from flask import Flask, request import json import torch from loguru import logger from peft import PeftModel from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig app = Flask(__name__) app.config["JSON_AS_ASCII"] = False # 防止返回中文乱码 @app.route('/firefly', methods=['POST']) def ds_llm(): params = request.get_json() inputs = params.pop('inputs').strip() # chatglm使用官方的数据组织格式 if model.config.model_type == 'chatglm': text = '[Round 1]\n\n问:{}\n\n答:'.format(inputs) input_ids = tokenizer(text, return_tensors="pt", add_special_tokens=False).input_ids.to(device) # 为了兼容qwen-7b,因为其对eos_token进行tokenize,无法得到对应的eos_token_id else: input_ids = tokenizer(inputs, return_tensors="pt", add_special_tokens=False).input_ids.to(device) bos_token_id = torch.tensor([[tokenizer.bos_token_id]], dtype=torch.long).to(device) eos_token_id = torch.tensor([[tokenizer.eos_token_id]], dtype=torch.long).to(device) input_ids = torch.concat([bos_token_id, input_ids, eos_token_id], dim=1) logger.info(params) input_ids = input_ids.to(device) with torch.no_grad(): outputs = model.generate(input_ids=input_ids, eos_token_id=tokenizer.eos_token_id, **params) outputs = outputs.tolist()[0][len(input_ids[0]):] # response = tokenizer.batch_decode(outputs) response = tokenizer.decode(outputs) response = response.strip().replace(tokenizer.eos_token, "").strip() result = { 'input': inputs, 'output': response } with open(log_file, 'a', encoding='utf8') as f: data = json.dumps(result, ensure_ascii=False) f.write('{}\n'.format(data)) return result if __name__ == '__main__': # 参数设置 model_name_or_path = 'YeungNLP/firefly-baichuan-13b' log_file = 'service_history.txt' port = 8877 device = 'cuda' logger.info(f"Starting to load the model {model_name_or_path} into memory") # 加载model和tokenizer model = AutoModelForCausalLM.from_pretrained( model_name_or_path, trust_remote_code=True, low_cpu_mem_usage=True, torch_dtype=torch.float16, device_map='auto' ).to(device).eval() tokenizer = AutoTokenizer.from_pretrained( model_name_or_path, trust_remote_code=True, # llama不支持fast use_fast=False if model.config.model_type == 'llama' else True ) # QWenTokenizer比较特殊,pad_token_id、bos_token_id、eos_token_id均为None。eod_id对应的token为<|endoftext|> if tokenizer.__class__.__name__ == 'QWenTokenizer': tokenizer.pad_token_id = tokenizer.eod_id tokenizer.bos_token_id = tokenizer.eod_id tokenizer.eos_token_id = tokenizer.eod_id logger.info(f"Successfully loaded the model {model_name_or_path} into memory") # 计算模型参数量 total = sum(p.numel() for p in model.parameters()) print("Total model params: %.2fM" % (total / 1e6)) model.eval() app.run(port=port)