from transformers import AutoModelForCausalLM, BitsAndBytesConfig import torch from peft import PeftModel class ModelUtils(object): @classmethod def load_model(cls, model_name_or_path, load_in_4bit=False, adapter_name_or_path=None): # 是否使用4bit量化进行推理 if load_in_4bit: quantization_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", llm_int8_threshold=6.0, llm_int8_has_fp16_weight=False, ) else: quantization_config = None # 加载base model model = AutoModelForCausalLM.from_pretrained( model_name_or_path, load_in_4bit=load_in_4bit, trust_remote_code=True, low_cpu_mem_usage=True, torch_dtype=torch.float16, device_map='auto', quantization_config=quantization_config ) # 加载adapter if adapter_name_or_path is not None: model = PeftModel.from_pretrained(model, adapter_name_or_path) return model