Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
GLM-4V_pytorch
Commits
1bfbcff0
Commit
1bfbcff0
authored
Jun 13, 2024
by
wanglch
Browse files
Initial commit
parents
Pipeline
#1204
canceled with stages
Changes
707
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
472 additions
and
0 deletions
+472
-0
swift-main/examples/pytorch/llm/scripts/internlm_xcomposer2_7b_chat/lora/infer.sh
...rch/llm/scripts/internlm_xcomposer2_7b_chat/lora/infer.sh
+12
-0
swift-main/examples/pytorch/llm/scripts/internlm_xcomposer2_7b_chat/lora/sft.sh
...torch/llm/scripts/internlm_xcomposer2_7b_chat/lora/sft.sh
+31
-0
swift-main/examples/pytorch/llm/scripts/llama2_13b_chat/longlora_ddp_ds/infer.sh
...orch/llm/scripts/llama2_13b_chat/longlora_ddp_ds/infer.sh
+12
-0
swift-main/examples/pytorch/llm/scripts/llama2_13b_chat/longlora_ddp_ds/sft.sh
...ytorch/llm/scripts/llama2_13b_chat/longlora_ddp_ds/sft.sh
+40
-0
swift-main/examples/pytorch/llm/scripts/llama2_13b_chat/qlora_ddp_ds/infer.sh
...pytorch/llm/scripts/llama2_13b_chat/qlora_ddp_ds/infer.sh
+12
-0
swift-main/examples/pytorch/llm/scripts/llama2_13b_chat/qlora_ddp_ds/sft.sh
...s/pytorch/llm/scripts/llama2_13b_chat/qlora_ddp_ds/sft.sh
+41
-0
swift-main/examples/pytorch/llm/scripts/llama2_13b_chat/rome.sh
...main/examples/pytorch/llm/scripts/llama2_13b_chat/rome.sh
+13
-0
swift-main/examples/pytorch/llm/scripts/llama2_70b_chat/qlora_ddp_ds/infer.sh
...pytorch/llm/scripts/llama2_70b_chat/qlora_ddp_ds/infer.sh
+12
-0
swift-main/examples/pytorch/llm/scripts/llama2_70b_chat/qlora_ddp_ds/sft.sh
...s/pytorch/llm/scripts/llama2_70b_chat/qlora_ddp_ds/sft.sh
+41
-0
swift-main/examples/pytorch/llm/scripts/llama2_70b_chat/qlora_fsdp/fsdp_offload.json
.../llm/scripts/llama2_70b_chat/qlora_fsdp/fsdp_offload.json
+28
-0
swift-main/examples/pytorch/llm/scripts/llama2_70b_chat/qlora_fsdp/infer.sh
...s/pytorch/llm/scripts/llama2_70b_chat/qlora_fsdp/infer.sh
+12
-0
swift-main/examples/pytorch/llm/scripts/llama2_70b_chat/qlora_fsdp/sft.sh
...les/pytorch/llm/scripts/llama2_70b_chat/qlora_fsdp/sft.sh
+39
-0
swift-main/examples/pytorch/llm/scripts/llama2_70b_chat/qlora_mp/infer.sh
...les/pytorch/llm/scripts/llama2_70b_chat/qlora_mp/infer.sh
+12
-0
swift-main/examples/pytorch/llm/scripts/llama2_70b_chat/qlora_mp/sft.sh
...mples/pytorch/llm/scripts/llama2_70b_chat/qlora_mp/sft.sh
+35
-0
swift-main/examples/pytorch/llm/scripts/llama2_7b_aqlm_2bit_1x16/lora/infer.sh
...ytorch/llm/scripts/llama2_7b_aqlm_2bit_1x16/lora/infer.sh
+14
-0
swift-main/examples/pytorch/llm/scripts/llama2_7b_aqlm_2bit_1x16/lora/sft.sh
.../pytorch/llm/scripts/llama2_7b_aqlm_2bit_1x16/lora/sft.sh
+27
-0
swift-main/examples/pytorch/llm/scripts/llama3_8b_instruct/lora/infer.sh
...ples/pytorch/llm/scripts/llama3_8b_instruct/lora/infer.sh
+11
-0
swift-main/examples/pytorch/llm/scripts/llama3_8b_instruct/lora/sft.sh
...amples/pytorch/llm/scripts/llama3_8b_instruct/lora/sft.sh
+32
-0
swift-main/examples/pytorch/llm/scripts/llama3_8b_instruct/lora_ddp_zero2/infer.sh
...ch/llm/scripts/llama3_8b_instruct/lora_ddp_zero2/infer.sh
+11
-0
swift-main/examples/pytorch/llm/scripts/llama3_8b_instruct/lora_ddp_zero2/sft.sh
...orch/llm/scripts/llama3_8b_instruct/lora_ddp_zero2/sft.sh
+37
-0
No files found.
Too many changes to show.
To preserve performance only
707 of 707+
files are displayed.
Plain diff
Email patch
swift-main/examples/pytorch/llm/scripts/internlm_xcomposer2_7b_chat/lora/infer.sh
0 → 100644
View file @
1bfbcff0
# Experimental environment: V100, A10, 3090
CUDA_VISIBLE_DEVICES
=
0
\
swift infer
\
--ckpt_dir
"output/internlm-xcomposer2-7b-chat/vx-xxx/checkpoint-xxx"
\
--load_dataset_config
true
\
--use_flash_attn
false
\
--max_new_tokens
2048
\
--temperature
0.5
\
--top_p
0.7
\
--repetition_penalty
1.
\
--do_sample
true
\
--merge_lora
false
\
swift-main/examples/pytorch/llm/scripts/internlm_xcomposer2_7b_chat/lora/sft.sh
0 → 100644
View file @
1bfbcff0
# Experimental environment: V100, A10, 3090
# 21GB GPU memory
CUDA_VISIBLE_DEVICES
=
0
\
swift sft
\
--model_type
internlm-xcomposer2-7b-chat
\
--sft_type
lora
\
--tuner_backend
peft
\
--template_type
AUTO
\
--dtype
AUTO
\
--output_dir
output
\
--dataset
coco-en-mini
\
--train_dataset_sample
-1
\
--num_train_epochs
1
\
--max_length
2048
\
--check_dataset_strategy
warning
\
--lora_rank
8
\
--lora_alpha
32
\
--lora_dropout_p
0.05
\
--lora_target_modules
DEFAULT
\
--gradient_checkpointing
true
\
--batch_size
1
\
--weight_decay
0.1
\
--learning_rate
1e-4
\
--gradient_accumulation_steps
16
\
--max_grad_norm
0.5
\
--warmup_ratio
0.03
\
--eval_steps
100
\
--save_steps
100
\
--save_total_limit
2
\
--logging_steps
10
\
--use_flash_attn
false
\
swift-main/examples/pytorch/llm/scripts/llama2_13b_chat/longlora_ddp_ds/infer.sh
0 → 100644
View file @
1bfbcff0
# Experimental environment: A100
PYTHONPATH
=
../../..
\
CUDA_VISIBLE_DEVICES
=
0
\
python llm_infer.py
\
--ckpt_dir
"output/llama2-13b-chat/vx-xxx/checkpoint-xxx"
\
--load_dataset_config
true
\
--max_new_tokens
2048
\
--temperature
0.1
\
--top_p
0.7
\
--repetition_penalty
1.
\
--do_sample
true
\
--merge_lora
false
\
swift-main/examples/pytorch/llm/scripts/llama2_13b_chat/longlora_ddp_ds/sft.sh
0 → 100644
View file @
1bfbcff0
# Experimental environment: 2 * A100
# 2 * 37GB GPU memory
nproc_per_node
=
2
PYTHONPATH
=
../../..
\
CUDA_VISIBLE_DEVICES
=
0,1
\
torchrun
\
--nproc_per_node
=
$nproc_per_node
\
--master_port
29500
\
llm_sft.py
\
--model_id_or_path
modelscope/Llama-2-13b-chat-ms
\
--model_revision
master
\
--sft_type
longlora
\
--tuner_backend
peft
\
--template_type
AUTO
\
--dtype
AUTO
\
--output_dir
output
\
--ddp_backend
nccl
\
--dataset
leetcode-python-en
\
--train_dataset_sample
-1
\
--num_train_epochs
1
\
--max_length
4096
\
--check_dataset_strategy
warning
\
--lora_rank
8
\
--lora_alpha
32
\
--lora_dropout_p
0.05
\
--lora_target_modules
ALL
\
--gradient_checkpointing
true
\
--batch_size
1
\
--weight_decay
0.1
\
--learning_rate
1e-4
\
--gradient_accumulation_steps
$(
expr
16 /
$nproc_per_node
)
\
--max_grad_norm
0.5
\
--warmup_ratio
0.03
\
--eval_steps
100
\
--save_steps
100
\
--save_total_limit
2
\
--logging_steps
10
\
--deepspeed
default-zero2
\
--save_only_model
true
\
swift-main/examples/pytorch/llm/scripts/llama2_13b_chat/qlora_ddp_ds/infer.sh
0 → 100644
View file @
1bfbcff0
# Experimental environment: A10
PYTHONPATH
=
../../..
\
CUDA_VISIBLE_DEVICES
=
0
\
python llm_infer.py
\
--ckpt_dir
"output/llama2-13b-chat/vx-xxx/checkpoint-xxx"
\
--load_dataset_config
true
\
--max_new_tokens
2048
\
--temperature
0.1
\
--top_p
0.7
\
--repetition_penalty
1.
\
--do_sample
true
\
--merge_lora
false
\
swift-main/examples/pytorch/llm/scripts/llama2_13b_chat/qlora_ddp_ds/sft.sh
0 → 100644
View file @
1bfbcff0
# Experimental environment: 2 * A10
# 2 * 16GB GPU memory
nproc_per_node
=
2
PYTHONPATH
=
../../..
\
CUDA_VISIBLE_DEVICES
=
0,1
\
torchrun
\
--nproc_per_node
=
$nproc_per_node
\
--master_port
29500
\
llm_sft.py
\
--model_id_or_path
modelscope/Llama-2-13b-chat-ms
\
--model_revision
master
\
--sft_type
lora
\
--tuner_backend
peft
\
--template_type
AUTO
\
--dtype
AUTO
\
--output_dir
output
\
--ddp_backend
nccl
\
--dataset
leetcode-python-en
\
--train_dataset_sample
-1
\
--num_train_epochs
1
\
--max_length
4096
\
--check_dataset_strategy
warning
\
--quantization_bit
4
\
--bnb_4bit_comp_dtype
AUTO
\
--lora_rank
8
\
--lora_alpha
32
\
--lora_dropout_p
0.05
\
--lora_target_modules
ALL
\
--gradient_checkpointing
true
\
--batch_size
1
\
--weight_decay
0.1
\
--learning_rate
1e-4
\
--gradient_accumulation_steps
$(
expr
16 /
$nproc_per_node
)
\
--max_grad_norm
0.5
\
--warmup_ratio
0.03
\
--eval_steps
100
\
--save_steps
100
\
--save_total_limit
2
\
--logging_steps
10
\
--deepspeed
default-zero2
\
swift-main/examples/pytorch/llm/scripts/llama2_13b_chat/rome.sh
0 → 100644
View file @
1bfbcff0
# Experimental environment: A10
PYTHONPATH
=
../../..
\
CUDA_VISIBLE_DEVICES
=
0
\
python rome_infer.py
\
--model_id_or_path
modelscope/Llama-2-13b-chat-ms
\
--model_revision
master
\
--template_type
AUTO
\
--dtype
AUTO
\
--max_new_tokens
128
\
--temperature
0.1
\
--top_p
0.7
\
--do_sample
true
\
--rome_request_file
rome_example/request.json
swift-main/examples/pytorch/llm/scripts/llama2_70b_chat/qlora_ddp_ds/infer.sh
0 → 100644
View file @
1bfbcff0
# Experimental environment: A100
PYTHONPATH
=
../../..
\
CUDA_VISIBLE_DEVICES
=
0
\
python llm_infer.py
\
--ckpt_dir
"output/llama2-70b-chat/vx-xxx/checkpoint-xxx"
\
--load_dataset_config
true
\
--max_new_tokens
2048
\
--temperature
0.1
\
--top_p
0.7
\
--repetition_penalty
1.
\
--do_sample
true
\
--merge_lora
false
\
swift-main/examples/pytorch/llm/scripts/llama2_70b_chat/qlora_ddp_ds/sft.sh
0 → 100644
View file @
1bfbcff0
# Experimental environment: 2 * A100
# 2 * 50GB GPU memory
nproc_per_node
=
2
PYTHONPATH
=
../../..
\
CUDA_VISIBLE_DEVICES
=
0,1
\
torchrun
\
--nproc_per_node
=
$nproc_per_node
\
--master_port
29500
\
llm_sft.py
\
--model_id_or_path
modelscope/Llama-2-70b-chat-ms
\
--model_revision
master
\
--sft_type
lora
\
--tuner_backend
peft
\
--template_type
AUTO
\
--dtype
AUTO
\
--output_dir
output
\
--ddp_backend
nccl
\
--dataset
leetcode-python-en
\
--train_dataset_sample
-1
\
--num_train_epochs
1
\
--max_length
4096
\
--check_dataset_strategy
warning
\
--quantization_bit
4
\
--bnb_4bit_comp_dtype
AUTO
\
--lora_rank
8
\
--lora_alpha
32
\
--lora_dropout_p
0.05
\
--lora_target_modules
q_proj v_proj
\
--gradient_checkpointing
true
\
--batch_size
1
\
--weight_decay
0.1
\
--learning_rate
1e-4
\
--gradient_accumulation_steps
$(
expr
16 /
$nproc_per_node
)
\
--max_grad_norm
0.5
\
--warmup_ratio
0.03
\
--eval_steps
100
\
--save_steps
100
\
--save_total_limit
2
\
--logging_steps
10
\
--deepspeed
default-zero2
\
swift-main/examples/pytorch/llm/scripts/llama2_70b_chat/qlora_fsdp/fsdp_offload.json
0 → 100644
View file @
1bfbcff0
{
"compute_environment"
:
"LOCAL_MACHINE"
,
"debug"
:
false
,
"distributed_type"
:
"FSDP"
,
"downcast_bf16"
:
"no"
,
"fsdp_config"
:
{
"fsdp_auto_wrap_policy"
:
"TRANSFORMER_BASED_WRAP"
,
"fsdp_backward_prefetch"
:
"BACKWARD_PRE"
,
"fsdp_cpu_ram_efficient_loading"
:
true
,
"fsdp_forward_prefetch"
:
false
,
"fsdp_offload_params"
:
true
,
"fsdp_sharding_strategy"
:
"FULL_SHARD"
,
"fsdp_state_dict_type"
:
"FULL_STATE_DICT"
,
"fsdp_sync_module_states"
:
true
,
"fsdp_use_orig_params"
:
false
},
"machine_rank"
:
0
,
"main_training_function"
:
"main"
,
"mixed_precision"
:
"no"
,
"num_machines"
:
1
,
"num_processes"
:
2
,
"rdzv_backend"
:
"static"
,
"same_network"
:
true
,
"tpu_env"
:
[],
"tpu_use_cluster"
:
false
,
"tpu_use_sudo"
:
false
,
"use_cpu"
:
false
}
swift-main/examples/pytorch/llm/scripts/llama2_70b_chat/qlora_fsdp/infer.sh
0 → 100644
View file @
1bfbcff0
# 2 GPU 80G memory total
PYTHONPATH
=
../../..
\
CUDA_VISIBLE_DEVICES
=
0
\
python llm_infer.py
\
--ckpt_dir
"output/llama2-70b-chat/vxx-xxx-xxxx/checkpoint-xx"
\
--load_dataset_config
true
\
--max_new_tokens
2048
\
--temperature
0.1
\
--top_p
0.7
\
--repetition_penalty
1.
\
--do_sample
true
\
--merge_lora
false
\
swift-main/examples/pytorch/llm/scripts/llama2_70b_chat/qlora_fsdp/sft.sh
0 → 100644
View file @
1bfbcff0
# 2 GPU * 24G
# bitsandbytes>=0.43.0 needed
nproc_per_node
=
2
PYTHONPATH
=
../../..
\
CUDA_VISIBLE_DEVICES
=
0,1
\
accelerate launch
--config_file
"./scripts/llama2_70b_chat/qlora_fsdp/fsdp_offload.json"
\
llm_sft.py
\
--model_type
llama2-70b-chat
\
--model_revision
master
\
--sft_type
lora
\
--tuner_backend
peft
\
--template_type
AUTO
\
--dtype
bf16
\
--output_dir
output
\
--dataset
leetcode-python-en
\
--train_dataset_sample
-1
\
--num_train_epochs
1
\
--max_length
2048
\
--check_dataset_strategy
warning
\
--quantization_bit
4
\
--bnb_4bit_comp_dtype
AUTO
\
--bnb_4bit_quant_storage
bfloat16
\
--lora_rank
8
\
--lora_alpha
32
\
--lora_dtype
AUTO
\
--lora_dropout_p
0.05
\
--lora_target_modules
DEFAULT
\
--gradient_checkpointing
true
\
--batch_size
1
\
--weight_decay
0.1
\
--learning_rate
1e-4
\
--gradient_accumulation_steps
$(
expr
16 /
$nproc_per_node
)
\
--max_grad_norm
0.5
\
--warmup_ratio
0.03
\
--eval_steps
50
\
--save_steps
50
\
--save_total_limit
2
\
--logging_steps
10
\
swift-main/examples/pytorch/llm/scripts/llama2_70b_chat/qlora_mp/infer.sh
0 → 100644
View file @
1bfbcff0
# Experimental environment: 2 * 3090
PYTHONPATH
=
../../..
\
CUDA_VISIBLE_DEVICES
=
0,1
\
python llm_infer.py
\
--ckpt_dir
"output/llama2-70b-chat/vx-xxx/checkpoint-xxx"
\
--load_dataset_config
true
\
--max_new_tokens
2048
\
--temperature
0.1
\
--top_p
0.7
\
--repetition_penalty
1.
\
--do_sample
true
\
--merge_lora
false
\
swift-main/examples/pytorch/llm/scripts/llama2_70b_chat/qlora_mp/sft.sh
0 → 100644
View file @
1bfbcff0
# Experimental environment: 2 * 3090
# 2 * 23GB GPU memory
PYTHONPATH
=
../../..
\
CUDA_VISIBLE_DEVICES
=
0,1
\
python llm_sft.py
\
--model_id_or_path
modelscope/Llama-2-70b-chat-ms
\
--model_revision
master
\
--sft_type
lora
\
--tuner_backend
peft
\
--template_type
AUTO
\
--dtype
AUTO
\
--output_dir
output
\
--dataset
sql-create-context-en
\
--train_dataset_sample
20000
\
--num_train_epochs
1
\
--max_length
2048
\
--check_dataset_strategy
warning
\
--quantization_bit
4
\
--bnb_4bit_comp_dtype
AUTO
\
--lora_rank
8
\
--lora_alpha
32
\
--lora_dropout_p
0.05
\
--lora_target_modules
q_proj v_proj
\
--gradient_checkpointing
true
\
--batch_size
1
\
--weight_decay
0.1
\
--learning_rate
1e-4
\
--gradient_accumulation_steps
16
\
--max_grad_norm
0.5
\
--warmup_ratio
0.03
\
--eval_steps
100
\
--save_steps
100
\
--save_total_limit
2
\
--logging_steps
10
\
swift-main/examples/pytorch/llm/scripts/llama2_7b_aqlm_2bit_1x16/lora/infer.sh
0 → 100644
View file @
1bfbcff0
# Experiment env: A10, RTX3090/4090, A100
PYTHONPATH
=
../../..
\
CUDA_VISIBLE_DEVICES
=
0,1
\
python llm_infer.py
\
--ckpt_dir
"output/llama2-7b-aqlm-2bit-1x16/vx-xxx/checkpoint-xxx"
\
--load_dataset_config
true
\
--use_flash_attn
true
\
--max_new_tokens
2048
\
--temperature
0.5
\
--top_p
0.7
\
--repetition_penalty
1.
\
--do_sample
true
\
--stream
false
\
--merge_lora
false
\
swift-main/examples/pytorch/llm/scripts/llama2_7b_aqlm_2bit_1x16/lora/sft.sh
0 → 100644
View file @
1bfbcff0
# Experiment env: A10, RTX3090/4090, A100
# 1 * 7.5GB GPU memory
PYTHONPATH
=
../../..
\
CUDA_VISIBLE_DEVICES
=
0
\
python llm_sft.py
\
--model_type
llama2-7b-aqlm-2bit-1x16
\
--dataset
dureader-robust-zh
\
--batch_size
4
\
--max_length
1024
\
--gradient_accumulation_steps
2
\
--learning_rate
5e-5
\
--use_flash_attn
true
\
--eval_steps
1000
\
--save_steps
1000
\
--train_dataset_sample
-1
\
--num_train_epochs
2
\
--check_dataset_strategy
none
\
--gradient_checkpointing
true
\
--weight_decay
0.1
\
--max_grad_norm
1.0
\
--warmup_ratio
0.03
\
--save_total_limit
2
\
--logging_steps
10
\
--sft_type
lora
\
--lora_target_modules
ALL
\
--lora_rank
8
\
--lora_alpha
32
swift-main/examples/pytorch/llm/scripts/llama3_8b_instruct/lora/infer.sh
0 → 100644
View file @
1bfbcff0
# Experimental environment: 3090, A10, V100
CUDA_VISIBLE_DEVICES
=
0
\
swift infer
\
--ckpt_dir
"output/llama3-8b-instruct/vx-xxx/checkpoint-xxx"
\
--load_dataset_config
true
\
--max_new_tokens
2048
\
--temperature
0.1
\
--top_p
0.7
\
--repetition_penalty
1.
\
--do_sample
true
\
--merge_lora
false
\
swift-main/examples/pytorch/llm/scripts/llama3_8b_instruct/lora/sft.sh
0 → 100644
View file @
1bfbcff0
# Experimental environment: 3090, A10, V100
# 20GB GPU memory
CUDA_VISIBLE_DEVICES
=
0
\
swift sft
\
--model_id_or_path
LLM-Research/Meta-Llama-3-8B-Instruct
\
--model_revision
master
\
--sft_type
lora
\
--tuner_backend
peft
\
--template_type
AUTO
\
--dtype
AUTO
\
--output_dir
output
\
--dataset
blossom-math-zh
\
--train_dataset_sample
-1
\
--num_train_epochs
5
\
--max_length
2048
\
--check_dataset_strategy
warning
\
--lora_rank
8
\
--lora_alpha
32
\
--lora_dropout_p
0.05
\
--lora_target_modules
ALL
\
--gradient_checkpointing
true
\
--batch_size
1
\
--weight_decay
0.1
\
--learning_rate
1e-4
\
--gradient_accumulation_steps
16
\
--max_grad_norm
0.5
\
--warmup_ratio
0.03
\
--eval_steps
100
\
--save_steps
100
\
--save_total_limit
2
\
--logging_steps
10
\
swift-main/examples/pytorch/llm/scripts/llama3_8b_instruct/lora_ddp_zero2/infer.sh
0 → 100644
View file @
1bfbcff0
# Experimental environment: 3090, A10, V100
CUDA_VISIBLE_DEVICES
=
0
\
swift infer
\
--ckpt_dir
"output/llama3-8b-instruct/vx-xxx/checkpoint-xxx"
\
--load_dataset_config
true
\
--max_new_tokens
2048
\
--temperature
0.1
\
--top_p
0.7
\
--repetition_penalty
1.
\
--do_sample
true
\
--merge_lora
false
\
swift-main/examples/pytorch/llm/scripts/llama3_8b_instruct/lora_ddp_zero2/sft.sh
0 → 100644
View file @
1bfbcff0
# Experimental environment: 2 * 3090
# 2 * 22GB GPU memory
nproc_per_node
=
2
NPROC_PER_NODE
=
$nproc_per_node
\
MASTER_PORT
=
29500
\
CUDA_VISIBLE_DEVICES
=
0,1
\
swift sft
\
--model_id_or_path
LLM-Research/Meta-Llama-3-8B-Instruct
\
--model_revision
master
\
--sft_type
lora
\
--tuner_backend
peft
\
--template_type
AUTO
\
--dtype
AUTO
\
--output_dir
output
\
--ddp_backend
nccl
\
--dataset
blossom-math-zh
\
--train_dataset_sample
-1
\
--num_train_epochs
5
\
--max_length
2048
\
--check_dataset_strategy
warning
\
--lora_rank
8
\
--lora_alpha
32
\
--lora_dropout_p
0.05
\
--lora_target_modules
ALL
\
--gradient_checkpointing
true
\
--batch_size
1
\
--weight_decay
0.1
\
--learning_rate
1e-4
\
--gradient_accumulation_steps
$(
expr
16 /
$nproc_per_node
)
\
--max_grad_norm
0.5
\
--warmup_ratio
0.03
\
--eval_steps
100
\
--save_steps
100
\
--save_total_limit
2
\
--logging_steps
10
\
--deepspeed
default-zero2
\
Prev
1
…
15
16
17
18
19
20
21
22
23
…
36
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment