
--check_dataset_strategy
warning
\
--lora_rank
8
\
--lora_alpha
32
\
--lora_dropout_p
0.05
\
--lora_target_modules
DEFAULT
\
--gradient_checkpointing
true
\
--batch_size
1
\
--weight_decay
0.1
\
--learning_rate
1e-4
\
--gradient_accumulation_steps
$(
expr
16 /
$nproc_per_node
)
\
--max_grad_norm
0.5
\
--warmup_ratio
0.03
\
--eval_steps
100
\
--save_steps
100
\
--save_total_limit
2
\
--logging_steps
10
\
--deepspeed
default-zero2
\
swift-main/examples/pytorch/llm/scripts/minicpm_2b_sft_chat/lora_ddp/infer.sh
0 → 100644
View file @
1bfbcff0
# Experimental environment: A10
CUDA_VISIBLE_DEVICES
=
0
\
swift infer
\
--ckpt_dir
"output/minicpm-2b-sft-chat/vx-xxx/checkpoint-xxx"
\
--load_dataset_config
true
\
--use_flash_attn
false
\
--max_new_tokens
2048
\
--do_sample
false
\
swift-main/examples/pytorch/llm/scripts/minicpm_2b_sft_chat/lora_ddp/sft.sh
0 → 100644
View file @
1bfbcff0
# Experimental environment: 2 * A10
# 2 * 12GB GPU memory
nproc_per_node
=
2
CUDA_VISIBLE_DEVICES
=
0,1
\
NPROC_PER_NODE
=
$nproc_per_node
\
MASTER_PORT
=
29500
\
swift sft
\
--model_id_or_path
OpenBMB/MiniCPM-2B-sft-fp32
\
--model_revision
master
\
--sft_type
lora
\
--template_type
AUTO
\
--dtype
AUTO
\
--output_dir
output
\
--ddp_backend
nccl
\
--dataset
jd-sentiment-zh
\
--train_dataset_sample
-1
\
--val_dataset_sample
1000
\
--num_train_epochs
1
\
--max_length
2048
\
--check_dataset_strategy
warning
\
--lora_target_modules
ALL
\
--gradient_checkpointing
true
\
--batch_size
1
\
--weight_decay
0.1
\
--learning_rate
1e-4
\
--gradient_accumulation_steps
$(
expr
16 /
$nproc_per_node
)
\
--max_grad_norm
0.5
\
--warmup_ratio
0.03
\
--eval_steps
100
\
--save_steps
100
\
--save_total_limit
2
\
--logging_steps
10
\
--use_flash_attn
false
\
swift-main/examples/pytorch/llm/scripts/minicpm_moe_8x2b/lora_ddp/infer.sh
0 → 100644
View file @
1bfbcff0
# Experimental environment: A100
# 30GB GPU memory
CUDA_VISIBLE_DEVICES
=
0
\
swift infer
\
--ckpt_dir
"output/minicpm-moe-8x2b/vx-xxx/checkpoint-xxx"
\
--load_dataset_config
true
\
--max_new_tokens
2048
\
--temperature
0.1
\
--top_p
0.7
\
--repetition_penalty
1.
\
--do_sample
true
\
--merge_lora
false
\
swift-main/examples/pytorch/llm/scripts/minicpm_moe_8x2b/lora_ddp/sft.sh
0 → 100644
View file @
1bfbcff0
# Experimental environment: 4 * A100
# 4 * 41GB GPU memory
nproc_per_node
=
4
CUDA_VISIBLE_DEVICES
=
0,1,2,3
\
NPROC_PER_NODE
=
$nproc_per_node
\
MASTER_PORT
=
29500
\
swift sft
\
--model_id_or_path
OpenBMB/MiniCPM-MoE-8x2B
\
--model_revision
master
\
--sft_type
lora
\
--tuner_backend
peft
\
--dtype
bf16
\
--output_dir
output
\
--dataset
blossom-math-zh
\
--train_dataset_sample
-1
\
--num_train_epochs
1
\
--max_length
2048
\
--check_dataset_strategy
warning
\
--lora_rank
8
\
--lora_alpha
32
\
--lora_dropout_p
0.05
\
--lora_target_modules
DEFAULT
\
--gradient_checkpointing
false
\
--batch_size
1
\
--weight_decay
0.1
\
--learning_rate
1e-4
\
--gradient_accumulation_steps
$(
expr
16 /
$nproc_per_node
)
\
--max_grad_norm
0.5
\
--warmup_ratio
0.03
\
--eval_steps
100
\
--save_steps
100
\
--save_total_limit
2
\
--logging_steps
10
\
--use_flash_attn
false
\
swift-main/examples/pytorch/llm/scripts/mistral_7b_instruct/lora_ddp_ds/infer.sh
0 → 100644
View file @
1bfbcff0
# Experimental environment: A10
PYTHONPATH
=
../../..
\
CUDA_VISIBLE_DEVICES
=
0
\
python llm_infer.py
\
--ckpt_dir
"output/mistral-7b-instruct/vx-xxx/checkpoint-xxx"
\
--load_dataset_config
true
\
--max_new_tokens
2048
\
--temperature
0.1
\
--top_p
0.7
\
--repetition_penalty
1.
\
--do_sample
true
\
--merge_lora
false
\
swift-main/examples/pytorch/llm/scripts/mistral_7b_instruct/lora_ddp_ds/sft.sh
0 → 100644
View file @
1bfbcff0
# Experimental environment: 2 * A10
# 2 * 21GB GPU memory
nproc_per_node
=
2
PYTHONPATH
=
../../..
\
CUDA_VISIBLE_DEVICES
=
0,1
\
torchrun
\
--nproc_per_node
=
$nproc_per_node
\
--master_port
29500
\
llm_sft.py
\
--model_id_or_path
AI-ModelScope/Mistral-7B-Instruct-v0.1
\
--model_revision
master
\
--sft_type
lora
\
--tuner_backend
peft
\
--template_type
AUTO
\
--dtype
AUTO
\
--output_dir
output
\
--ddp_backend
nccl
\
--dataset
leetcode-python-en
\
--train_dataset_sample
-1
\
--num_train_epochs
1
\
--max_length
4096
\
--check_dataset_strategy
warning
\
--lora_rank
8
\
--lora_alpha
32
\
--lora_dropout_p
0.05
\
--lora_target_modules
ALL
\
--gradient_checkpointing
true
\
--batch_size
1
\
--weight_decay
0.1
\
--learning_rate
1e-4
\
--gradient_accumulation_steps
$(
expr
16 /
$nproc_per_node
)
\
--max_grad_norm
0.5
\
--warmup_ratio
0.03
\
--eval_steps
100
\
--save_steps
100
\
--save_total_limit
2
\
--logging_steps
10
\
--deepspeed
default-zero2
\
swift-main/examples/pytorch/llm/scripts/mistral_7b_instruct/lora_mp_ddp/infer.sh
0 → 100644
View file @
1bfbcff0
# Experimental environment: 3090
PYTHONPATH
=
../../..
\
CUDA_VISIBLE_DEVICES
=
0
\
python llm_infer.py
\
--ckpt_dir
"output/mistral-7b-instruct/vx-xxx/checkpoint-xxx"
\
--load_dataset_config
true
\
--max_new_tokens
2048
\
--temperature
0.1
\
--top_p
0.7
\
--repetition_penalty
1.
\
--do_sample
true
\
--merge_lora
false
\
swift-main/examples/pytorch/llm/scripts/mistral_7b_instruct/lora_mp_ddp/sft.sh
0 → 100644
View file @
1bfbcff0
# Experimental environment: 4 * 3090
# 4 * 19GB GPU memory
nproc_per_node
=
2
PYTHONPATH
=
../../..
\
CUDA_VISIBLE_DEVICES
=
0,1,2,3
\
torchrun
\
--nproc_per_node
=
$nproc_per_node
\
--master_port
29500
\
llm_sft.py
\
--model_id_or_path
AI-ModelScope/Mistral-7B-Instruct-v0.1
\
--model_revision
master
\
--sft_type
lora
\
--tuner_backend
peft
\
--template_type
AUTO
\
--dtype
AUTO
\
--output_dir
output
\
--ddp_backend
nccl
\
--dataset
damo-agent-mini-zh
\
--train_dataset_sample
20000
\
--num_train_epochs
1
\
--max_length
4096
\
--check_dataset_strategy
warning
\
--lora_rank
8
\
--lora_alpha
32
\
--lora_dropout_p
0.05
\
--lora_target_modules
DEFAULT
\
--gradient_checkpointing
true
\
--batch_size
1
\
--weight_decay
0.1
\
--learning_rate
1e-4
\
--gradient_accumulation_steps
$(
expr
16 /
$nproc_per_node
)
\
--max_grad_norm
0.5
\
--warmup_ratio
0.03
\
--eval_steps
100
\
--save_steps
100
\
--save_total_limit
2
\
--logging_steps
10
\
swift-main/examples/pytorch/llm/scripts/mistral_7b_v2/lora/infer.sh
0 → 100644
View file @
1bfbcff0
# Experimental environment: A100
# 16GB GPU memory
PYTHONPATH
=
../../..
\
CUDA_VISIBLE_DEVICES
=
0
\
python llm_infer.py
\
--ckpt_dir
"output/mistral-7b-v2/vx-xxx/checkpoint-xxx"
\
--load_dataset_config
true
\
--use_flash_attn
true
\
--max_new_tokens
2048
\
--temperature
0.5
\
--top_p
0.7
\
--repetition_penalty
1.
\
--do_sample
true
\
--merge_lora
false
\
swift-main/examples/pytorch/llm/scripts/mistral_7b_v2/lora/sft.sh
0 → 100644
View file @
1bfbcff0
# Experimental environment: A100
# 19GB GPU memory
PYTHONPATH
=
../../..
\
CUDA_VISIBLE_DEVICES
=
0
\
python llm_sft.py
\
--model_id_or_path
AI-ModelScope/Mistral-7B-v0.2-hf
\
--model_revision
master
\
--sft_type
lora
\
--tuner_backend
peft
\
--template_type
AUTO
\
--dtype
AUTO
\
--output_dir
output
\
--dataset
dureader-robust-zh
\
--train_dataset_sample
-1
\
--num_train_epochs
1
\
--max_length
2048
\
--check_dataset_strategy
warning
\
--lora_rank
8
\
--lora_alpha
32
\
--lora_dropout_p
0.05
\
--lora_target_modules
DEFAULT
\
--gradient_checkpointing
true
\
--batch_size
1
\
--weight_decay
0.1
\
--learning_rate
1e-4
\
--gradient_accumulation_steps
16
\
--max_grad_norm
0.5
\
--warmup_ratio
0.03
\
--eval_steps
100
\
--save_steps
100
\
--save_total_limit
2
\
--logging_steps
10
\
--use_flash_attn
true
\
swift-main/examples/pytorch/llm/scripts/mixtral_moe_7b/lora/infer.sh
0 → 100644
View file @
1bfbcff0
# Experimental environment: A100
# 2 * 45GB GPU memory
PYTHONPATH
=
../../..
\
CUDA_VISIBLE_DEVICES
=
0,1
\
python llm_infer.py
\
--ckpt_dir
"output/mixtral-moe-7b/vx-xxx/checkpoint-xxx"
\
--load_dataset_config
true
\
--use_flash_attn
true
\
--max_new_tokens
2048
\
--temperature
0.5
\
--top_p
0.7
\
--repetition_penalty
1.
\
--do_sample
true
\
--merge_lora
false
\
swift-main/examples/pytorch/llm/scripts/mixtral_moe_7b/lora/sft.sh
0 → 100644
View file @
1bfbcff0
# Experimental environment: 2 * A100
# 2 * 60GB GPU memory
PYTHONPATH
=
../../..
\
CUDA_VISIBLE_DEVICES
=
0,1
\
python llm_sft.py
\
--model_id_or_path
AI-ModelScope/Mixtral-8x7B-v0.1
\
--model_revision
master
\
--sft_type
lora
\
--tuner_backend
peft
\
--template_type
AUTO
\
--dtype
AUTO
\
--output_dir
output
\
--dataset
dureader-robust-zh
\
--train_dataset_sample
-1
\
--num_train_epochs
1
\
--max_length
2048
\
--check_dataset_strategy
warning
\
--lora_rank
8
\
--lora_alpha
32
\
--lora_dropout_p
0.05
\
--lora_target_modules
q_proj k_proj v_proj o_proj
\
--gradient_checkpointing
false
\
--batch_size
1
\
--weight_decay
0.1
\
--learning_rate
1e-4
\
--gradient_accumulation_steps
16
\
--max_grad_norm
0.5
\
--warmup_ratio
0.03
\
--eval_steps
100
\
--save_steps
100
\
--save_total_limit
2
\
--logging_steps
10
\
--use_flash_attn
true
\
swift-main/examples/pytorch/llm/scripts/mixtral_moe_7b_instruct/lora/infer.sh
0 → 100644
View file @
1bfbcff0
# Experimental environment: A100
# 2 * 45GB GPU memory
PYTHONPATH
=
../../..
\
CUDA_VISIBLE_DEVICES
=
0,1
\
python llm_infer.py
\
--ckpt_dir
"output/mixtral-moe-7b-instruct/vx-xxx/checkpoint-xxx"
\
--load_dataset_config
true
\
--use_flash_attn
true
\
--max_new_tokens
2048
\
--temperature
0.5
\
--top_p
0.7
\
--repetition_penalty
1.
\
--do_sample
true
\
--merge_lora
false
\
swift-main/examples/pytorch/llm/scripts/mixtral_moe_7b_instruct/lora/sft.sh
0 → 100644
View file @
1bfbcff0
# Experimental environment: 2 * A100
# 2 * 60GB GPU memory
PYTHONPATH
=
../../..
\
CUDA_VISIBLE_DEVICES
=
0,1
\
python llm_sft.py
\
--model_id_or_path
AI-ModelScope/Mixtral-8x7B-Instruct-v0.1
\
--model_revision
master
\
--sft_type
lora
\
--tuner_backend
peft
\
--template_type
AUTO
\
--dtype
AUTO
\
--output_dir
output
\
--dataset
dureader-robust-zh
\
--train_dataset_sample
-1
\
--num_train_epochs
1
\
--max_length
2048
\
--check_dataset_strategy
warning
\
--lora_rank
8
\
--lora_alpha
32
\
--lora_dropout_p
0.05
\
--lora_target_modules
q_proj k_proj v_proj o_proj
\
--gradient_checkpointing
false
\
--batch_size
1
\
--weight_decay
0.1
\
--learning_rate
1e-4
\
--gradient_accumulation_steps
16
\
--max_grad_norm
0.5
\
--warmup_ratio
0.03
\
--eval_steps
100
\
--save_steps
100
\
--save_total_limit
2
\
--logging_steps
10
\
--use_flash_attn
true
\
swift-main/examples/pytorch/llm/scripts/mixtral_moe_8x22b_v1/lora_ddp_ds/infer.sh
0 → 100644
View file @
1bfbcff0
# Experimental environment: A100
PYTHONPATH
=
../../..
\
CUDA_VISIBLE_DEVICES
=
0,1,2,3
\
python llm_infer.py
\
--ckpt_dir
"output/mixtral-8x22b-v0.1/vx-xxx/checkpoint-xxx"
\
--load_dataset_config
true
\
--use_flash_attn
true
\
--max_new_tokens
2048
\
--temperature
0.5
\
--top_p
0.7
\
--repetition_penalty
1.
\
--do_sample
true
\
--merge_lora
false
\
swift-main/examples/pytorch/llm/scripts/mixtral_moe_8x22b_v1/lora_ddp_ds/sft.sh
0 → 100644
View file @
1bfbcff0
# Experimental environment: 8 * A100
# 4 * 41GB GPU memory
nproc_per_node
=
8
CUDA_VISIBLE_DEVICES
=
0,1,2,3,4,5,6,7
\
NPROC_PER_NODE
=
$nproc_per_node
\
MASTER_PORT
=
29500
\
swift sft
\
--model_id_or_path
AI-ModelScope/Mixtral-8x22B-v0.1
\
--model_revision
master
\
--sft_type
lora
\
--tuner_backend
peft
\
--dtype
bf16
\
--output_dir
output
\
--dataset
blossom-math-zh
\
--train_dataset_sample
-1
\
--num_train_epochs
1
\
--max_length
2048
\
--check_dataset_strategy
warning
\
--lora_rank
8
\
--lora_alpha
32
\
--lora_dropout_p
0.05
\
--lora_target_modules
DEFAULT
\
--gradient_checkpointing
false
\
--batch_size
1
\
--weight_decay
0.1
\
--learning_rate
1e-4
\
--gradient_accumulation_steps
$(
expr
16 /
$nproc_per_node
)
\
--max_grad_norm
0.5
\
--warmup_ratio
0.03
\
--eval_steps
100
\
--save_steps
100
\
--save_total_limit
2
\
--logging_steps
10
\
--use_flash_attn
false
\
--deepspeed
default-zero3
Prev
1
…
16
17
18
19
20
21
22
23
24
…
36
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment