""" This script creates a CLI demo with transformers backend for the glm-4v-9b model, allowing users to interact with the model through a command-line interface. Usage: - Run the script to start the CLI demo. - Interact with the model by typing questions and receiving responses. Note: The script includes a modification to handle markdown to plain text conversion, ensuring that the CLI interface displays formatted text correctly. """ from threading import Thread import torch from PIL import Image from transformers import ( AutoModel, AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer, ) MODEL_PATH = "THUDM/glm-4v-9b" tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True, encode_special_tokens=True) ## For BF16 inference model = AutoModel.from_pretrained( MODEL_PATH, trust_remote_code=True, torch_dtype=torch.bfloat16, device_map="auto", ).eval() ## For INT4 inference # model = AutoModel.from_pretrained( # MODEL_PATH, # trust_remote_code=True, # quantization_config=BitsAndBytesConfig(load_in_4bit=True), # torch_dtype=torch.bfloat16, # low_cpu_mem_usage=True # ).eval() class StopOnTokens(StoppingCriteria): def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: stop_ids = model.config.eos_token_id for stop_id in stop_ids: if input_ids[0][-1] == stop_id: return True return False if __name__ == "__main__": history = [] max_length = 1024 top_p = 0.8 temperature = 0.6 stop = StopOnTokens() uploaded = False image = None print("Welcome to the GLM-4-9B CLI chat. Type your messages below.") image_path = input("Image Path:") try: image = Image.open(image_path).convert("RGB") except: print("Invalid image path. Continuing with text conversation.") while True: user_input = input("\nYou: ") if user_input.lower() in ["exit", "quit"]: break history.append([user_input, ""]) messages = [] for idx, (user_msg, model_msg) in enumerate(history): if idx == len(history) - 1 and not model_msg: messages.append({"role": "user", "content": user_msg}) if image and not uploaded: messages[-1].update({"image": image}) uploaded = True break if user_msg: messages.append({"role": "user", "content": user_msg}) if model_msg: messages.append({"role": "assistant", "content": model_msg}) model_inputs = tokenizer.apply_chat_template( messages, add_generation_prompt=True, tokenize=True, return_tensors="pt", return_dict=True ).to(next(model.parameters()).device) streamer = TextIteratorStreamer(tokenizer=tokenizer, timeout=60, skip_prompt=True, skip_special_tokens=True) generate_kwargs = { **model_inputs, "streamer": streamer, "max_new_tokens": max_length, "do_sample": True, "top_p": top_p, "temperature": temperature, "stopping_criteria": StoppingCriteriaList([stop]), "repetition_penalty": 1.2, "eos_token_id": [151329, 151336, 151338], } t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() print("GLM-4V:", end="", flush=True) for new_token in streamer: if new_token: print(new_token, end="", flush=True) history[-1][1] += new_token history[-1][1] = history[-1][1].strip()