# Modified from https://github.com/pytorch/vision/tree/master/torchvision/models/video import torch import torch.nn as nn __all__ = ['unet_18', 'unet_34'] useBias = False class identity(nn.Module): def __init__(self , *args , **kwargs): super().__init__() def forward(self , x): return x class Conv3DSimple(nn.Conv3d): def __init__(self, in_planes, out_planes, midplanes=None, stride=1, padding=1): super(Conv3DSimple, self).__init__( in_channels=in_planes, out_channels=out_planes, kernel_size=(3, 3, 3), stride=stride, padding=padding, bias=useBias) @staticmethod def get_downsample_stride(stride , temporal_stride): if temporal_stride: return (temporal_stride, stride, stride) else: return (stride , stride , stride) class BasicStem(nn.Sequential): """The default conv-batchnorm-relu stem """ def __init__(self): super().__init__( nn.Conv3d(3, 64, kernel_size=(3, 7, 7), stride=(1, 2, 2), padding=(1, 3, 3), bias=useBias), batchnorm(64), nn.ReLU(inplace=False)) class Conv2Plus1D(nn.Sequential): def __init__(self, in_planes, out_planes, midplanes, stride=1, padding=1): if not isinstance(stride , int): temporal_stride , stride , stride = stride else: temporal_stride = stride super(Conv2Plus1D, self).__init__( nn.Conv3d(in_planes, midplanes, kernel_size=(1, 3, 3), stride=(1, stride, stride), padding=(0, padding, padding), bias=False), # batchnorm(midplanes), nn.ReLU(inplace=True), nn.Conv3d(midplanes, out_planes, kernel_size=(3, 1, 1), stride=(temporal_stride, 1, 1), padding=(padding, 0, 0), bias=False)) @staticmethod def get_downsample_stride(stride , temporal_stride): if temporal_stride: return (temporal_stride, stride, stride) else: return (stride , stride , stride) class R2Plus1dStem(nn.Sequential): """R(2+1)D stem is different than the default one as it uses separated 3D convolution """ def __init__(self): super().__init__( nn.Conv3d(3, 45, kernel_size=(1, 7, 7), stride=(1, 2, 2), padding=(0, 3, 3), bias=False), batchnorm(45), nn.ReLU(inplace=True), nn.Conv3d(45, 64, kernel_size=(3, 1, 1), stride=(1, 1, 1), padding=(1, 0, 0), bias=False), batchnorm(64), nn.ReLU(inplace=True)) class SEGating(nn.Module): def __init__(self , inplanes , reduction=16): super().__init__() self.pool = nn.AdaptiveAvgPool3d(1) self.attn_layer = nn.Sequential( nn.Conv3d(inplanes , inplanes , kernel_size=1 , stride=1 , bias=True), nn.Sigmoid() ) def forward(self , x): out = self.pool(x) y = self.attn_layer(out) return x * y class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, conv_builder, stride=1, downsample=None): midplanes = (inplanes * planes * 3 * 3 * 3) // (inplanes * 3 * 3 + 3 * planes) super(BasicBlock, self).__init__() self.conv1 = nn.Sequential( conv_builder(inplanes, planes, midplanes, stride), batchnorm(planes), nn.ReLU(inplace=True) ) self.conv2 = nn.Sequential( conv_builder(planes, planes, midplanes), batchnorm(planes) ) self.fg = SEGating(planes) ## Feature Gating self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.conv2(out) out = self.fg(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class VideoResNet(nn.Module): def __init__(self, block, conv_makers, layers, stem, zero_init_residual=False): """Generic resnet video generator. Args: block (nn.Module): resnet building block conv_makers (list(functions)): generator function for each layer layers (List[int]): number of blocks per layer stem (nn.Module, optional): Resnet stem, if None, defaults to conv-bn-relu. Defaults to None. """ super(VideoResNet, self).__init__() self.inplanes = 64 self.stem = stem() self.layer1 = self._make_layer(block, conv_makers[0], 64, layers[0], stride=1 ) self.layer2 = self._make_layer(block, conv_makers[1], 128, layers[1], stride=2 , temporal_stride=1) self.layer3 = self._make_layer(block, conv_makers[2], 256, layers[2], stride=2 , temporal_stride=1) self.layer4 = self._make_layer(block, conv_makers[3], 512, layers[3], stride=1, temporal_stride=1) # init weights self._initialize_weights() if zero_init_residual: for m in self.modules(): if isinstance(m, Bottleneck): nn.init.constant_(m.bn3.weight, 0) def forward(self, x): x_0 = self.stem(x) x_1 = self.layer1(x_0) x_2 = self.layer2(x_1) x_3 = self.layer3(x_2) x_4 = self.layer4(x_3) return x_0 , x_1 , x_2 , x_3 , x_4 def _make_layer(self, block, conv_builder, planes, blocks, stride=1, temporal_stride=None): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: ds_stride = conv_builder.get_downsample_stride(stride , temporal_stride) downsample = nn.Sequential( nn.Conv3d(self.inplanes, planes * block.expansion, kernel_size=1, stride=ds_stride, bias=False), batchnorm(planes * block.expansion) ) stride = ds_stride layers = [] layers.append(block(self.inplanes, planes, conv_builder, stride, downsample )) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes, conv_builder )) return nn.Sequential(*layers) def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv3d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm3d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) nn.init.constant_(m.bias, 0) def _video_resnet(arch, pretrained=False, progress=True, **kwargs): model = VideoResNet(**kwargs) ## TODO: Other 3D resnet models, like S3D, r(2+1)D. if pretrained: state_dict = load_state_dict_from_url(model_urls[arch], progress=progress) model.load_state_dict(state_dict) return model def unet_18(pretrained=False, bn=False, progress=True, **kwargs): """ Construct 18 layer Unet3D model as in https://arxiv.org/abs/1711.11248 Args: pretrained (bool): If True, returns a model pre-trained on Kinetics-400 progress (bool): If True, displays a progress bar of the download to stderr Returns: nn.Module: R3D-18 encoder """ global batchnorm if bn: batchnorm = nn.BatchNorm3d else: batchnorm = identity return _video_resnet('r3d_18', pretrained, progress, block=BasicBlock, conv_makers=[Conv3DSimple] * 4, layers=[2, 2, 2, 2], stem=BasicStem, **kwargs) def unet_34(pretrained=False, bn=False, progress=True, **kwargs): """ Construct 34 layer Unet3D model as in https://arxiv.org/abs/1711.11248 Args: pretrained (bool): If True, returns a model pre-trained on Kinetics-400 progress (bool): If True, displays a progress bar of the download to stderr Returns: nn.Module: R3D-18 encoder """ global batchnorm # bn = False if bn: batchnorm = nn.BatchNorm3d else: batchnorm = identity return _video_resnet('r3d_34', pretrained, progress, block=BasicBlock, conv_makers=[Conv3DSimple] * 4, layers=[3, 4, 6, 3], stem=BasicStem, **kwargs)