# encoding: utf-8 """ @author: liaoxingyu @contact: liaoxingyu2@jd.com """ import copy import itertools from collections import defaultdict from typing import Optional, List import numpy as np from torch.utils.data.sampler import Sampler from fastreid.utils import comm def no_index(a, b): assert isinstance(a, list) return [i for i, j in enumerate(a) if j != b] def reorder_index(batch_indices, world_size): r"""Reorder indices of samples to align with DataParallel training. In this order, each process will contain all images for one ID, triplet loss can be computed within each process, and BatchNorm will get a stable result. Args: batch_indices: A batched indices generated by sampler world_size: number of process Returns: """ mini_batchsize = len(batch_indices) // world_size reorder_indices = [] for i in range(0, mini_batchsize): for j in range(0, world_size): reorder_indices.append(batch_indices[i + j * mini_batchsize]) return reorder_indices class BalancedIdentitySampler(Sampler): def __init__(self, data_source: List, mini_batch_size: int, num_instances: int, seed: Optional[int] = None): self.data_source = data_source self.num_instances = num_instances self.num_pids_per_batch = mini_batch_size // self.num_instances self._rank = comm.get_rank() self._world_size = comm.get_world_size() self.batch_size = mini_batch_size * self._world_size self.index_pid = dict() self.pid_cam = defaultdict(list) self.pid_index = defaultdict(list) for index, info in enumerate(data_source): pid = info[1] camid = info[2] self.index_pid[index] = pid self.pid_cam[pid].append(camid) self.pid_index[pid].append(index) self.pids = sorted(list(self.pid_index.keys())) self.num_identities = len(self.pids) if seed is None: seed = comm.shared_random_seed() self._seed = int(seed) self._rank = comm.get_rank() self._world_size = comm.get_world_size() def __iter__(self): start = self._rank yield from itertools.islice(self._infinite_indices(), start, None, self._world_size) def _infinite_indices(self): np.random.seed(self._seed) while True: # Shuffle identity list identities = np.random.permutation(self.num_identities) # If remaining identities cannot be enough for a batch, # just drop the remaining parts drop_indices = self.num_identities % (self.num_pids_per_batch * self._world_size) if drop_indices: identities = identities[:-drop_indices] batch_indices = [] for kid in identities: i = np.random.choice(self.pid_index[self.pids[kid]]) _, i_pid, i_cam = self.data_source[i] batch_indices.append(i) pid_i = self.index_pid[i] cams = self.pid_cam[pid_i] index = self.pid_index[pid_i] select_cams = no_index(cams, i_cam) if select_cams: if len(select_cams) >= self.num_instances: cam_indexes = np.random.choice(select_cams, size=self.num_instances - 1, replace=False) else: cam_indexes = np.random.choice(select_cams, size=self.num_instances - 1, replace=True) for kk in cam_indexes: batch_indices.append(index[kk]) else: select_indexes = no_index(index, i) if not select_indexes: # Only one image for this identity ind_indexes = [0] * (self.num_instances - 1) elif len(select_indexes) >= self.num_instances: ind_indexes = np.random.choice(select_indexes, size=self.num_instances - 1, replace=False) else: ind_indexes = np.random.choice(select_indexes, size=self.num_instances - 1, replace=True) for kk in ind_indexes: batch_indices.append(index[kk]) if len(batch_indices) == self.batch_size: yield from reorder_index(batch_indices, self._world_size) batch_indices = [] class SetReWeightSampler(Sampler): def __init__(self, data_source: str, mini_batch_size: int, num_instances: int, set_weight: list, seed: Optional[int] = None): self.data_source = data_source self.num_instances = num_instances self.num_pids_per_batch = mini_batch_size // self.num_instances self.set_weight = set_weight self._rank = comm.get_rank() self._world_size = comm.get_world_size() self.batch_size = mini_batch_size * self._world_size assert self.batch_size % (sum(self.set_weight) * self.num_instances) == 0 and \ self.batch_size > sum( self.set_weight) * self.num_instances, "Batch size must be divisible by the sum set weight" self.index_pid = dict() self.pid_cam = defaultdict(list) self.pid_index = defaultdict(list) self.cam_pid = defaultdict(list) for index, info in enumerate(data_source): pid = info[1] camid = info[2] self.index_pid[index] = pid self.pid_cam[pid].append(camid) self.pid_index[pid].append(index) self.cam_pid[camid].append(pid) # Get sampler prob for each cam self.set_pid_prob = defaultdict(list) for camid, pid_list in self.cam_pid.items(): index_per_pid = [] for pid in pid_list: index_per_pid.append(len(self.pid_index[pid])) cam_image_number = sum(index_per_pid) prob = [i / cam_image_number for i in index_per_pid] self.set_pid_prob[camid] = prob self.pids = sorted(list(self.pid_index.keys())) self.num_identities = len(self.pids) if seed is None: seed = comm.shared_random_seed() self._seed = int(seed) self._rank = comm.get_rank() self._world_size = comm.get_world_size() def __iter__(self): start = self._rank yield from itertools.islice(self._infinite_indices(), start, None, self._world_size) def _infinite_indices(self): np.random.seed(self._seed) while True: batch_indices = [] for camid in range(len(self.cam_pid.keys())): select_pids = np.random.choice(self.cam_pid[camid], size=self.set_weight[camid], replace=False, p=self.set_pid_prob[camid]) for pid in select_pids: index_list = self.pid_index[pid] if len(index_list) > self.num_instances: select_indexs = np.random.choice(index_list, size=self.num_instances, replace=False) else: select_indexs = np.random.choice(index_list, size=self.num_instances, replace=True) batch_indices += select_indexs np.random.shuffle(batch_indices) if len(batch_indices) == self.batch_size: yield from reorder_index(batch_indices, self._world_size) class NaiveIdentitySampler(Sampler): """ Randomly sample N identities, then for each identity, randomly sample K instances, therefore batch size is N*K. Args: - data_source (list): list of (img_path, pid, camid). - num_instances (int): number of instances per identity in a batch. - batch_size (int): number of examples in a batch. """ def __init__(self, data_source: str, mini_batch_size: int, num_instances: int, seed: Optional[int] = None): self.data_source = data_source self.num_instances = num_instances self.num_pids_per_batch = mini_batch_size // self.num_instances self._rank = comm.get_rank() self._world_size = comm.get_world_size() self.batch_size = mini_batch_size * self._world_size self.pid_index = defaultdict(list) for index, info in enumerate(data_source): pid = info[1] self.pid_index[pid].append(index) self.pids = sorted(list(self.pid_index.keys())) self.num_identities = len(self.pids) if seed is None: seed = comm.shared_random_seed() self._seed = int(seed) def __iter__(self): start = self._rank yield from itertools.islice(self._infinite_indices(), start, None, self._world_size) def _infinite_indices(self): np.random.seed(self._seed) while True: avl_pids = copy.deepcopy(self.pids) batch_idxs_dict = {} batch_indices = [] while len(avl_pids) >= self.num_pids_per_batch: selected_pids = np.random.choice(avl_pids, self.num_pids_per_batch, replace=False).tolist() for pid in selected_pids: # Register pid in batch_idxs_dict if not if pid not in batch_idxs_dict: idxs = copy.deepcopy(self.pid_index[pid]) if len(idxs) < self.num_instances: idxs = np.random.choice(idxs, size=self.num_instances, replace=True).tolist() np.random.shuffle(idxs) batch_idxs_dict[pid] = idxs avl_idxs = batch_idxs_dict[pid] for _ in range(self.num_instances): batch_indices.append(avl_idxs.pop(0)) if len(avl_idxs) < self.num_instances: avl_pids.remove(pid) if len(batch_indices) == self.batch_size: yield from reorder_index(batch_indices, self._world_size) batch_indices = []