import torch,time from diffusers import FluxPipeline pipe = FluxPipeline.from_pretrained("./FLUX.1-dev/", torch_dtype=torch.bfloat16) pipe.enable_model_cpu_offload() prompt = "a tiny astronaut hatching from an egg on the moon" for i in range(3): start = time.time() out = pipe( prompt=prompt, guidance_scale=3.5, height=768, width=1360, num_inference_steps=50, ).images[0] print(f"Time:{time.time()-start}") out.save("image.png")