# encoding: utf-8 """ @author: xingyu liao @contact: sherlockliao01@gmail.com """ import os from fastreid.data.datasets import DATASET_REGISTRY from fastreid.data.datasets.bases import ImageDataset __all__ = ['PRID', ] @DATASET_REGISTRY.register() class PRID(ImageDataset): """PRID """ dataset_dir = "prid_2011" dataset_name = 'prid' def __init__(self, root='datasets', **kwargs): self.root = root self.train_path = os.path.join(self.root, self.dataset_dir, 'slim_train') required_files = [self.train_path] self.check_before_run(required_files) train = self.process_train(self.train_path) super().__init__(train, [], [], **kwargs) def process_train(self, train_path): data = [] for root, dirs, files in os.walk(train_path): for img_name in filter(lambda x: x.endswith('.png'), files): img_path = os.path.join(root, img_name) pid = self.dataset_name + '_' + root.split('/')[-1].split('_')[1] camid = self.dataset_name + '_' + img_name.split('_')[0] data.append([img_path, pid, camid]) return data