import json import os.path as osp from diffusers import DiffusionPipeline import migraphx_diffusers from migraphx_diffusers import get_name_and_migraphx_config import torch def parse_args(): from argparse import ArgumentParser parser = ArgumentParser(description="SDXL inference with migraphx backend") #=========================== mdoel load and compile ======================== parser.add_argument( "-m", "--model-dir", type=str, required=True, help="Path to local model directory.", ) parser.add_argument( "--force-compile", action="store_true", default=False, help="Ignore existing .mxr files and override them", ) parser.add_argument( "--img-size", type=int, default=None, help="output image size", ) parser.add_argument( "--num-images-per-prompt", type=int, default=1, help="The number of images to generate per prompt." ) # -------------------------------------------------------------------------- # =============================== generation =============================== parser.add_argument( "-p", "--prompt", type=str, required=True, help="Prompt for describe image content, style and so on." ) parser.add_argument( "-n", "--negative-prompt", type=str, default=None, help="Negative prompt", ) parser.add_argument( "-t", "--num-inference-steps", type=int, default=None, help="Number of iteration steps", ) parser.add_argument( "--true-cfg-scale", default=None, type=float, help="Olny for flux pipeline. When > 1.0 and a provided `negative_prompt`, " \ "enables true classifier-free guidance." ) parser.add_argument( "--guidance-scale", default=None, type=float, help="Guidance scale is enabled by setting `guidance_scale > 1`. Higher " \ "guidance scale encourages to generate images that are closely linked to " \ "the text `prompt`, usually at the expense of lower image quality." ) parser.add_argument( "-s", "--seed", type=int, default=42, help="Random seed", ) parser.add_argument( "--save-prefix", type=str, default=None, help="Prefix of path for saving results", ) # -------------------------------------------------------------------------- args = parser.parse_args() return args def main(): args = parse_args() pipe_name, migraphx_config = get_name_and_migraphx_config(args.model_dir) if args.save_prefix is None: args.save_prefix = f"./{pipe_name}_output" if args.img_size is not None: migraphx_config['common_args']['img_size'] = args.img_size migraphx_config['common_args'].update(dict( batch=args.num_images_per_prompt, force_compile=args.force_compile, )) pipe = DiffusionPipeline.from_pretrained( args.model_dir, torch_dtype=torch.float16, migraphx_config=migraphx_config ) pipe.to("cuda") call_kwargs = {} if args.num_inference_steps is not None: call_kwargs['num_inference_steps'] = args.num_inference_steps if args.guidance_scale is not None: call_kwargs['guidance_scale'] = args.guidance_scale if args.true_cfg_scale is not None: assert pipe_name == 'flux.1-dev', \ "`true_cfg_scale` is only valid for flux.1-dev pipeline!" call_kwargs['true_cfg_scale'] = args.true_cfg_scale if args.seed is not None: call_kwargs['generator'] = torch.Generator("cuda").manual_seed(args.seed) print("Generating image...") images = pipe( prompt=args.prompt, negative_prompt=args.negative_prompt, **call_kwargs ).images for i, image in enumerate(images): save_path = f"{args.save_prefix}_{i}.png" image.save(save_path) print(f"Generated image: {save_path}") if __name__ == "__main__": main()