Commit b6c19984 authored by dengjb's avatar dengjb
Browse files

update

parents
# encoding: utf-8
"""
@author: xingyu liao
@contact: sherlockliao01@gmail.com
"""
import os
from glob import glob
from fastreid.data.datasets import DATASET_REGISTRY
from fastreid.data.datasets.bases import ImageDataset
__all__ = ['PeS3D',]
@DATASET_REGISTRY.register()
class PeS3D(ImageDataset):
"""3Dpes
"""
dataset_dir = "3DPeS"
dataset_name = "pes3d"
def __init__(self, root='datasets', **kwargs):
self.root = root
self.train_path = os.path.join(self.root, self.dataset_dir)
required_files = [self.train_path]
self.check_before_run(required_files)
train = self.process_train(self.train_path)
super().__init__(train, [], [], **kwargs)
def process_train(self, train_path):
data = []
pid_list = os.listdir(train_path)
for pid_dir in pid_list:
pid = self.dataset_name + "_" + pid_dir
img_list = glob(os.path.join(train_path, pid_dir, "*.bmp"))
for img_path in img_list:
camid = self.dataset_name + "_cam0"
data.append([img_path, pid, camid])
return data
# encoding: utf-8
"""
@author: xingyu liao
@contact: sherlockliao01@gmail.com
"""
import os
from glob import glob
from fastreid.data.datasets import DATASET_REGISTRY
from fastreid.data.datasets.bases import ImageDataset
__all__ = ['PKU', ]
@DATASET_REGISTRY.register()
class PKU(ImageDataset):
"""PKU
"""
dataset_dir = "PKUv1a_128x48"
dataset_name = 'pku'
def __init__(self, root='datasets', **kwargs):
self.root = root
self.train_path = os.path.join(self.root, self.dataset_dir)
required_files = [self.train_path]
self.check_before_run(required_files)
train = self.process_train(self.train_path)
super().__init__(train, [], [], **kwargs)
def process_train(self, train_path):
data = []
img_paths = glob(os.path.join(train_path, "*.png"))
for img_path in img_paths:
split_path = img_path.split('/')
img_info = split_path[-1].split('_')
pid = self.dataset_name + "_" + img_info[0]
camid = self.dataset_name + "_" + img_info[1]
data.append([img_path, pid, camid])
return data
# encoding: utf-8
"""
@author: xingyu liao
@contact: sherlockliao01@gmail.com
"""
import os
from glob import glob
from fastreid.data.datasets import DATASET_REGISTRY
from fastreid.data.datasets.bases import ImageDataset
__all__ = ['PRAI', ]
@DATASET_REGISTRY.register()
class PRAI(ImageDataset):
"""PRAI
"""
dataset_dir = "PRAI-1581"
dataset_name = 'prai'
def __init__(self, root='datasets', **kwargs):
self.root = root
self.train_path = os.path.join(self.root, self.dataset_dir, 'images')
required_files = [self.train_path]
self.check_before_run(required_files)
train = self.process_train(self.train_path)
super().__init__(train, [], [], **kwargs)
def process_train(self, train_path):
data = []
img_paths = glob(os.path.join(train_path, "*.jpg"))
for img_path in img_paths:
split_path = img_path.split('/')
img_info = split_path[-1].split('_')
pid = self.dataset_name + "_" + img_info[0]
camid = self.dataset_name + "_" + img_info[1]
data.append([img_path, pid, camid])
return data
# encoding: utf-8
"""
@author: xingyu liao
@contact: sherlockliao01@gmail.com
"""
import os
from fastreid.data.datasets import DATASET_REGISTRY
from fastreid.data.datasets.bases import ImageDataset
__all__ = ['PRID', ]
@DATASET_REGISTRY.register()
class PRID(ImageDataset):
"""PRID
"""
dataset_dir = "prid_2011"
dataset_name = 'prid'
def __init__(self, root='datasets', **kwargs):
self.root = root
self.train_path = os.path.join(self.root, self.dataset_dir, 'slim_train')
required_files = [self.train_path]
self.check_before_run(required_files)
train = self.process_train(self.train_path)
super().__init__(train, [], [], **kwargs)
def process_train(self, train_path):
data = []
for root, dirs, files in os.walk(train_path):
for img_name in filter(lambda x: x.endswith('.png'), files):
img_path = os.path.join(root, img_name)
pid = self.dataset_name + '_' + root.split('/')[-1].split('_')[1]
camid = self.dataset_name + '_' + img_name.split('_')[0]
data.append([img_path, pid, camid])
return data
# encoding: utf-8
"""
@author: xingyu liao
@contact: sherlockliao01@gmail.com
"""
import os
from glob import glob
from fastreid.data.datasets import DATASET_REGISTRY
from fastreid.data.datasets.bases import ImageDataset
__all__ = ['SAIVT', ]
@DATASET_REGISTRY.register()
class SAIVT(ImageDataset):
"""SAIVT
"""
dataset_dir = "SAIVT-SoftBio"
dataset_name = "saivt"
def __init__(self, root='datasets', **kwargs):
self.root = root
self.train_path = os.path.join(self.root, self.dataset_dir)
required_files = [self.train_path]
self.check_before_run(required_files)
train = self.process_train(self.train_path)
super().__init__(train, [], [], **kwargs)
def process_train(self, train_path):
data = []
pid_path = os.path.join(train_path, "cropped_images")
pid_list = os.listdir(pid_path)
for pid_name in pid_list:
pid = self.dataset_name + '_' + pid_name
img_list = glob(os.path.join(pid_path, pid_name, "*.jpeg"))
for img_path in img_list:
img_name = os.path.basename(img_path)
camid = self.dataset_name + '_' + img_name.split('-')[2]
data.append([img_path, pid, camid])
return data
# encoding: utf-8
"""
@author: xingyu liao
@contact: sherlockliao01@gmail.com
"""
import os
from glob import glob
from fastreid.data.datasets import DATASET_REGISTRY
from fastreid.data.datasets.bases import ImageDataset
__all__ = ['SenseReID', ]
@DATASET_REGISTRY.register()
class SenseReID(ImageDataset):
"""Sense reid
"""
dataset_dir = "SenseReID"
dataset_name = "senseid"
def __init__(self, root='datasets', **kwargs):
self.root = root
self.train_path = os.path.join(self.root, self.dataset_dir)
required_files = [self.train_path]
self.check_before_run(required_files)
train = self.process_train(self.train_path)
super().__init__(train, [], [], **kwargs)
def process_train(self, train_path):
data = []
file_path_list = ['test_gallery', 'test_prob']
for file_path in file_path_list:
sub_file = os.path.join(train_path, file_path)
img_name = glob(os.path.join(sub_file, "*.jpg"))
for img_path in img_name:
img_name = img_path.split('/')[-1]
img_info = img_name.split('_')
pid = self.dataset_name + "_" + img_info[0]
camid = self.dataset_name + "_" + img_info[1].split('.')[0]
data.append([img_path, pid, camid])
return data
# encoding: utf-8
"""
@author: xingyu liao
@contact: sherlockliao01@gmail.com
"""
import os
from fastreid.data.datasets import DATASET_REGISTRY
from fastreid.data.datasets.bases import ImageDataset
__all__ = ['Shinpuhkan', ]
@DATASET_REGISTRY.register()
class Shinpuhkan(ImageDataset):
"""shinpuhkan
"""
dataset_dir = "shinpuhkan"
dataset_name = 'shinpuhkan'
def __init__(self, root='datasets', **kwargs):
self.root = root
self.train_path = os.path.join(self.root, self.dataset_dir)
required_files = [self.train_path]
self.check_before_run(required_files)
train = self.process_train(self.train_path)
super().__init__(train, [], [], **kwargs)
def process_train(self, train_path):
data = []
for root, dirs, files in os.walk(train_path):
img_names = list(filter(lambda x: x.endswith(".jpg"), files))
# fmt: off
if len(img_names) == 0: continue
# fmt: on
for img_name in img_names:
img_path = os.path.join(root, img_name)
split_path = img_name.split('_')
pid = self.dataset_name + "_" + split_path[0]
camid = self.dataset_name + "_" + split_path[2]
data.append((img_path, pid, camid))
return data
# encoding: utf-8
"""
@author: xingyu liao
@contact: sherlockliao01@gmail.com
"""
import os
from glob import glob
from fastreid.data.datasets import DATASET_REGISTRY
from fastreid.data.datasets.bases import ImageDataset
__all__ = ['SYSU_mm', ]
@DATASET_REGISTRY.register()
class SYSU_mm(ImageDataset):
"""sysu mm
"""
dataset_dir = "SYSU-MM01"
dataset_name = "sysumm01"
def __init__(self, root='datasets', **kwargs):
self.root = root
self.train_path = os.path.join(self.root, self.dataset_dir)
required_files = [self.train_path]
self.check_before_run(required_files)
train = self.process_train(self.train_path)
super().__init__(train, [], [], **kwargs)
def process_train(self, train_path):
data = []
file_path_list = ['cam1', 'cam2', 'cam4', 'cam5']
for file_path in file_path_list:
camid = self.dataset_name + "_" + file_path
pid_list = os.listdir(os.path.join(train_path, file_path))
for pid_dir in pid_list:
pid = self.dataset_name + "_" + pid_dir
img_list = glob(os.path.join(train_path, file_path, pid_dir, "*.jpg"))
for img_path in img_list:
data.append([img_path, pid, camid])
return data
# encoding: utf-8
"""
@author: xingyu liao
@contact: sherlockliao01@gmail.com
"""
import os
from glob import glob
from fastreid.data.datasets import DATASET_REGISTRY
from fastreid.data.datasets.bases import ImageDataset
__all__ = ['Thermalworld', ]
@DATASET_REGISTRY.register()
class Thermalworld(ImageDataset):
"""thermal world
"""
dataset_dir = "thermalworld_rgb"
dataset_name = "thermalworld"
def __init__(self, root='datasets', **kwargs):
self.root = root
self.train_path = os.path.join(self.root, self.dataset_dir)
required_files = [self.train_path]
self.check_before_run(required_files)
train = self.process_train(self.train_path)
super().__init__(train, [], [], **kwargs)
def process_train(self, train_path):
data = []
pid_list = os.listdir(train_path)
for pid_dir in pid_list:
pid = self.dataset_name + "_" + pid_dir
img_list = glob(os.path.join(train_path, pid_dir, "*.jpg"))
for img_path in img_list:
camid = self.dataset_name + "_cam0"
data.append([img_path, pid, camid])
return data
# encoding: utf-8
"""
@author: Jinkai Zheng
@contact: 1315673509@qq.com
"""
import os.path as osp
import random
from .bases import ImageDataset
from ..datasets import DATASET_REGISTRY
@DATASET_REGISTRY.register()
class VehicleID(ImageDataset):
"""VehicleID.
Reference:
Liu et al. Deep relative distance learning: Tell the difference between similar vehicles. CVPR 2016.
URL: `<https://pkuml.org/resources/pku-vehicleid.html>`_
Train dataset statistics:
- identities: 13164.
- images: 113346.
"""
dataset_dir = "vehicleid"
dataset_name = "vehicleid"
def __init__(self, root='datasets', test_list='', **kwargs):
self.dataset_dir = osp.join(root, self.dataset_dir)
self.image_dir = osp.join(self.dataset_dir, 'image')
self.train_list = osp.join(self.dataset_dir, 'train_test_split/train_list.txt')
if test_list:
self.test_list = test_list
else:
self.test_list = osp.join(self.dataset_dir, 'train_test_split/test_list_13164.txt')
required_files = [
self.dataset_dir,
self.image_dir,
self.train_list,
self.test_list,
]
self.check_before_run(required_files)
train = self.process_dir(self.train_list, is_train=True)
query, gallery = self.process_dir(self.test_list, is_train=False)
super(VehicleID, self).__init__(train, query, gallery, **kwargs)
def process_dir(self, list_file, is_train=True):
img_list_lines = open(list_file, 'r').readlines()
dataset = []
for idx, line in enumerate(img_list_lines):
line = line.strip()
vid = int(line.split(' ')[1])
imgid = line.split(' ')[0]
img_path = osp.join(self.image_dir, f"{imgid}.jpg")
imgid = int(imgid)
if is_train:
vid = f"{self.dataset_name}_{vid}"
imgid = f"{self.dataset_name}_{imgid}"
dataset.append((img_path, vid, imgid))
if is_train: return dataset
else:
random.shuffle(dataset)
vid_container = set()
query = []
gallery = []
for sample in dataset:
if sample[1] not in vid_container:
vid_container.add(sample[1])
gallery.append(sample)
else:
query.append(sample)
return query, gallery
@DATASET_REGISTRY.register()
class SmallVehicleID(VehicleID):
"""VehicleID.
Small test dataset statistics:
- identities: 800.
- images: 6493.
"""
def __init__(self, root='datasets', **kwargs):
dataset_dir = osp.join(root, self.dataset_dir)
self.test_list = osp.join(dataset_dir, 'train_test_split/test_list_800.txt')
super(SmallVehicleID, self).__init__(root, self.test_list, **kwargs)
@DATASET_REGISTRY.register()
class MediumVehicleID(VehicleID):
"""VehicleID.
Medium test dataset statistics:
- identities: 1600.
- images: 13377.
"""
def __init__(self, root='datasets', **kwargs):
dataset_dir = osp.join(root, self.dataset_dir)
self.test_list = osp.join(dataset_dir, 'train_test_split/test_list_1600.txt')
super(MediumVehicleID, self).__init__(root, self.test_list, **kwargs)
@DATASET_REGISTRY.register()
class LargeVehicleID(VehicleID):
"""VehicleID.
Large test dataset statistics:
- identities: 2400.
- images: 19777.
"""
def __init__(self, root='datasets', **kwargs):
dataset_dir = osp.join(root, self.dataset_dir)
self.test_list = osp.join(dataset_dir, 'train_test_split/test_list_2400.txt')
super(LargeVehicleID, self).__init__(root, self.test_list, **kwargs)
# encoding: utf-8
"""
@author: Jinkai Zheng
@contact: 1315673509@qq.com
"""
import glob
import os.path as osp
import re
from .bases import ImageDataset
from ..datasets import DATASET_REGISTRY
@DATASET_REGISTRY.register()
class VeRi(ImageDataset):
"""VeRi.
Reference:
Xinchen Liu et al. A Deep Learning based Approach for Progressive Vehicle Re-Identification. ECCV 2016.
Xinchen Liu et al. PROVID: Progressive and Multimodal Vehicle Reidentification for Large-Scale Urban Surveillance. IEEE TMM 2018.
URL: `<https://vehiclereid.github.io/VeRi/>`_
Dataset statistics:
- identities: 775.
- images: 37778 (train) + 1678 (query) + 11579 (gallery).
"""
dataset_dir = "veri"
dataset_name = "veri"
def __init__(self, root='datasets', **kwargs):
self.dataset_dir = osp.join(root, self.dataset_dir)
self.train_dir = osp.join(self.dataset_dir, 'image_train')
self.query_dir = osp.join(self.dataset_dir, 'image_query')
self.gallery_dir = osp.join(self.dataset_dir, 'image_test')
required_files = [
self.dataset_dir,
self.train_dir,
self.query_dir,
self.gallery_dir,
]
self.check_before_run(required_files)
train = self.process_dir(self.train_dir)
query = self.process_dir(self.query_dir, is_train=False)
gallery = self.process_dir(self.gallery_dir, is_train=False)
super(VeRi, self).__init__(train, query, gallery, **kwargs)
def process_dir(self, dir_path, is_train=True):
img_paths = glob.glob(osp.join(dir_path, '*.jpg'))
pattern = re.compile(r'([\d]+)_c(\d\d\d)')
data = []
for img_path in img_paths:
pid, camid = map(int, pattern.search(img_path).groups())
if pid == -1: continue # junk images are just ignored
assert 0 <= pid <= 776
assert 1 <= camid <= 20
camid -= 1 # index starts from 0
if is_train:
pid = self.dataset_name + "_" + str(pid)
camid = self.dataset_name + "_" + str(camid)
data.append((img_path, pid, camid))
return data
# encoding: utf-8
"""
@author: Jinkai Zheng
@contact: 1315673509@qq.com
"""
import os.path as osp
from .bases import ImageDataset
from ..datasets import DATASET_REGISTRY
@DATASET_REGISTRY.register()
class VeRiWild(ImageDataset):
"""VeRi-Wild.
Reference:
Lou et al. A Large-Scale Dataset for Vehicle Re-Identification in the Wild. CVPR 2019.
URL: `<https://github.com/PKU-IMRE/VERI-Wild>`_
Train dataset statistics:
- identities: 30671.
- images: 277797.
"""
dataset_dir = "VERI-Wild"
dataset_name = "veriwild"
def __init__(self, root='datasets', query_list='', gallery_list='', **kwargs):
self.dataset_dir = osp.join(root, self.dataset_dir)
self.image_dir = osp.join(self.dataset_dir, 'images')
self.train_list = osp.join(self.dataset_dir, 'train_test_split/train_list.txt')
self.vehicle_info = osp.join(self.dataset_dir, 'train_test_split/vehicle_info.txt')
if query_list and gallery_list:
self.query_list = query_list
self.gallery_list = gallery_list
else:
self.query_list = osp.join(self.dataset_dir, 'train_test_split/test_10000_query.txt')
self.gallery_list = osp.join(self.dataset_dir, 'train_test_split/test_10000.txt')
required_files = [
self.image_dir,
self.train_list,
self.query_list,
self.gallery_list,
self.vehicle_info,
]
self.check_before_run(required_files)
self.imgid2vid, self.imgid2camid, self.imgid2imgpath = self.process_vehicle(self.vehicle_info)
train = self.process_dir(self.train_list)
query = self.process_dir(self.query_list, is_train=False)
gallery = self.process_dir(self.gallery_list, is_train=False)
super(VeRiWild, self).__init__(train, query, gallery, **kwargs)
def process_dir(self, img_list, is_train=True):
img_list_lines = open(img_list, 'r').readlines()
dataset = []
for idx, line in enumerate(img_list_lines):
line = line.strip()
vid = int(line.split('/')[0])
imgid = line.split('/')[1].split('.')[0]
camid = int(self.imgid2camid[imgid])
if is_train:
vid = f"{self.dataset_name}_{vid}"
camid = f"{self.dataset_name}_{camid}"
dataset.append((self.imgid2imgpath[imgid], vid, camid))
assert len(dataset) == len(img_list_lines)
return dataset
def process_vehicle(self, vehicle_info):
imgid2vid = {}
imgid2camid = {}
imgid2imgpath = {}
vehicle_info_lines = open(vehicle_info, 'r').readlines()
for idx, line in enumerate(vehicle_info_lines[1:]):
vid = line.strip().split('/')[0]
imgid = line.strip().split(';')[0].split('/')[1]
camid = line.strip().split(';')[1]
img_path = osp.join(self.image_dir, vid, imgid + '.jpg')
imgid2vid[imgid] = vid
imgid2camid[imgid] = camid
imgid2imgpath[imgid] = img_path
assert len(imgid2vid) == len(vehicle_info_lines) - 1
return imgid2vid, imgid2camid, imgid2imgpath
@DATASET_REGISTRY.register()
class SmallVeRiWild(VeRiWild):
"""VeRi-Wild.
Small test dataset statistics:
- identities: 3000.
- images: 41861.
"""
def __init__(self, root='datasets', **kwargs):
dataset_dir = osp.join(root, self.dataset_dir)
self.query_list = osp.join(dataset_dir, 'train_test_split/test_3000_query.txt')
self.gallery_list = osp.join(dataset_dir, 'train_test_split/test_3000.txt')
super(SmallVeRiWild, self).__init__(root, self.query_list, self.gallery_list, **kwargs)
@DATASET_REGISTRY.register()
class MediumVeRiWild(VeRiWild):
"""VeRi-Wild.
Medium test dataset statistics:
- identities: 5000.
- images: 69389.
"""
def __init__(self, root='datasets', **kwargs):
dataset_dir = osp.join(root, self.dataset_dir)
self.query_list = osp.join(dataset_dir, 'train_test_split/test_5000_query.txt')
self.gallery_list = osp.join(dataset_dir, 'train_test_split/test_5000.txt')
super(MediumVeRiWild, self).__init__(root, self.query_list, self.gallery_list, **kwargs)
@DATASET_REGISTRY.register()
class LargeVeRiWild(VeRiWild):
"""VeRi-Wild.
Large test dataset statistics:
- identities: 10000.
- images: 138517.
"""
def __init__(self, root='datasets', **kwargs):
dataset_dir = osp.join(root, self.dataset_dir)
self.query_list = osp.join(dataset_dir, 'train_test_split/test_10000_query.txt')
self.gallery_list = osp.join(dataset_dir, 'train_test_split/test_10000.txt')
super(LargeVeRiWild, self).__init__(root, self.query_list, self.gallery_list, **kwargs)
# encoding: utf-8
"""
@author: xingyu liao
@contact: sherlockliao01@gmail.com
"""
import os
from glob import glob
from fastreid.data.datasets import DATASET_REGISTRY
from fastreid.data.datasets.bases import ImageDataset
__all__ = ['VIPeR', ]
@DATASET_REGISTRY.register()
class VIPeR(ImageDataset):
dataset_dir = "VIPeR"
dataset_name = "viper"
def __init__(self, root='datasets', **kwargs):
self.root = root
self.train_path = os.path.join(self.root, self.dataset_dir)
required_files = [self.train_path]
self.check_before_run(required_files)
train = self.process_train(self.train_path)
super().__init__(train, [], [], **kwargs)
def process_train(self, train_path):
data = []
file_path_list = ['cam_a', 'cam_b']
for file_path in file_path_list:
camid = self.dataset_name + "_" + file_path
img_list = glob(os.path.join(train_path, file_path, "*.bmp"))
for img_path in img_list:
img_name = img_path.split('/')[-1]
pid = self.dataset_name + "_" + img_name.split('_')[0]
data.append([img_path, pid, camid])
return data
# encoding: utf-8
"""
@author: wangguanan
@contact: guan.wang0706@gmail.com
"""
import glob
import os
from .bases import ImageDataset
from ..datasets import DATASET_REGISTRY
@DATASET_REGISTRY.register()
class WildTrackCrop(ImageDataset):
"""WildTrack.
Reference:
WILDTRACK: A Multi-camera HD Dataset for Dense Unscripted Pedestrian Detection
T. Chavdarova; P. Baqué; A. Maksai; S. Bouquet; C. Jose et al.
URL: `<https://www.epfl.ch/labs/cvlab/data/data-wildtrack/>`_
Dataset statistics:
- identities: 313
- images: 33979 (train only)
- cameras: 7
Args:
data_path(str): path to WildTrackCrop dataset
combineall(bool): combine train and test sets as train set if True
"""
dataset_url = None
dataset_dir = 'Wildtrack_crop_dataset'
dataset_name = 'wildtrack'
def __init__(self, root='datasets', **kwargs):
self.root = root
self.dataset_dir = os.path.join(self.root, self.dataset_dir)
self.train_dir = os.path.join(self.dataset_dir, "crop")
train = self.process_dir(self.train_dir)
query = []
gallery = []
super(WildTrackCrop, self).__init__(train, query, gallery, **kwargs)
def process_dir(self, dir_path):
r"""
:param dir_path: directory path saving images
Returns
data(list) = [img_path, pid, camid]
"""
data = []
for dir_name in os.listdir(dir_path):
img_lists = glob.glob(os.path.join(dir_path, dir_name, "*.png"))
for img_path in img_lists:
pid = self.dataset_name + "_" + dir_name
camid = img_path.split('/')[-1].split('_')[0]
camid = self.dataset_name + "_" + camid
data.append([img_path, pid, camid])
return data
# encoding: utf-8
"""
@author: liaoxingyu
@contact: sherlockliao01@gmail.com
"""
from .triplet_sampler import BalancedIdentitySampler, NaiveIdentitySampler, SetReWeightSampler
from .data_sampler import TrainingSampler, InferenceSampler
from .imbalance_sampler import ImbalancedDatasetSampler
__all__ = [
"BalancedIdentitySampler",
"NaiveIdentitySampler",
"SetReWeightSampler",
"TrainingSampler",
"InferenceSampler",
"ImbalancedDatasetSampler",
]
# encoding: utf-8
"""
@author: l1aoxingyu
@contact: sherlockliao01@gmail.com
"""
import itertools
from typing import Optional
import numpy as np
from torch.utils.data import Sampler
from fastreid.utils import comm
class TrainingSampler(Sampler):
"""
In training, we only care about the "infinite stream" of training data.
So this sampler produces an infinite stream of indices and
all workers cooperate to correctly shuffle the indices and sample different indices.
The samplers in each worker effectively produces `indices[worker_id::num_workers]`
where `indices` is an infinite stream of indices consisting of
`shuffle(range(size)) + shuffle(range(size)) + ...` (if shuffle is True)
or `range(size) + range(size) + ...` (if shuffle is False)
"""
def __init__(self, size: int, shuffle: bool = True, seed: Optional[int] = None):
"""
Args:
size (int): the total number of data of the underlying dataset to sample from
shuffle (bool): whether to shuffle the indices or not
seed (int): the initial seed of the shuffle. Must be the same
across all workers. If None, will use a random seed shared
among workers (require synchronization among all workers).
"""
self._size = size
assert size > 0
self._shuffle = shuffle
if seed is None:
seed = comm.shared_random_seed()
self._seed = int(seed)
self._rank = comm.get_rank()
self._world_size = comm.get_world_size()
def __iter__(self):
start = self._rank
yield from itertools.islice(self._infinite_indices(), start, None, self._world_size)
def _infinite_indices(self):
np.random.seed(self._seed)
while True:
if self._shuffle:
yield from np.random.permutation(self._size)
else:
yield from np.arange(self._size)
class InferenceSampler(Sampler):
"""
Produce indices for inference.
Inference needs to run on the __exact__ set of samples,
therefore when the total number of samples is not divisible by the number of workers,
this sampler produces different number of samples on different workers.
"""
def __init__(self, size: int):
"""
Args:
size (int): the total number of data of the underlying dataset to sample from
"""
self._size = size
assert size > 0
self._rank = comm.get_rank()
self._world_size = comm.get_world_size()
shard_size = (self._size - 1) // self._world_size + 1
begin = shard_size * self._rank
end = min(shard_size * (self._rank + 1), self._size)
self._local_indices = range(begin, end)
def __iter__(self):
yield from self._local_indices
def __len__(self):
return len(self._local_indices)
# encoding: utf-8
"""
@author: xingyu liao
@contact: sherlockliao01@gmail.com
"""
# based on:
# https://github.com/ufoym/imbalanced-dataset-sampler/blob/master/torchsampler/imbalanced.py
import itertools
from typing import Optional, List, Callable
import numpy as np
import torch
from torch.utils.data.sampler import Sampler
from fastreid.utils import comm
class ImbalancedDatasetSampler(Sampler):
"""Samples elements randomly from a given list of indices for imbalanced dataset
Arguments:
data_source: a list of data items
size: number of samples to draw
"""
def __init__(self, data_source: List, size: int = None, seed: Optional[int] = None,
callback_get_label: Callable = None):
self.data_source = data_source
# consider all elements in the dataset
self.indices = list(range(len(data_source)))
# if num_samples is not provided, draw `len(indices)` samples in each iteration
self._size = len(self.indices) if size is None else size
self.callback_get_label = callback_get_label
# distribution of classes in the dataset
label_to_count = {}
for idx in self.indices:
label = self._get_label(data_source, idx)
label_to_count[label] = label_to_count.get(label, 0) + 1
# weight for each sample
weights = [1.0 / label_to_count[self._get_label(data_source, idx)] for idx in self.indices]
self.weights = torch.DoubleTensor(weights)
if seed is None:
seed = comm.shared_random_seed()
self._seed = int(seed)
self._rank = comm.get_rank()
self._world_size = comm.get_world_size()
def _get_label(self, dataset, idx):
if self.callback_get_label:
return self.callback_get_label(dataset, idx)
else:
return dataset[idx][1]
def __iter__(self):
start = self._rank
yield from itertools.islice(self._infinite_indices(), start, None, self._world_size)
def _infinite_indices(self):
np.random.seed(self._seed)
while True:
for i in torch.multinomial(self.weights, self._size, replacement=True):
yield self.indices[i]
# encoding: utf-8
"""
@author: liaoxingyu
@contact: liaoxingyu2@jd.com
"""
import copy
import itertools
from collections import defaultdict
from typing import Optional, List
import numpy as np
from torch.utils.data.sampler import Sampler
from fastreid.utils import comm
def no_index(a, b):
assert isinstance(a, list)
return [i for i, j in enumerate(a) if j != b]
def reorder_index(batch_indices, world_size):
r"""Reorder indices of samples to align with DataParallel training.
In this order, each process will contain all images for one ID, triplet loss
can be computed within each process, and BatchNorm will get a stable result.
Args:
batch_indices: A batched indices generated by sampler
world_size: number of process
Returns:
"""
mini_batchsize = len(batch_indices) // world_size
reorder_indices = []
for i in range(0, mini_batchsize):
for j in range(0, world_size):
reorder_indices.append(batch_indices[i + j * mini_batchsize])
return reorder_indices
class BalancedIdentitySampler(Sampler):
def __init__(self, data_source: List, mini_batch_size: int, num_instances: int, seed: Optional[int] = None):
self.data_source = data_source
self.num_instances = num_instances
self.num_pids_per_batch = mini_batch_size // self.num_instances
self._rank = comm.get_rank()
self._world_size = comm.get_world_size()
self.batch_size = mini_batch_size * self._world_size
self.index_pid = dict()
self.pid_cam = defaultdict(list)
self.pid_index = defaultdict(list)
for index, info in enumerate(data_source):
pid = info[1]
camid = info[2]
self.index_pid[index] = pid
self.pid_cam[pid].append(camid)
self.pid_index[pid].append(index)
self.pids = sorted(list(self.pid_index.keys()))
self.num_identities = len(self.pids)
if seed is None:
seed = comm.shared_random_seed()
self._seed = int(seed)
self._rank = comm.get_rank()
self._world_size = comm.get_world_size()
def __iter__(self):
start = self._rank
yield from itertools.islice(self._infinite_indices(), start, None, self._world_size)
def _infinite_indices(self):
np.random.seed(self._seed)
while True:
# Shuffle identity list
identities = np.random.permutation(self.num_identities)
# If remaining identities cannot be enough for a batch,
# just drop the remaining parts
drop_indices = self.num_identities % (self.num_pids_per_batch * self._world_size)
if drop_indices: identities = identities[:-drop_indices]
batch_indices = []
for kid in identities:
i = np.random.choice(self.pid_index[self.pids[kid]])
_, i_pid, i_cam = self.data_source[i]
batch_indices.append(i)
pid_i = self.index_pid[i]
cams = self.pid_cam[pid_i]
index = self.pid_index[pid_i]
select_cams = no_index(cams, i_cam)
if select_cams:
if len(select_cams) >= self.num_instances:
cam_indexes = np.random.choice(select_cams, size=self.num_instances - 1, replace=False)
else:
cam_indexes = np.random.choice(select_cams, size=self.num_instances - 1, replace=True)
for kk in cam_indexes:
batch_indices.append(index[kk])
else:
select_indexes = no_index(index, i)
if not select_indexes:
# Only one image for this identity
ind_indexes = [0] * (self.num_instances - 1)
elif len(select_indexes) >= self.num_instances:
ind_indexes = np.random.choice(select_indexes, size=self.num_instances - 1, replace=False)
else:
ind_indexes = np.random.choice(select_indexes, size=self.num_instances - 1, replace=True)
for kk in ind_indexes:
batch_indices.append(index[kk])
if len(batch_indices) == self.batch_size:
yield from reorder_index(batch_indices, self._world_size)
batch_indices = []
class SetReWeightSampler(Sampler):
def __init__(self, data_source: str, mini_batch_size: int, num_instances: int, set_weight: list,
seed: Optional[int] = None):
self.data_source = data_source
self.num_instances = num_instances
self.num_pids_per_batch = mini_batch_size // self.num_instances
self.set_weight = set_weight
self._rank = comm.get_rank()
self._world_size = comm.get_world_size()
self.batch_size = mini_batch_size * self._world_size
assert self.batch_size % (sum(self.set_weight) * self.num_instances) == 0 and \
self.batch_size > sum(
self.set_weight) * self.num_instances, "Batch size must be divisible by the sum set weight"
self.index_pid = dict()
self.pid_cam = defaultdict(list)
self.pid_index = defaultdict(list)
self.cam_pid = defaultdict(list)
for index, info in enumerate(data_source):
pid = info[1]
camid = info[2]
self.index_pid[index] = pid
self.pid_cam[pid].append(camid)
self.pid_index[pid].append(index)
self.cam_pid[camid].append(pid)
# Get sampler prob for each cam
self.set_pid_prob = defaultdict(list)
for camid, pid_list in self.cam_pid.items():
index_per_pid = []
for pid in pid_list:
index_per_pid.append(len(self.pid_index[pid]))
cam_image_number = sum(index_per_pid)
prob = [i / cam_image_number for i in index_per_pid]
self.set_pid_prob[camid] = prob
self.pids = sorted(list(self.pid_index.keys()))
self.num_identities = len(self.pids)
if seed is None:
seed = comm.shared_random_seed()
self._seed = int(seed)
self._rank = comm.get_rank()
self._world_size = comm.get_world_size()
def __iter__(self):
start = self._rank
yield from itertools.islice(self._infinite_indices(), start, None, self._world_size)
def _infinite_indices(self):
np.random.seed(self._seed)
while True:
batch_indices = []
for camid in range(len(self.cam_pid.keys())):
select_pids = np.random.choice(self.cam_pid[camid], size=self.set_weight[camid], replace=False,
p=self.set_pid_prob[camid])
for pid in select_pids:
index_list = self.pid_index[pid]
if len(index_list) > self.num_instances:
select_indexs = np.random.choice(index_list, size=self.num_instances, replace=False)
else:
select_indexs = np.random.choice(index_list, size=self.num_instances, replace=True)
batch_indices += select_indexs
np.random.shuffle(batch_indices)
if len(batch_indices) == self.batch_size:
yield from reorder_index(batch_indices, self._world_size)
class NaiveIdentitySampler(Sampler):
"""
Randomly sample N identities, then for each identity,
randomly sample K instances, therefore batch size is N*K.
Args:
- data_source (list): list of (img_path, pid, camid).
- num_instances (int): number of instances per identity in a batch.
- batch_size (int): number of examples in a batch.
"""
def __init__(self, data_source: str, mini_batch_size: int, num_instances: int, seed: Optional[int] = None):
self.data_source = data_source
self.num_instances = num_instances
self.num_pids_per_batch = mini_batch_size // self.num_instances
self._rank = comm.get_rank()
self._world_size = comm.get_world_size()
self.batch_size = mini_batch_size * self._world_size
self.pid_index = defaultdict(list)
for index, info in enumerate(data_source):
pid = info[1]
self.pid_index[pid].append(index)
self.pids = sorted(list(self.pid_index.keys()))
self.num_identities = len(self.pids)
if seed is None:
seed = comm.shared_random_seed()
self._seed = int(seed)
def __iter__(self):
start = self._rank
yield from itertools.islice(self._infinite_indices(), start, None, self._world_size)
def _infinite_indices(self):
np.random.seed(self._seed)
while True:
avl_pids = copy.deepcopy(self.pids)
batch_idxs_dict = {}
batch_indices = []
while len(avl_pids) >= self.num_pids_per_batch:
selected_pids = np.random.choice(avl_pids, self.num_pids_per_batch, replace=False).tolist()
for pid in selected_pids:
# Register pid in batch_idxs_dict if not
if pid not in batch_idxs_dict:
idxs = copy.deepcopy(self.pid_index[pid])
if len(idxs) < self.num_instances:
idxs = np.random.choice(idxs, size=self.num_instances, replace=True).tolist()
np.random.shuffle(idxs)
batch_idxs_dict[pid] = idxs
avl_idxs = batch_idxs_dict[pid]
for _ in range(self.num_instances):
batch_indices.append(avl_idxs.pop(0))
if len(avl_idxs) < self.num_instances: avl_pids.remove(pid)
if len(batch_indices) == self.batch_size:
yield from reorder_index(batch_indices, self._world_size)
batch_indices = []
# encoding: utf-8
"""
@author: sherlock
@contact: sherlockliao01@gmail.com
"""
from .autoaugment import AutoAugment
from .build import build_transforms
from .transforms import *
__all__ = [k for k in globals().keys() if not k.startswith("_")]
# encoding: utf-8
"""
@author: liaoxingyu
@contact: sherlockliao01@gmail.com
"""
""" AutoAugment, RandAugment, and AugMix for PyTorch
This code implements the searched ImageNet policies with various tweaks and improvements and
does not include any of the search code.
AA and RA Implementation adapted from:
https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/autoaugment.py
AugMix adapted from:
https://github.com/google-research/augmix
Papers:
AutoAugment: Learning Augmentation Policies from Data - https://arxiv.org/abs/1805.09501
Learning Data Augmentation Strategies for Object Detection - https://arxiv.org/abs/1906.11172
RandAugment: Practical automated data augmentation... - https://arxiv.org/abs/1909.13719
AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty - https://arxiv.org/abs/1912.02781
Hacked together by Ross Wightman
"""
import math
import random
import re
import PIL
import numpy as np
from PIL import Image, ImageOps, ImageEnhance
_PIL_VER = tuple([int(x) for x in PIL.__version__.split('.')[:2]])
_FILL = (128, 128, 128)
# This signifies the max integer that the controller RNN could predict for the
# augmentation scheme.
_MAX_LEVEL = 10.
_HPARAMS_DEFAULT = dict(
translate_const=57,
img_mean=_FILL,
)
_RANDOM_INTERPOLATION = (Image.BILINEAR, Image.BICUBIC)
def _interpolation(kwargs):
interpolation = kwargs.pop('resample', Image.BILINEAR)
if isinstance(interpolation, (list, tuple)):
return random.choice(interpolation)
else:
return interpolation
def _check_args_tf(kwargs):
if 'fillcolor' in kwargs and _PIL_VER < (5, 0):
kwargs.pop('fillcolor')
kwargs['resample'] = _interpolation(kwargs)
def shear_x(img, factor, **kwargs):
_check_args_tf(kwargs)
return img.transform(img.size, Image.AFFINE, (1, factor, 0, 0, 1, 0), **kwargs)
def shear_y(img, factor, **kwargs):
_check_args_tf(kwargs)
return img.transform(img.size, Image.AFFINE, (1, 0, 0, factor, 1, 0), **kwargs)
def translate_x_rel(img, pct, **kwargs):
pixels = pct * img.size[0]
_check_args_tf(kwargs)
return img.transform(img.size, Image.AFFINE, (1, 0, pixels, 0, 1, 0), **kwargs)
def translate_y_rel(img, pct, **kwargs):
pixels = pct * img.size[1]
_check_args_tf(kwargs)
return img.transform(img.size, Image.AFFINE, (1, 0, 0, 0, 1, pixels), **kwargs)
def translate_x_abs(img, pixels, **kwargs):
_check_args_tf(kwargs)
return img.transform(img.size, Image.AFFINE, (1, 0, pixels, 0, 1, 0), **kwargs)
def translate_y_abs(img, pixels, **kwargs):
_check_args_tf(kwargs)
return img.transform(img.size, Image.AFFINE, (1, 0, 0, 0, 1, pixels), **kwargs)
def rotate(img, degrees, **kwargs):
_check_args_tf(kwargs)
if _PIL_VER >= (5, 2):
return img.rotate(degrees, **kwargs)
elif _PIL_VER >= (5, 0):
w, h = img.size
post_trans = (0, 0)
rotn_center = (w / 2.0, h / 2.0)
angle = -math.radians(degrees)
matrix = [
round(math.cos(angle), 15),
round(math.sin(angle), 15),
0.0,
round(-math.sin(angle), 15),
round(math.cos(angle), 15),
0.0,
]
def transform(x, y, matrix):
(a, b, c, d, e, f) = matrix
return a * x + b * y + c, d * x + e * y + f
matrix[2], matrix[5] = transform(
-rotn_center[0] - post_trans[0], -rotn_center[1] - post_trans[1], matrix
)
matrix[2] += rotn_center[0]
matrix[5] += rotn_center[1]
return img.transform(img.size, Image.AFFINE, matrix, **kwargs)
else:
return img.rotate(degrees, resample=kwargs['resample'])
def auto_contrast(img, **__):
return ImageOps.autocontrast(img)
def invert(img, **__):
return ImageOps.invert(img)
def equalize(img, **__):
return ImageOps.equalize(img)
def solarize(img, thresh, **__):
return ImageOps.solarize(img, thresh)
def solarize_add(img, add, thresh=128, **__):
lut = []
for i in range(256):
if i < thresh:
lut.append(min(255, i + add))
else:
lut.append(i)
if img.mode in ("L", "RGB"):
if img.mode == "RGB" and len(lut) == 256:
lut = lut + lut + lut
return img.point(lut)
else:
return img
def posterize(img, bits_to_keep, **__):
if bits_to_keep >= 8:
return img
return ImageOps.posterize(img, bits_to_keep)
def contrast(img, factor, **__):
return ImageEnhance.Contrast(img).enhance(factor)
def color(img, factor, **__):
return ImageEnhance.Color(img).enhance(factor)
def brightness(img, factor, **__):
return ImageEnhance.Brightness(img).enhance(factor)
def sharpness(img, factor, **__):
return ImageEnhance.Sharpness(img).enhance(factor)
def _randomly_negate(v):
"""With 50% prob, negate the value"""
return -v if random.random() > 0.5 else v
def _rotate_level_to_arg(level, _hparams):
# range [-30, 30]
level = (level / _MAX_LEVEL) * 30.
level = _randomly_negate(level)
return level,
def _enhance_level_to_arg(level, _hparams):
# range [0.1, 1.9]
return (level / _MAX_LEVEL) * 1.8 + 0.1,
def _enhance_increasing_level_to_arg(level, _hparams):
# the 'no change' level is 1.0, moving away from that towards 0. or 2.0 increases the enhancement blend
# range [0.1, 1.9]
level = (level / _MAX_LEVEL) * .9
level = 1.0 + _randomly_negate(level)
return level,
def _shear_level_to_arg(level, _hparams):
# range [-0.3, 0.3]
level = (level / _MAX_LEVEL) * 0.3
level = _randomly_negate(level)
return level,
def _translate_abs_level_to_arg(level, hparams):
translate_const = hparams['translate_const']
level = (level / _MAX_LEVEL) * float(translate_const)
level = _randomly_negate(level)
return level,
def _translate_rel_level_to_arg(level, hparams):
# default range [-0.45, 0.45]
translate_pct = hparams.get('translate_pct', 0.45)
level = (level / _MAX_LEVEL) * translate_pct
level = _randomly_negate(level)
return level,
def _posterize_level_to_arg(level, _hparams):
# As per Tensorflow TPU EfficientNet impl
# range [0, 4], 'keep 0 up to 4 MSB of original image'
# intensity/severity of augmentation decreases with level
return int((level / _MAX_LEVEL) * 4),
def _posterize_increasing_level_to_arg(level, hparams):
# As per Tensorflow models research and UDA impl
# range [4, 0], 'keep 4 down to 0 MSB of original image',
# intensity/severity of augmentation increases with level
return 4 - _posterize_level_to_arg(level, hparams)[0],
def _posterize_original_level_to_arg(level, _hparams):
# As per original AutoAugment paper description
# range [4, 8], 'keep 4 up to 8 MSB of image'
# intensity/severity of augmentation decreases with level
return int((level / _MAX_LEVEL) * 4) + 4,
def _solarize_level_to_arg(level, _hparams):
# range [0, 256]
# intensity/severity of augmentation decreases with level
return int((level / _MAX_LEVEL) * 256),
def _solarize_increasing_level_to_arg(level, _hparams):
# range [0, 256]
# intensity/severity of augmentation increases with level
return 256 - _solarize_level_to_arg(level, _hparams)[0],
def _solarize_add_level_to_arg(level, _hparams):
# range [0, 110]
return int((level / _MAX_LEVEL) * 110),
LEVEL_TO_ARG = {
'AutoContrast': None,
'Equalize': None,
'Invert': None,
'Rotate': _rotate_level_to_arg,
# There are several variations of the posterize level scaling in various Tensorflow/Google repositories/papers
'Posterize': _posterize_level_to_arg,
'PosterizeIncreasing': _posterize_increasing_level_to_arg,
'PosterizeOriginal': _posterize_original_level_to_arg,
'Solarize': _solarize_level_to_arg,
'SolarizeIncreasing': _solarize_increasing_level_to_arg,
'SolarizeAdd': _solarize_add_level_to_arg,
'Color': _enhance_level_to_arg,
'ColorIncreasing': _enhance_increasing_level_to_arg,
'Contrast': _enhance_level_to_arg,
'ContrastIncreasing': _enhance_increasing_level_to_arg,
'Brightness': _enhance_level_to_arg,
'BrightnessIncreasing': _enhance_increasing_level_to_arg,
'Sharpness': _enhance_level_to_arg,
'SharpnessIncreasing': _enhance_increasing_level_to_arg,
'ShearX': _shear_level_to_arg,
'ShearY': _shear_level_to_arg,
'TranslateX': _translate_abs_level_to_arg,
'TranslateY': _translate_abs_level_to_arg,
'TranslateXRel': _translate_rel_level_to_arg,
'TranslateYRel': _translate_rel_level_to_arg,
}
NAME_TO_OP = {
'AutoContrast': auto_contrast,
'Equalize': equalize,
'Invert': invert,
'Rotate': rotate,
'Posterize': posterize,
'PosterizeIncreasing': posterize,
'PosterizeOriginal': posterize,
'Solarize': solarize,
'SolarizeIncreasing': solarize,
'SolarizeAdd': solarize_add,
'Color': color,
'ColorIncreasing': color,
'Contrast': contrast,
'ContrastIncreasing': contrast,
'Brightness': brightness,
'BrightnessIncreasing': brightness,
'Sharpness': sharpness,
'SharpnessIncreasing': sharpness,
'ShearX': shear_x,
'ShearY': shear_y,
'TranslateX': translate_x_abs,
'TranslateY': translate_y_abs,
'TranslateXRel': translate_x_rel,
'TranslateYRel': translate_y_rel,
}
class AugmentOp:
def __init__(self, name, prob=0.5, magnitude=10, hparams=None):
hparams = hparams or _HPARAMS_DEFAULT
self.aug_fn = NAME_TO_OP[name]
self.level_fn = LEVEL_TO_ARG[name]
self.prob = prob
self.magnitude = magnitude
self.hparams = hparams.copy()
self.kwargs = dict(
fillcolor=hparams['img_mean'] if 'img_mean' in hparams else _FILL,
resample=hparams['interpolation'] if 'interpolation' in hparams else _RANDOM_INTERPOLATION,
)
# If magnitude_std is > 0, we introduce some randomness
# in the usually fixed policy and sample magnitude from a normal distribution
# with mean `magnitude` and std-dev of `magnitude_std`.
# NOTE This is my own hack, being tested, not in papers or reference impls.
self.magnitude_std = self.hparams.get('magnitude_std', 0)
def __call__(self, img):
if self.prob < 1.0 and random.random() > self.prob:
return img
magnitude = self.magnitude
if self.magnitude_std and self.magnitude_std > 0:
magnitude = random.gauss(magnitude, self.magnitude_std)
magnitude = min(_MAX_LEVEL, max(0, magnitude)) # clip to valid range
level_args = self.level_fn(magnitude, self.hparams) if self.level_fn is not None else tuple()
return self.aug_fn(img, *level_args, **self.kwargs)
def auto_augment_policy_v0(hparams):
# ImageNet v0 policy from TPU EfficientNet impl, cannot find a paper reference.
policy = [
[('Equalize', 0.8, 1), ('ShearY', 0.8, 4)],
[('Color', 0.4, 9), ('Equalize', 0.6, 3)],
[('Color', 0.4, 1), ('Rotate', 0.6, 8)],
[('Solarize', 0.8, 3), ('Equalize', 0.4, 7)],
[('Solarize', 0.4, 2), ('Solarize', 0.6, 2)],
[('Color', 0.2, 0), ('Equalize', 0.8, 8)],
[('Equalize', 0.4, 8), ('SolarizeAdd', 0.8, 3)],
[('ShearX', 0.2, 9), ('Rotate', 0.6, 8)],
[('Color', 0.6, 1), ('Equalize', 1.0, 2)],
[('Invert', 0.4, 9), ('Rotate', 0.6, 0)],
[('Equalize', 1.0, 9), ('ShearY', 0.6, 3)],
[('Color', 0.4, 7), ('Equalize', 0.6, 0)],
[('Posterize', 0.4, 6), ('AutoContrast', 0.4, 7)],
[('Solarize', 0.6, 8), ('Color', 0.6, 9)],
[('Solarize', 0.2, 4), ('Rotate', 0.8, 9)],
[('Rotate', 1.0, 7), ('TranslateYRel', 0.8, 9)],
[('ShearX', 0.0, 0), ('Solarize', 0.8, 4)],
[('ShearY', 0.8, 0), ('Color', 0.6, 4)],
[('Color', 1.0, 0), ('Rotate', 0.6, 2)],
[('Equalize', 0.8, 4), ('Equalize', 0.0, 8)],
[('Equalize', 1.0, 4), ('AutoContrast', 0.6, 2)],
[('ShearY', 0.4, 7), ('SolarizeAdd', 0.6, 7)],
[('Posterize', 0.8, 2), ('Solarize', 0.6, 10)], # This results in black image with Tpu posterize
[('Solarize', 0.6, 8), ('Equalize', 0.6, 1)],
[('Color', 0.8, 6), ('Rotate', 0.4, 5)],
]
pc = [[AugmentOp(*a, hparams=hparams) for a in sp] for sp in policy]
return pc
def auto_augment_policy_v0r(hparams):
# ImageNet v0 policy from TPU EfficientNet impl, with variation of Posterize used
# in Google research implementation (number of bits discarded increases with magnitude)
policy = [
[('Equalize', 0.8, 1), ('ShearY', 0.8, 4)],
[('Color', 0.4, 9), ('Equalize', 0.6, 3)],
[('Color', 0.4, 1), ('Rotate', 0.6, 8)],
[('Solarize', 0.8, 3), ('Equalize', 0.4, 7)],
[('Solarize', 0.4, 2), ('Solarize', 0.6, 2)],
[('Color', 0.2, 0), ('Equalize', 0.8, 8)],
[('Equalize', 0.4, 8), ('SolarizeAdd', 0.8, 3)],
[('ShearX', 0.2, 9), ('Rotate', 0.6, 8)],
[('Color', 0.6, 1), ('Equalize', 1.0, 2)],
[('Invert', 0.4, 9), ('Rotate', 0.6, 0)],
[('Equalize', 1.0, 9), ('ShearY', 0.6, 3)],
[('Color', 0.4, 7), ('Equalize', 0.6, 0)],
[('PosterizeIncreasing', 0.4, 6), ('AutoContrast', 0.4, 7)],
[('Solarize', 0.6, 8), ('Color', 0.6, 9)],
[('Solarize', 0.2, 4), ('Rotate', 0.8, 9)],
[('Rotate', 1.0, 7), ('TranslateYRel', 0.8, 9)],
[('ShearX', 0.0, 0), ('Solarize', 0.8, 4)],
[('ShearY', 0.8, 0), ('Color', 0.6, 4)],
[('Color', 1.0, 0), ('Rotate', 0.6, 2)],
[('Equalize', 0.8, 4), ('Equalize', 0.0, 8)],
[('Equalize', 1.0, 4), ('AutoContrast', 0.6, 2)],
[('ShearY', 0.4, 7), ('SolarizeAdd', 0.6, 7)],
[('PosterizeIncreasing', 0.8, 2), ('Solarize', 0.6, 10)],
[('Solarize', 0.6, 8), ('Equalize', 0.6, 1)],
[('Color', 0.8, 6), ('Rotate', 0.4, 5)],
]
pc = [[AugmentOp(*a, hparams=hparams) for a in sp] for sp in policy]
return pc
def auto_augment_policy_original(hparams):
# ImageNet policy from https://arxiv.org/abs/1805.09501
policy = [
[('PosterizeOriginal', 0.4, 8), ('Rotate', 0.6, 9)],
[('Solarize', 0.6, 5), ('AutoContrast', 0.6, 5)],
[('Equalize', 0.8, 8), ('Equalize', 0.6, 3)],
[('PosterizeOriginal', 0.6, 7), ('PosterizeOriginal', 0.6, 6)],
[('Equalize', 0.4, 7), ('Solarize', 0.2, 4)],
[('Equalize', 0.4, 4), ('Rotate', 0.8, 8)],
[('Solarize', 0.6, 3), ('Equalize', 0.6, 7)],
[('PosterizeOriginal', 0.8, 5), ('Equalize', 1.0, 2)],
[('Rotate', 0.2, 3), ('Solarize', 0.6, 8)],
[('Equalize', 0.6, 8), ('PosterizeOriginal', 0.4, 6)],
[('Rotate', 0.8, 8), ('Color', 0.4, 0)],
[('Rotate', 0.4, 9), ('Equalize', 0.6, 2)],
[('Equalize', 0.0, 7), ('Equalize', 0.8, 8)],
[('Invert', 0.6, 4), ('Equalize', 1.0, 8)],
[('Color', 0.6, 4), ('Contrast', 1.0, 8)],
[('Rotate', 0.8, 8), ('Color', 1.0, 2)],
[('Color', 0.8, 8), ('Solarize', 0.8, 7)],
[('Sharpness', 0.4, 7), ('Invert', 0.6, 8)],
[('ShearX', 0.6, 5), ('Equalize', 1.0, 9)],
[('Color', 0.4, 0), ('Equalize', 0.6, 3)],
[('Equalize', 0.4, 7), ('Solarize', 0.2, 4)],
[('Solarize', 0.6, 5), ('AutoContrast', 0.6, 5)],
[('Invert', 0.6, 4), ('Equalize', 1.0, 8)],
[('Color', 0.6, 4), ('Contrast', 1.0, 8)],
[('Equalize', 0.8, 8), ('Equalize', 0.6, 3)],
]
pc = [[AugmentOp(*a, hparams=hparams) for a in sp] for sp in policy]
return pc
def auto_augment_policy_originalr(hparams):
# ImageNet policy from https://arxiv.org/abs/1805.09501 with research posterize variation
policy = [
[('PosterizeIncreasing', 0.4, 8), ('Rotate', 0.6, 9)],
[('Solarize', 0.6, 5), ('AutoContrast', 0.6, 5)],
[('Equalize', 0.8, 8), ('Equalize', 0.6, 3)],
[('PosterizeIncreasing', 0.6, 7), ('PosterizeIncreasing', 0.6, 6)],
[('Equalize', 0.4, 7), ('Solarize', 0.2, 4)],
[('Equalize', 0.4, 4), ('Rotate', 0.8, 8)],
[('Solarize', 0.6, 3), ('Equalize', 0.6, 7)],
[('PosterizeIncreasing', 0.8, 5), ('Equalize', 1.0, 2)],
[('Rotate', 0.2, 3), ('Solarize', 0.6, 8)],
[('Equalize', 0.6, 8), ('PosterizeIncreasing', 0.4, 6)],
[('Rotate', 0.8, 8), ('Color', 0.4, 0)],
[('Rotate', 0.4, 9), ('Equalize', 0.6, 2)],
[('Equalize', 0.0, 7), ('Equalize', 0.8, 8)],
[('Invert', 0.6, 4), ('Equalize', 1.0, 8)],
[('Color', 0.6, 4), ('Contrast', 1.0, 8)],
[('Rotate', 0.8, 8), ('Color', 1.0, 2)],
[('Color', 0.8, 8), ('Solarize', 0.8, 7)],
[('Sharpness', 0.4, 7), ('Invert', 0.6, 8)],
[('ShearX', 0.6, 5), ('Equalize', 1.0, 9)],
[('Color', 0.4, 0), ('Equalize', 0.6, 3)],
[('Equalize', 0.4, 7), ('Solarize', 0.2, 4)],
[('Solarize', 0.6, 5), ('AutoContrast', 0.6, 5)],
[('Invert', 0.6, 4), ('Equalize', 1.0, 8)],
[('Color', 0.6, 4), ('Contrast', 1.0, 8)],
[('Equalize', 0.8, 8), ('Equalize', 0.6, 3)],
]
pc = [[AugmentOp(*a, hparams=hparams) for a in sp] for sp in policy]
return pc
def auto_augment_policy(name="original"):
hparams = _HPARAMS_DEFAULT
if name == 'original':
return auto_augment_policy_original(hparams)
elif name == 'originalr':
return auto_augment_policy_originalr(hparams)
elif name == 'v0':
return auto_augment_policy_v0(hparams)
elif name == 'v0r':
return auto_augment_policy_v0r(hparams)
else:
assert False, 'Unknown AA policy (%s)' % name
class AutoAugment:
def __init__(self):
self.policy = auto_augment_policy()
def __call__(self, img):
sub_policy = random.choice(self.policy)
for op in sub_policy:
img = op(img)
return img
def auto_augment_transform(config_str, hparams):
"""
Create a AutoAugment transform
:param config_str: String defining configuration of auto augmentation. Consists of multiple sections separated by
dashes ('-'). The first section defines the AutoAugment policy (one of 'v0', 'v0r', 'original', 'originalr').
The remaining sections, not order sepecific determine
'mstd' - float std deviation of magnitude noise applied
Ex 'original-mstd0.5' results in AutoAugment with original policy, magnitude_std 0.5
:param hparams: Other hparams (kwargs) for the AutoAugmentation scheme
:return: A PyTorch compatible Transform
"""
config = config_str.split('-')
policy_name = config[0]
config = config[1:]
for c in config:
cs = re.split(r'(\d.*)', c)
if len(cs) < 2:
continue
key, val = cs[:2]
if key == 'mstd':
# noise param injected via hparams for now
hparams.setdefault('magnitude_std', float(val))
else:
assert False, 'Unknown AutoAugment config section'
aa_policy = auto_augment_policy(policy_name)
return AutoAugment(aa_policy)
_RAND_TRANSFORMS = [
'AutoContrast',
'Equalize',
'Invert',
'Rotate',
'Posterize',
'Solarize',
'SolarizeAdd',
'Color',
'Contrast',
'Brightness',
'Sharpness',
'ShearX',
'ShearY',
'TranslateXRel',
'TranslateYRel',
# 'Cutout' # NOTE I've implement this as random erasing separately
]
_RAND_INCREASING_TRANSFORMS = [
'AutoContrast',
'Equalize',
'Invert',
'Rotate',
'PosterizeIncreasing',
'SolarizeIncreasing',
'SolarizeAdd',
'ColorIncreasing',
'ContrastIncreasing',
'BrightnessIncreasing',
'SharpnessIncreasing',
'ShearX',
'ShearY',
'TranslateXRel',
'TranslateYRel',
# 'Cutout' # NOTE I've implement this as random erasing separately
]
# These experimental weights are based loosely on the relative improvements mentioned in paper.
# They may not result in increased performance, but could likely be tuned to so.
_RAND_CHOICE_WEIGHTS_0 = {
'Rotate': 0.3,
'ShearX': 0.2,
'ShearY': 0.2,
'TranslateXRel': 0.1,
'TranslateYRel': 0.1,
'Color': .025,
'Sharpness': 0.025,
'AutoContrast': 0.025,
'Solarize': .005,
'SolarizeAdd': .005,
'Contrast': .005,
'Brightness': .005,
'Equalize': .005,
'Posterize': 0,
'Invert': 0,
}
def _select_rand_weights(weight_idx=0, transforms=None):
transforms = transforms or _RAND_TRANSFORMS
assert weight_idx == 0 # only one set of weights currently
rand_weights = _RAND_CHOICE_WEIGHTS_0
probs = [rand_weights[k] for k in transforms]
probs /= np.sum(probs)
return probs
def rand_augment_ops(magnitude=10, hparams=None, transforms=None):
hparams = hparams or _HPARAMS_DEFAULT
transforms = transforms or _RAND_TRANSFORMS
return [AugmentOp(
name, prob=0.5, magnitude=magnitude, hparams=hparams) for name in transforms]
class RandAugment:
def __init__(self, ops, num_layers=2, choice_weights=None):
self.ops = ops
self.num_layers = num_layers
self.choice_weights = choice_weights
def __call__(self, img):
# no replacement when using weighted choice
ops = np.random.choice(
self.ops, self.num_layers, replace=self.choice_weights is None, p=self.choice_weights)
for op in ops:
img = op(img)
return img
def rand_augment_transform(config_str, hparams):
"""
Create a RandAugment transform
:param config_str: String defining configuration of random augmentation. Consists of multiple sections separated by
dashes ('-'). The first section defines the specific variant of rand augment (currently only 'rand'). The remaining
sections, not order sepecific determine
'm' - integer magnitude of rand augment
'n' - integer num layers (number of transform ops selected per image)
'w' - integer probabiliy weight index (index of a set of weights to influence choice of op)
'mstd' - float std deviation of magnitude noise applied
'inc' - integer (bool), use augmentations that increase in severity with magnitude (default: 0)
Ex 'rand-m9-n3-mstd0.5' results in RandAugment with magnitude 9, num_layers 3, magnitude_std 0.5
'rand-mstd1-w0' results in magnitude_std 1.0, weights 0, default magnitude of 10 and num_layers 2
:param hparams: Other hparams (kwargs) for the RandAugmentation scheme
:return: A PyTorch compatible Transform
"""
magnitude = _MAX_LEVEL # default to _MAX_LEVEL for magnitude (currently 10)
num_layers = 2 # default to 2 ops per image
weight_idx = None # default to no probability weights for op choice
transforms = _RAND_TRANSFORMS
config = config_str.split('-')
assert config[0] == 'rand'
config = config[1:]
for c in config:
cs = re.split(r'(\d.*)', c)
if len(cs) < 2:
continue
key, val = cs[:2]
if key == 'mstd':
# noise param injected via hparams for now
hparams.setdefault('magnitude_std', float(val))
elif key == 'inc':
if bool(val):
transforms = _RAND_INCREASING_TRANSFORMS
elif key == 'm':
magnitude = int(val)
elif key == 'n':
num_layers = int(val)
elif key == 'w':
weight_idx = int(val)
else:
assert False, 'Unknown RandAugment config section'
ra_ops = rand_augment_ops(magnitude=magnitude, hparams=hparams, transforms=transforms)
choice_weights = None if weight_idx is None else _select_rand_weights(weight_idx)
return RandAugment(ra_ops, num_layers, choice_weights=choice_weights)
_AUGMIX_TRANSFORMS = [
'AutoContrast',
'ColorIncreasing', # not in paper
'ContrastIncreasing', # not in paper
'BrightnessIncreasing', # not in paper
'SharpnessIncreasing', # not in paper
'Equalize',
'Rotate',
'PosterizeIncreasing',
'SolarizeIncreasing',
'ShearX',
'ShearY',
'TranslateXRel',
'TranslateYRel',
]
def augmix_ops(magnitude=10, hparams=None, transforms=None):
hparams = hparams or _HPARAMS_DEFAULT
transforms = transforms or _AUGMIX_TRANSFORMS
return [AugmentOp(
name, prob=1.0, magnitude=magnitude, hparams=hparams) for name in transforms]
class AugMixAugment:
""" AugMix Transform
Adapted and improved from impl here: https://github.com/google-research/augmix/blob/master/imagenet.py
From paper: 'AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty -
https://arxiv.org/abs/1912.02781
"""
def __init__(self, ops, alpha=1., width=3, depth=-1, blended=False):
self.ops = ops
self.alpha = alpha
self.width = width
self.depth = depth
self.blended = blended # blended mode is faster but not well tested
def _calc_blended_weights(self, ws, m):
ws = ws * m
cump = 1.
rws = []
for w in ws[::-1]:
alpha = w / cump
cump *= (1 - alpha)
rws.append(alpha)
return np.array(rws[::-1], dtype=np.float32)
def _apply_blended(self, img, mixing_weights, m):
# This is my first crack and implementing a slightly faster mixed augmentation. Instead
# of accumulating the mix for each chain in a Numpy array and then blending with original,
# it recomputes the blending coefficients and applies one PIL image blend per chain.
# TODO the results appear in the right ballpark but they differ by more than rounding.
img_orig = img.copy()
ws = self._calc_blended_weights(mixing_weights, m)
for w in ws:
depth = self.depth if self.depth > 0 else np.random.randint(1, 4)
ops = np.random.choice(self.ops, depth, replace=True)
img_aug = img_orig # no ops are in-place, deep copy not necessary
for op in ops:
img_aug = op(img_aug)
img = Image.blend(img, img_aug, w)
return img
def _apply_basic(self, img, mixing_weights, m):
# This is a literal adaptation of the paper/official implementation without normalizations and
# PIL <-> Numpy conversions between every op. It is still quite CPU compute heavy compared to the
# typical augmentation transforms, could use a GPU / Kornia implementation.
img_shape = img.size[0], img.size[1], len(img.getbands())
mixed = np.zeros(img_shape, dtype=np.float32)
for mw in mixing_weights:
depth = self.depth if self.depth > 0 else np.random.randint(1, 4)
ops = np.random.choice(self.ops, depth, replace=True)
img_aug = img # no ops are in-place, deep copy not necessary
for op in ops:
img_aug = op(img_aug)
mixed += mw * np.asarray(img_aug, dtype=np.float32)
np.clip(mixed, 0, 255., out=mixed)
mixed = Image.fromarray(mixed.astype(np.uint8))
return Image.blend(img, mixed, m)
def __call__(self, img):
mixing_weights = np.float32(np.random.dirichlet([self.alpha] * self.width))
m = np.float32(np.random.beta(self.alpha, self.alpha))
if self.blended:
mixed = self._apply_blended(img, mixing_weights, m)
else:
mixed = self._apply_basic(img, mixing_weights, m)
return mixed
def augment_and_mix_transform(config_str, hparams):
""" Create AugMix PyTorch transform
:param config_str: String defining configuration of random augmentation. Consists of multiple sections separated by
dashes ('-'). The first section defines the specific variant of rand augment (currently only 'rand'). The remaining
sections, not order sepecific determine
'm' - integer magnitude (severity) of augmentation mix (default: 3)
'w' - integer width of augmentation chain (default: 3)
'd' - integer depth of augmentation chain (-1 is random [1, 3], default: -1)
'b' - integer (bool), blend each branch of chain into end result without a final blend, less CPU (default: 0)
'mstd' - float std deviation of magnitude noise applied (default: 0)
Ex 'augmix-m5-w4-d2' results in AugMix with severity 5, chain width 4, chain depth 2
:param hparams: Other hparams (kwargs) for the Augmentation transforms
:return: A PyTorch compatible Transform
"""
magnitude = 3
width = 3
depth = -1
alpha = 1.
blended = False
config = config_str.split('-')
assert config[0] == 'augmix'
config = config[1:]
for c in config:
cs = re.split(r'(\d.*)', c)
if len(cs) < 2:
continue
key, val = cs[:2]
if key == 'mstd':
# noise param injected via hparams for now
hparams.setdefault('magnitude_std', float(val))
elif key == 'm':
magnitude = int(val)
elif key == 'w':
width = int(val)
elif key == 'd':
depth = int(val)
elif key == 'a':
alpha = float(val)
elif key == 'b':
blended = bool(val)
else:
assert False, 'Unknown AugMix config section'
ops = augmix_ops(magnitude=magnitude, hparams=hparams)
return AugMixAugment(ops, alpha=alpha, width=width, depth=depth, blended=blended)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment