"configs/rec/rec_icdar15_train.yml" did not exist on "bb7798518253f84442b47e1aec22786f8a4543bc"
Commit b6c19984 authored by dengjb's avatar dengjb
Browse files

update

parents
MODEL:
TYPE: regnet
NUM_CLASSES: 1000
REGNET:
DEPTH: 22
W0: 24
WA: 24.48
WM: 2.54
GROUP_W: 16
OPTIM:
LR_POLICY: cos
BASE_LR: 0.8
MAX_EPOCH: 100
MOMENTUM: 0.9
WEIGHT_DECAY: 5e-5
WARMUP_ITERS: 5
TRAIN:
DATASET: imagenet
IM_SIZE: 224
BATCH_SIZE: 1024
TEST:
DATASET: imagenet
IM_SIZE: 256
BATCH_SIZE: 800
NUM_GPUS: 8
OUT_DIR: .
MODEL:
TYPE: regnet
NUM_CLASSES: 1000
REGNET:
DEPTH: 17
W0: 184
WA: 60.83
WM: 2.07
GROUP_W: 56
OPTIM:
LR_POLICY: cos
BASE_LR: 0.4
MAX_EPOCH: 100
MOMENTUM: 0.9
WEIGHT_DECAY: 5e-5
WARMUP_ITERS: 5
TRAIN:
DATASET: imagenet
IM_SIZE: 224
BATCH_SIZE: 512
TEST:
DATASET: imagenet
IM_SIZE: 256
BATCH_SIZE: 400
NUM_GPUS: 8
OUT_DIR: .
MODEL:
TYPE: regnet
NUM_CLASSES: 1000
REGNET:
DEPTH: 16
W0: 48
WA: 36.97
WM: 2.24
GROUP_W: 24
OPTIM:
LR_POLICY: cos
BASE_LR: 0.8
MAX_EPOCH: 100
MOMENTUM: 0.9
WEIGHT_DECAY: 5e-5
WARMUP_ITERS: 5
TRAIN:
DATASET: imagenet
IM_SIZE: 224
BATCH_SIZE: 1024
TEST:
DATASET: imagenet
IM_SIZE: 256
BATCH_SIZE: 800
NUM_GPUS: 8
OUT_DIR: .
MODEL:
TYPE: regnet
NUM_CLASSES: 1000
REGNET:
DEPTH: 23
W0: 80
WA: 49.56
WM: 2.88
GROUP_W: 120
OPTIM:
LR_POLICY: cos
BASE_LR: 0.4
MAX_EPOCH: 100
MOMENTUM: 0.9
WEIGHT_DECAY: 5e-5
WARMUP_ITERS: 5
TRAIN:
DATASET: imagenet
IM_SIZE: 224
BATCH_SIZE: 512
TEST:
DATASET: imagenet
IM_SIZE: 256
BATCH_SIZE: 400
NUM_GPUS: 8
OUT_DIR: .
MODEL:
TYPE: regnet
NUM_CLASSES: 1000
REGNET:
DEPTH: 16
W0: 56
WA: 35.73
WM: 2.28
GROUP_W: 16
OPTIM:
LR_POLICY: cos
BASE_LR: 0.8
MAX_EPOCH: 100
MOMENTUM: 0.9
WEIGHT_DECAY: 5e-5
WARMUP_ITERS: 5
TRAIN:
DATASET: imagenet
IM_SIZE: 224
BATCH_SIZE: 1024
TEST:
DATASET: imagenet
IM_SIZE: 256
BATCH_SIZE: 800
NUM_GPUS: 8
OUT_DIR: .
MODEL:
TYPE: regnet
NUM_CLASSES: 1000
REGNET:
SE_ON: True
DEPTH: 27
W0: 48
WA: 20.71
WM: 2.65
GROUP_W: 24
OPTIM:
LR_POLICY: cos
BASE_LR: 0.8
MAX_EPOCH: 100
MOMENTUM: 0.9
WEIGHT_DECAY: 5e-5
WARMUP_ITERS: 5
TRAIN:
DATASET: imagenet
IM_SIZE: 224
BATCH_SIZE: 1024
TEST:
DATASET: imagenet
IM_SIZE: 256
BATCH_SIZE: 800
NUM_GPUS: 8
OUT_DIR: .
MODEL:
TYPE: regnet
NUM_CLASSES: 1000
REGNET:
SE_ON: True
DEPTH: 19
W0: 168
WA: 73.36
WM: 2.37
GROUP_W: 112
OPTIM:
LR_POLICY: cos
BASE_LR: 0.4
MAX_EPOCH: 100
MOMENTUM: 0.9
WEIGHT_DECAY: 5e-5
WARMUP_ITERS: 5
TRAIN:
DATASET: imagenet
IM_SIZE: 224
BATCH_SIZE: 512
TEST:
DATASET: imagenet
IM_SIZE: 256
BATCH_SIZE: 400
NUM_GPUS: 8
OUT_DIR: .
MODEL:
TYPE: regnet
NUM_CLASSES: 1000
REGNET:
SE_ON: True
DEPTH: 18
W0: 200
WA: 106.23
WM: 2.48
GROUP_W: 112
OPTIM:
LR_POLICY: cos
BASE_LR: 0.2
MAX_EPOCH: 100
MOMENTUM: 0.9
WEIGHT_DECAY: 5e-5
WARMUP_ITERS: 5
TRAIN:
DATASET: imagenet
IM_SIZE: 224
BATCH_SIZE: 256
TEST:
DATASET: imagenet
IM_SIZE: 256
BATCH_SIZE: 200
NUM_GPUS: 8
OUT_DIR: .
MODEL:
TYPE: regnet
NUM_CLASSES: 1000
REGNET:
SE_ON: True
DEPTH: 13
W0: 24
WA: 36.44
WM: 2.49
GROUP_W: 8
OPTIM:
LR_POLICY: cos
BASE_LR: 0.8
MAX_EPOCH: 100
MOMENTUM: 0.9
WEIGHT_DECAY: 5e-5
TRAIN:
DATASET: imagenet
IM_SIZE: 224
BATCH_SIZE: 1024
TEST:
DATASET: imagenet
IM_SIZE: 256
BATCH_SIZE: 800
NUM_GPUS: 8
OUT_DIR: .
MODEL:
TYPE: regnet
NUM_CLASSES: 1000
REGNET:
SE_ON: True
DEPTH: 21
W0: 80
WA: 42.63
WM: 2.66
GROUP_W: 24
OPTIM:
LR_POLICY: cos
BASE_LR: 0.4
MAX_EPOCH: 100
MOMENTUM: 0.9
WEIGHT_DECAY: 5e-5
WARMUP_ITERS: 5
TRAIN:
DATASET: imagenet
IM_SIZE: 224
BATCH_SIZE: 512
TEST:
DATASET: imagenet
IM_SIZE: 256
BATCH_SIZE: 400
NUM_GPUS: 8
OUT_DIR: .
MODEL:
TYPE: regnet
NUM_CLASSES: 1000
REGNET:
SE_ON: True
DEPTH: 20
W0: 232
WA: 115.89
WM: 2.53
GROUP_W: 232
OPTIM:
LR_POLICY: cos
BASE_LR: 0.2
MAX_EPOCH: 100
MOMENTUM: 0.9
WEIGHT_DECAY: 5e-5
WARMUP_ITERS: 5
TRAIN:
DATASET: imagenet
IM_SIZE: 224
BATCH_SIZE: 256
TEST:
DATASET: imagenet
IM_SIZE: 256
BATCH_SIZE: 200
NUM_GPUS: 8
OUT_DIR: .
MODEL:
TYPE: regnet
NUM_CLASSES: 1000
REGNET:
SE_ON: True
DEPTH: 22
W0: 96
WA: 31.41
WM: 2.24
GROUP_W: 64
OPTIM:
LR_POLICY: cos
BASE_LR: 0.4
MAX_EPOCH: 100
MOMENTUM: 0.9
WEIGHT_DECAY: 5e-5
WARMUP_ITERS: 5
TRAIN:
DATASET: imagenet
IM_SIZE: 224
BATCH_SIZE: 512
TEST:
DATASET: imagenet
IM_SIZE: 256
BATCH_SIZE: 400
NUM_GPUS: 8
OUT_DIR: .
MODEL:
TYPE: regnet
NUM_CLASSES: 1000
REGNET:
SE_ON: True
DEPTH: 16
W0: 48
WA: 27.89
WM: 2.09
GROUP_W: 8
OPTIM:
LR_POLICY: cos
BASE_LR: 0.8
MAX_EPOCH: 100
MOMENTUM: 0.9
WEIGHT_DECAY: 5e-5
WARMUP_ITERS: 5
TRAIN:
DATASET: imagenet
IM_SIZE: 224
BATCH_SIZE: 1024
TEST:
DATASET: imagenet
IM_SIZE: 256
BATCH_SIZE: 800
NUM_GPUS: 8
OUT_DIR: .
MODEL:
TYPE: regnet
NUM_CLASSES: 1000
REGNET:
SE_ON: True
DEPTH: 25
W0: 112
WA: 33.22
WM: 2.27
GROUP_W: 72
OPTIM:
LR_POLICY: cos
BASE_LR: 0.4
MAX_EPOCH: 100
MOMENTUM: 0.9
WEIGHT_DECAY: 5e-5
WARMUP_ITERS: 5
TRAIN:
DATASET: imagenet
IM_SIZE: 224
BATCH_SIZE: 512
TEST:
DATASET: imagenet
IM_SIZE: 256
BATCH_SIZE: 400
NUM_GPUS: 8
OUT_DIR: .
MODEL:
TYPE: regnet
NUM_CLASSES: 1000
REGNET:
SE_ON: True
DEPTH: 15
W0: 48
WA: 32.54
WM: 2.32
GROUP_W: 16
OPTIM:
LR_POLICY: cos
BASE_LR: 0.8
MAX_EPOCH: 100
MOMENTUM: 0.9
WEIGHT_DECAY: 5e-5
WARMUP_ITERS: 5
TRAIN:
DATASET: imagenet
IM_SIZE: 224
BATCH_SIZE: 1024
TEST:
DATASET: imagenet
IM_SIZE: 256
BATCH_SIZE: 800
NUM_GPUS: 8
OUT_DIR: .
MODEL:
TYPE: regnet
NUM_CLASSES: 1000
REGNET:
SE_ON: true
DEPTH: 17
W0: 192
WA: 76.82
WM: 2.19
GROUP_W: 56
OPTIM:
LR_POLICY: cos
BASE_LR: 0.4
MAX_EPOCH: 100
MOMENTUM: 0.9
WEIGHT_DECAY: 5e-5
WARMUP_ITERS: 5
TRAIN:
DATASET: imagenet
IM_SIZE: 224
BATCH_SIZE: 512
TEST:
DATASET: imagenet
IM_SIZE: 256
BATCH_SIZE: 400
NUM_GPUS: 8
OUT_DIR: .
MODEL:
TYPE: regnet
NUM_CLASSES: 1000
REGNET:
SE_ON: True
DEPTH: 14
W0: 56
WA: 38.84
WM: 2.4
GROUP_W: 16
OPTIM:
LR_POLICY: cos
BASE_LR: 0.8
MAX_EPOCH: 100
MOMENTUM: 0.9
WEIGHT_DECAY: 5e-5
WARMUP_ITERS: 5
TRAIN:
DATASET: imagenet
IM_SIZE: 224
BATCH_SIZE: 1024
TEST:
DATASET: imagenet
IM_SIZE: 256
BATCH_SIZE: 800
NUM_GPUS: 8
OUT_DIR: .
# encoding: utf-8
# ref: https://github.com/CaoWGG/RepVGG/blob/develop/repvgg.py
import logging
import numpy as np
import torch
import torch.nn as nn
from fastreid.layers import *
from fastreid.utils.checkpoint import get_missing_parameters_message, get_unexpected_parameters_message
from .build import BACKBONE_REGISTRY
logger = logging.getLogger(__name__)
def deploy(self, mode=False):
self.deploying = mode
for module in self.children():
if hasattr(module, 'deploying'):
module.deploy(mode)
nn.Sequential.deploying = False
nn.Sequential.deploy = deploy
def conv_bn(norm_type, in_channels, out_channels, kernel_size, stride, padding, groups=1):
result = nn.Sequential()
result.add_module('conv', nn.Conv2d(in_channels=in_channels, out_channels=out_channels,
kernel_size=kernel_size, stride=stride, padding=padding, groups=groups,
bias=False))
result.add_module('bn', get_norm(norm_type, out_channels))
return result
class RepVGGBlock(nn.Module):
def __init__(self, in_channels, out_channels, norm_type, kernel_size,
stride=1, padding=0, groups=1):
super(RepVGGBlock, self).__init__()
self.deploying = False
self.groups = groups
self.in_channels = in_channels
assert kernel_size == 3
assert padding == 1
padding_11 = padding - kernel_size // 2
self.nonlinearity = nn.ReLU()
self.in_channels = in_channels
self.in_channels = in_channels
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.groups = groups
self.register_parameter('fused_weight', None)
self.register_parameter('fused_bias', None)
self.rbr_identity = get_norm(norm_type, in_channels) if out_channels == in_channels and stride == 1 else None
self.rbr_dense = conv_bn(norm_type, in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
stride=stride, padding=padding, groups=groups)
self.rbr_1x1 = conv_bn(norm_type, in_channels=in_channels, out_channels=out_channels, kernel_size=1,
stride=stride, padding=padding_11, groups=groups)
def forward(self, inputs):
if self.deploying:
assert self.fused_weight is not None and self.fused_bias is not None, \
"Make deploy mode=True to generate fused weight and fused bias first"
fused_out = self.nonlinearity(torch.nn.functional.conv2d(
inputs, self.fused_weight, self.fused_bias, self.stride, self.padding, 1, self.groups))
return fused_out
if self.rbr_identity is None:
id_out = 0
else:
id_out = self.rbr_identity(inputs)
out = self.nonlinearity(self.rbr_dense(inputs) + self.rbr_1x1(inputs) + id_out)
return out
def get_equivalent_kernel_bias(self):
kernel3x3, bias3x3 = self._fuse_bn_tensor(self.rbr_dense)
kernel1x1, bias1x1 = self._fuse_bn_tensor(self.rbr_1x1)
kernelid, biasid = self._fuse_bn_tensor(self.rbr_identity)
return kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid, bias3x3 + bias1x1 + biasid
def _pad_1x1_to_3x3_tensor(self, kernel1x1):
if kernel1x1 is None:
return 0
else:
return torch.nn.functional.pad(kernel1x1, [1, 1, 1, 1])
def _fuse_bn_tensor(self, branch):
if branch is None:
return 0, 0
if isinstance(branch, nn.Sequential):
kernel = branch.conv.weight
running_mean = branch.bn.running_mean
running_var = branch.bn.running_var
gamma = branch.bn.weight
beta = branch.bn.bias
eps = branch.bn.eps
else:
assert branch.__class__.__name__.find('BatchNorm') != -1
if not hasattr(self, 'id_tensor'):
input_dim = self.in_channels // self.groups
kernel_value = np.zeros((self.in_channels, input_dim, 3, 3), dtype=np.float32)
for i in range(self.in_channels):
kernel_value[i, i % input_dim, 1, 1] = 1
self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device)
kernel = self.id_tensor
running_mean = branch.running_mean
running_var = branch.running_var
gamma = branch.weight
beta = branch.bias
eps = branch.eps
std = (running_var + eps).sqrt()
t = (gamma / std).reshape(-1, 1, 1, 1)
return kernel * t, beta - running_mean * gamma / std
def deploy(self, mode=False):
self.deploying = mode
if mode:
fused_weight, fused_bias = self.get_equivalent_kernel_bias()
self.register_parameter('fused_weight', nn.Parameter(fused_weight))
self.register_parameter('fused_bias', nn.Parameter(fused_bias))
del self.rbr_identity, self.rbr_1x1, self.rbr_dense
class RepVGG(nn.Module):
def __init__(self, last_stride, norm_type, num_blocks, width_multiplier=None, override_groups_map=None):
super(RepVGG, self).__init__()
assert len(width_multiplier) == 4
self.deploying = False
self.override_groups_map = override_groups_map or dict()
assert 0 not in self.override_groups_map
self.in_planes = min(64, int(64 * width_multiplier[0]))
self.stage0 = RepVGGBlock(in_channels=3, out_channels=self.in_planes, norm_type=norm_type,
kernel_size=3, stride=2, padding=1)
self.cur_layer_idx = 1
self.stage1 = self._make_stage(int(64 * width_multiplier[0]), norm_type, num_blocks[0], stride=2)
self.stage2 = self._make_stage(int(128 * width_multiplier[1]), norm_type, num_blocks[1], stride=2)
self.stage3 = self._make_stage(int(256 * width_multiplier[2]), norm_type, num_blocks[2], stride=2)
self.stage4 = self._make_stage(int(512 * width_multiplier[3]), norm_type, num_blocks[3], stride=last_stride)
def _make_stage(self, planes, norm_type, num_blocks, stride):
strides = [stride] + [1] * (num_blocks - 1)
blocks = []
for stride in strides:
cur_groups = self.override_groups_map.get(self.cur_layer_idx, 1)
blocks.append(RepVGGBlock(in_channels=self.in_planes, out_channels=planes, norm_type=norm_type,
kernel_size=3, stride=stride, padding=1, groups=cur_groups))
self.in_planes = planes
self.cur_layer_idx += 1
return nn.Sequential(*blocks)
def deploy(self, mode=False):
self.deploying = mode
for module in self.children():
if hasattr(module, 'deploying'):
module.deploy(mode)
def forward(self, x):
out = self.stage0(x)
out = self.stage1(out)
out = self.stage2(out)
out = self.stage3(out)
out = self.stage4(out)
return out
optional_groupwise_layers = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26]
g2_map = {l: 2 for l in optional_groupwise_layers}
g4_map = {l: 4 for l in optional_groupwise_layers}
def create_RepVGG_A0(last_stride, norm_type):
return RepVGG(last_stride, norm_type, num_blocks=[2, 4, 14, 1],
width_multiplier=[0.75, 0.75, 0.75, 2.5], override_groups_map=None)
def create_RepVGG_A1(last_stride, norm_type):
return RepVGG(last_stride, norm_type, num_blocks=[2, 4, 14, 1],
width_multiplier=[1, 1, 1, 2.5], override_groups_map=None)
def create_RepVGG_A2(last_stride, norm_type):
return RepVGG(last_stride, norm_type, num_blocks=[2, 4, 14, 1],
width_multiplier=[1.5, 1.5, 1.5, 2.75], override_groups_map=None)
def create_RepVGG_B0(last_stride, norm_type):
return RepVGG(last_stride, norm_type, num_blocks=[4, 6, 16, 1],
width_multiplier=[1, 1, 1, 2.5], override_groups_map=None)
def create_RepVGG_B1(last_stride, norm_type):
return RepVGG(last_stride, norm_type, num_blocks=[4, 6, 16, 1],
width_multiplier=[2, 2, 2, 4], override_groups_map=None)
def create_RepVGG_B1g2(last_stride, norm_type):
return RepVGG(last_stride, norm_type, num_blocks=[4, 6, 16, 1],
width_multiplier=[2, 2, 2, 4], override_groups_map=g2_map)
def create_RepVGG_B1g4(last_stride, norm_type):
return RepVGG(last_stride, norm_type, num_blocks=[4, 6, 16, 1],
width_multiplier=[2, 2, 2, 4], override_groups_map=g4_map)
def create_RepVGG_B2(last_stride, norm_type):
return RepVGG(last_stride, norm_type, num_blocks=[4, 6, 16, 1],
width_multiplier=[2.5, 2.5, 2.5, 5], override_groups_map=None)
def create_RepVGG_B2g2(last_stride, norm_type):
return RepVGG(last_stride, norm_type, num_blocks=[4, 6, 16, 1],
width_multiplier=[2.5, 2.5, 2.5, 5], override_groups_map=g2_map)
def create_RepVGG_B2g4(last_stride, norm_type):
return RepVGG(last_stride, norm_type, num_blocks=[4, 6, 16, 1],
width_multiplier=[2.5, 2.5, 2.5, 5], override_groups_map=g4_map)
def create_RepVGG_B3(last_stride, norm_type):
return RepVGG(last_stride, norm_type, num_blocks=[4, 6, 16, 1],
width_multiplier=[3, 3, 3, 5], override_groups_map=None)
def create_RepVGG_B3g2(last_stride, norm_type):
return RepVGG(last_stride, norm_type, num_blocks=[4, 6, 16, 1],
width_multiplier=[3, 3, 3, 5], override_groups_map=g2_map)
def create_RepVGG_B3g4(last_stride, norm_type):
return RepVGG(last_stride, norm_type, num_blocks=[4, 6, 16, 1],
width_multiplier=[3, 3, 3, 5], override_groups_map=g4_map)
@BACKBONE_REGISTRY.register()
def build_repvgg_backbone(cfg):
"""
Create a RepVGG instance from config.
Returns:
RepVGG: a :class: `RepVGG` instance.
"""
# fmt: off
pretrain = cfg.MODEL.BACKBONE.PRETRAIN
pretrain_path = cfg.MODEL.BACKBONE.PRETRAIN_PATH
last_stride = cfg.MODEL.BACKBONE.LAST_STRIDE
bn_norm = cfg.MODEL.BACKBONE.NORM
depth = cfg.MODEL.BACKBONE.DEPTH
# fmt: on
func_dict = {
'A0': create_RepVGG_A0,
'A1': create_RepVGG_A1,
'A2': create_RepVGG_A2,
'B0': create_RepVGG_B0,
'B1': create_RepVGG_B1,
'B1g2': create_RepVGG_B1g2,
'B1g4': create_RepVGG_B1g4,
'B2': create_RepVGG_B2,
'B2g2': create_RepVGG_B2g2,
'B2g4': create_RepVGG_B2g4,
'B3': create_RepVGG_B3,
'B3g2': create_RepVGG_B3g2,
'B3g4': create_RepVGG_B3g4,
}
model = func_dict[depth](last_stride, bn_norm)
if pretrain:
try:
state_dict = torch.load(pretrain_path, map_location=torch.device("cpu"))
logger.info(f"Loading pretrained model from {pretrain_path}")
except FileNotFoundError as e:
logger.info(f'{pretrain_path} is not found! Please check this path.')
raise e
except KeyError as e:
logger.info("State dict keys error! Please check the state dict.")
raise e
incompatible = model.load_state_dict(state_dict, strict=False)
if incompatible.missing_keys:
logger.info(
get_missing_parameters_message(incompatible.missing_keys)
)
if incompatible.unexpected_keys:
logger.info(
get_unexpected_parameters_message(incompatible.unexpected_keys)
)
return model
# encoding: utf-8
# based on:
# https://github.com/zhanghang1989/ResNeSt/blob/master/resnest/torch/models/resnest.py
"""ResNeSt models"""
import logging
import math
import torch
from torch import nn
from fastreid.layers import SplAtConv2d, get_norm, DropBlock2D
from fastreid.utils.checkpoint import get_unexpected_parameters_message, get_missing_parameters_message
from .build import BACKBONE_REGISTRY
logger = logging.getLogger(__name__)
_url_format = 'https://github.com/zhanghang1989/ResNeSt/releases/download/weights_step1/{}-{}.pth'
_model_sha256 = {name: checksum for checksum, name in [
('528c19ca', 'resnest50'),
('22405ba7', 'resnest101'),
('75117900', 'resnest200'),
('0cc87c48', 'resnest269'),
]}
def short_hash(name):
if name not in _model_sha256:
raise ValueError('Pretrained model for {name} is not available.'.format(name=name))
return _model_sha256[name][:8]
model_urls = {name: _url_format.format(name, short_hash(name)) for
name in _model_sha256.keys()
}
class Bottleneck(nn.Module):
"""ResNet Bottleneck
"""
# pylint: disable=unused-argument
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None,
radix=1, cardinality=1, bottleneck_width=64,
avd=False, avd_first=False, dilation=1, is_first=False,
rectified_conv=False, rectify_avg=False,
norm_layer=None, dropblock_prob=0.0, last_gamma=False):
super(Bottleneck, self).__init__()
group_width = int(planes * (bottleneck_width / 64.)) * cardinality
self.conv1 = nn.Conv2d(inplanes, group_width, kernel_size=1, bias=False)
self.bn1 = get_norm(norm_layer, group_width)
self.dropblock_prob = dropblock_prob
self.radix = radix
self.avd = avd and (stride > 1 or is_first)
self.avd_first = avd_first
if self.avd:
self.avd_layer = nn.AvgPool2d(3, stride, padding=1)
stride = 1
if dropblock_prob > 0.0:
self.dropblock1 = DropBlock2D(dropblock_prob, 3)
if radix == 1:
self.dropblock2 = DropBlock2D(dropblock_prob, 3)
self.dropblock3 = DropBlock2D(dropblock_prob, 3)
if radix >= 1:
self.conv2 = SplAtConv2d(
group_width, group_width, kernel_size=3,
stride=stride, padding=dilation,
dilation=dilation, groups=cardinality, bias=False,
radix=radix, rectify=rectified_conv,
rectify_avg=rectify_avg,
norm_layer=norm_layer,
dropblock_prob=dropblock_prob)
elif rectified_conv:
from rfconv import RFConv2d
self.conv2 = RFConv2d(
group_width, group_width, kernel_size=3, stride=stride,
padding=dilation, dilation=dilation,
groups=cardinality, bias=False,
average_mode=rectify_avg)
self.bn2 = get_norm(norm_layer, group_width)
else:
self.conv2 = nn.Conv2d(
group_width, group_width, kernel_size=3, stride=stride,
padding=dilation, dilation=dilation,
groups=cardinality, bias=False)
self.bn2 = get_norm(norm_layer, group_width)
self.conv3 = nn.Conv2d(
group_width, planes * 4, kernel_size=1, bias=False)
self.bn3 = get_norm(norm_layer, planes * 4)
if last_gamma:
from torch.nn.init import zeros_
zeros_(self.bn3.weight)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.dilation = dilation
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
if self.dropblock_prob > 0.0:
out = self.dropblock1(out)
out = self.relu(out)
if self.avd and self.avd_first:
out = self.avd_layer(out)
out = self.conv2(out)
if self.radix == 0:
out = self.bn2(out)
if self.dropblock_prob > 0.0:
out = self.dropblock2(out)
out = self.relu(out)
if self.avd and not self.avd_first:
out = self.avd_layer(out)
out = self.conv3(out)
out = self.bn3(out)
if self.dropblock_prob > 0.0:
out = self.dropblock3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNeSt(nn.Module):
"""ResNet Variants
Parameters
----------
block : Block
Class for the residual block. Options are BasicBlockV1, BottleneckV1.
layers : list of int
Numbers of layers in each block
classes : int, default 1000
Number of classification classes.
dilated : bool, default False
Applying dilation strategy to pretrained ResNet yielding a stride-8 model,
typically used in Semantic Segmentation.
norm_layer : object
Normalization layer used in backbone network (default: :class:`mxnet.gluon.nn.BatchNorm`;
for Synchronized Cross-GPU BachNormalization).
Reference:
- He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
- Yu, Fisher, and Vladlen Koltun. "Multi-scale context aggregation by dilated convolutions."
"""
# pylint: disable=unused-variable
def __init__(self, last_stride, block, layers, radix=1, groups=1, bottleneck_width=64,
dilated=False, dilation=1,
deep_stem=False, stem_width=64, avg_down=False,
rectified_conv=False, rectify_avg=False,
avd=False, avd_first=False,
final_drop=0.0, dropblock_prob=0,
last_gamma=False, norm_layer="BN"):
if last_stride == 1: dilation = 2
self.cardinality = groups
self.bottleneck_width = bottleneck_width
# ResNet-D params
self.inplanes = stem_width * 2 if deep_stem else 64
self.avg_down = avg_down
self.last_gamma = last_gamma
# ResNeSt params
self.radix = radix
self.avd = avd
self.avd_first = avd_first
super().__init__()
self.rectified_conv = rectified_conv
self.rectify_avg = rectify_avg
if rectified_conv:
from rfconv import RFConv2d
conv_layer = RFConv2d
else:
conv_layer = nn.Conv2d
conv_kwargs = {'average_mode': rectify_avg} if rectified_conv else {}
if deep_stem:
self.conv1 = nn.Sequential(
conv_layer(3, stem_width, kernel_size=3, stride=2, padding=1, bias=False, **conv_kwargs),
get_norm(norm_layer, stem_width),
nn.ReLU(inplace=True),
conv_layer(stem_width, stem_width, kernel_size=3, stride=1, padding=1, bias=False, **conv_kwargs),
get_norm(norm_layer, stem_width),
nn.ReLU(inplace=True),
conv_layer(stem_width, stem_width * 2, kernel_size=3, stride=1, padding=1, bias=False, **conv_kwargs),
)
else:
self.conv1 = conv_layer(3, 64, kernel_size=7, stride=2, padding=3,
bias=False, **conv_kwargs)
self.bn1 = get_norm(norm_layer, self.inplanes)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0], norm_layer=norm_layer, is_first=False)
self.layer2 = self._make_layer(block, 128, layers[1], stride=2, norm_layer=norm_layer)
if dilated or dilation == 4:
self.layer3 = self._make_layer(block, 256, layers[2], stride=1,
dilation=2, norm_layer=norm_layer,
dropblock_prob=dropblock_prob)
self.layer4 = self._make_layer(block, 512, layers[3], stride=1,
dilation=4, norm_layer=norm_layer,
dropblock_prob=dropblock_prob)
elif dilation == 2:
self.layer3 = self._make_layer(block, 256, layers[2], stride=2,
dilation=1, norm_layer=norm_layer,
dropblock_prob=dropblock_prob)
self.layer4 = self._make_layer(block, 512, layers[3], stride=1,
dilation=2, norm_layer=norm_layer,
dropblock_prob=dropblock_prob)
else:
self.layer3 = self._make_layer(block, 256, layers[2], stride=2,
norm_layer=norm_layer,
dropblock_prob=dropblock_prob)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2,
norm_layer=norm_layer,
dropblock_prob=dropblock_prob)
self.drop = nn.Dropout(final_drop) if final_drop > 0.0 else None
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
def _make_layer(self, block, planes, blocks, stride=1, dilation=1, norm_layer=None,
dropblock_prob=0.0, is_first=True):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
down_layers = []
if self.avg_down:
if dilation == 1:
down_layers.append(nn.AvgPool2d(kernel_size=stride, stride=stride,
ceil_mode=True, count_include_pad=False))
else:
down_layers.append(nn.AvgPool2d(kernel_size=1, stride=1,
ceil_mode=True, count_include_pad=False))
down_layers.append(nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=1, bias=False))
else:
down_layers.append(nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False))
down_layers.append(get_norm(norm_layer, planes * block.expansion))
downsample = nn.Sequential(*down_layers)
layers = []
if dilation == 1 or dilation == 2:
layers.append(block(self.inplanes, planes, stride, downsample=downsample,
radix=self.radix, cardinality=self.cardinality,
bottleneck_width=self.bottleneck_width,
avd=self.avd, avd_first=self.avd_first,
dilation=1, is_first=is_first, rectified_conv=self.rectified_conv,
rectify_avg=self.rectify_avg,
norm_layer=norm_layer, dropblock_prob=dropblock_prob,
last_gamma=self.last_gamma))
elif dilation == 4:
layers.append(block(self.inplanes, planes, stride, downsample=downsample,
radix=self.radix, cardinality=self.cardinality,
bottleneck_width=self.bottleneck_width,
avd=self.avd, avd_first=self.avd_first,
dilation=2, is_first=is_first, rectified_conv=self.rectified_conv,
rectify_avg=self.rectify_avg,
norm_layer=norm_layer, dropblock_prob=dropblock_prob,
last_gamma=self.last_gamma))
else:
raise RuntimeError("=> unknown dilation size: {}".format(dilation))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes,
radix=self.radix, cardinality=self.cardinality,
bottleneck_width=self.bottleneck_width,
avd=self.avd, avd_first=self.avd_first,
dilation=dilation, rectified_conv=self.rectified_conv,
rectify_avg=self.rectify_avg,
norm_layer=norm_layer, dropblock_prob=dropblock_prob,
last_gamma=self.last_gamma))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
return x
@BACKBONE_REGISTRY.register()
def build_resnest_backbone(cfg):
"""
Create a ResNest instance from config.
Returns:
ResNet: a :class:`ResNet` instance.
"""
# fmt: off
pretrain = cfg.MODEL.BACKBONE.PRETRAIN
pretrain_path = cfg.MODEL.BACKBONE.PRETRAIN_PATH
last_stride = cfg.MODEL.BACKBONE.LAST_STRIDE
bn_norm = cfg.MODEL.BACKBONE.NORM
depth = cfg.MODEL.BACKBONE.DEPTH
# fmt: on
num_blocks_per_stage = {
"50x": [3, 4, 6, 3],
"101x": [3, 4, 23, 3],
"200x": [3, 24, 36, 3],
"269x": [3, 30, 48, 8],
}[depth]
stem_width = {
"50x": 32,
"101x": 64,
"200x": 64,
"269x": 64,
}[depth]
model = ResNeSt(last_stride, Bottleneck, num_blocks_per_stage,
radix=2, groups=1, bottleneck_width=64,
deep_stem=True, stem_width=stem_width, avg_down=True,
avd=True, avd_first=False, norm_layer=bn_norm)
if pretrain:
# Load pretrain path if specifically
if pretrain_path:
try:
state_dict = torch.load(pretrain_path, map_location=torch.device('cpu'))
logger.info(f"Loading pretrained model from {pretrain_path}")
except FileNotFoundError as e:
logger.info(f'{pretrain_path} is not found! Please check this path.')
raise e
except KeyError as e:
logger.info("State dict keys error! Please check the state dict.")
raise e
else:
state_dict = torch.hub.load_state_dict_from_url(
model_urls['resnest' + depth[:-1]], progress=True, check_hash=True, map_location=torch.device('cpu'))
incompatible = model.load_state_dict(state_dict, strict=False)
if incompatible.missing_keys:
logger.info(
get_missing_parameters_message(incompatible.missing_keys)
)
if incompatible.unexpected_keys:
logger.info(
get_unexpected_parameters_message(incompatible.unexpected_keys)
)
return model
# encoding: utf-8
"""
@author: liaoxingyu
@contact: sherlockliao01@gmail.com
"""
import logging
import math
import torch
from torch import nn
from fastreid.layers import (
IBN,
SELayer,
Non_local,
get_norm,
)
from fastreid.utils.checkpoint import get_missing_parameters_message, get_unexpected_parameters_message
from .build import BACKBONE_REGISTRY
from fastreid.utils import comm
logger = logging.getLogger(__name__)
model_urls = {
'18x': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
'34x': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
'50x': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
'101x': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
'ibn_18x': 'https://github.com/XingangPan/IBN-Net/releases/download/v1.0/resnet18_ibn_a-2f571257.pth',
'ibn_34x': 'https://github.com/XingangPan/IBN-Net/releases/download/v1.0/resnet34_ibn_a-94bc1577.pth',
'ibn_50x': 'https://github.com/XingangPan/IBN-Net/releases/download/v1.0/resnet50_ibn_a-d9d0bb7b.pth',
'ibn_101x': 'https://github.com/XingangPan/IBN-Net/releases/download/v1.0/resnet101_ibn_a-59ea0ac6.pth',
'se_ibn_101x': 'https://github.com/XingangPan/IBN-Net/releases/download/v1.0/se_resnet101_ibn_a-fabed4e2.pth',
}
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, bn_norm, with_ibn=False, with_se=False,
stride=1, downsample=None, reduction=16):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
if with_ibn:
self.bn1 = IBN(planes, bn_norm)
else:
self.bn1 = get_norm(bn_norm, planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = get_norm(bn_norm, planes)
self.relu = nn.ReLU(inplace=True)
if with_se:
self.se = SELayer(planes, reduction)
else:
self.se = nn.Identity()
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.se(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, bn_norm, with_ibn=False, with_se=False,
stride=1, downsample=None, reduction=16):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
if with_ibn:
self.bn1 = IBN(planes, bn_norm)
else:
self.bn1 = get_norm(bn_norm, planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
padding=1, bias=False)
self.bn2 = get_norm(bn_norm, planes)
self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False)
self.bn3 = get_norm(bn_norm, planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
if with_se:
self.se = SELayer(planes * self.expansion, reduction)
else:
self.se = nn.Identity()
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
out = self.se(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, last_stride, bn_norm, with_ibn, with_se, with_nl, block, layers, non_layers):
self.inplanes = 64
super().__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = get_norm(bn_norm, 64)
self.relu = nn.ReLU(inplace=True)
# self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True)
self.layer1 = self._make_layer(block, 64, layers[0], 1, bn_norm, with_ibn, with_se)
self.layer2 = self._make_layer(block, 128, layers[1], 2, bn_norm, with_ibn, with_se)
self.layer3 = self._make_layer(block, 256, layers[2], 2, bn_norm, with_ibn, with_se)
self.layer4 = self._make_layer(block, 512, layers[3], last_stride, bn_norm, with_se=with_se)
self.random_init()
# fmt: off
if with_nl: self._build_nonlocal(layers, non_layers, bn_norm)
else: self.NL_1_idx = self.NL_2_idx = self.NL_3_idx = self.NL_4_idx = []
# fmt: on
def _make_layer(self, block, planes, blocks, stride=1, bn_norm="BN", with_ibn=False, with_se=False):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
get_norm(bn_norm, planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, bn_norm, with_ibn, with_se, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes, bn_norm, with_ibn, with_se))
return nn.Sequential(*layers)
def _build_nonlocal(self, layers, non_layers, bn_norm):
self.NL_1 = nn.ModuleList(
[Non_local(256, bn_norm) for _ in range(non_layers[0])])
self.NL_1_idx = sorted([layers[0] - (i + 1) for i in range(non_layers[0])])
self.NL_2 = nn.ModuleList(
[Non_local(512, bn_norm) for _ in range(non_layers[1])])
self.NL_2_idx = sorted([layers[1] - (i + 1) for i in range(non_layers[1])])
self.NL_3 = nn.ModuleList(
[Non_local(1024, bn_norm) for _ in range(non_layers[2])])
self.NL_3_idx = sorted([layers[2] - (i + 1) for i in range(non_layers[2])])
self.NL_4 = nn.ModuleList(
[Non_local(2048, bn_norm) for _ in range(non_layers[3])])
self.NL_4_idx = sorted([layers[3] - (i + 1) for i in range(non_layers[3])])
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
# layer 1
NL1_counter = 0
if len(self.NL_1_idx) == 0:
self.NL_1_idx = [-1]
for i in range(len(self.layer1)):
x = self.layer1[i](x)
if i == self.NL_1_idx[NL1_counter]:
_, C, H, W = x.shape
x = self.NL_1[NL1_counter](x)
NL1_counter += 1
# layer 2
NL2_counter = 0
if len(self.NL_2_idx) == 0:
self.NL_2_idx = [-1]
for i in range(len(self.layer2)):
x = self.layer2[i](x)
if i == self.NL_2_idx[NL2_counter]:
_, C, H, W = x.shape
x = self.NL_2[NL2_counter](x)
NL2_counter += 1
# layer 3
NL3_counter = 0
if len(self.NL_3_idx) == 0:
self.NL_3_idx = [-1]
for i in range(len(self.layer3)):
x = self.layer3[i](x)
if i == self.NL_3_idx[NL3_counter]:
_, C, H, W = x.shape
x = self.NL_3[NL3_counter](x)
NL3_counter += 1
# layer 4
NL4_counter = 0
if len(self.NL_4_idx) == 0:
self.NL_4_idx = [-1]
for i in range(len(self.layer4)):
x = self.layer4[i](x)
if i == self.NL_4_idx[NL4_counter]:
_, C, H, W = x.shape
x = self.NL_4[NL4_counter](x)
NL4_counter += 1
return x
def random_init(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
nn.init.normal_(m.weight, 0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def init_pretrained_weights(key):
"""Initializes model with pretrained weights.
Layers that don't match with pretrained layers in name or size are kept unchanged.
"""
import os
import errno
import gdown
def _get_torch_home():
ENV_TORCH_HOME = 'TORCH_HOME'
ENV_XDG_CACHE_HOME = 'XDG_CACHE_HOME'
DEFAULT_CACHE_DIR = '~/.cache'
torch_home = os.path.expanduser(
os.getenv(
ENV_TORCH_HOME,
os.path.join(
os.getenv(ENV_XDG_CACHE_HOME, DEFAULT_CACHE_DIR), 'torch'
)
)
)
return torch_home
torch_home = _get_torch_home()
model_dir = os.path.join(torch_home, 'checkpoints')
try:
os.makedirs(model_dir)
except OSError as e:
if e.errno == errno.EEXIST:
# Directory already exists, ignore.
pass
else:
# Unexpected OSError, re-raise.
raise
filename = model_urls[key].split('/')[-1]
cached_file = os.path.join(model_dir, filename)
if not os.path.exists(cached_file):
logger.info(f"Pretrain model don't exist, downloading from {model_urls[key]}")
if comm.is_main_process():
gdown.download(model_urls[key], cached_file, quiet=False)
comm.synchronize()
logger.info(f"Loading pretrained model from {cached_file}")
state_dict = torch.load(cached_file, map_location=torch.device('cpu'))
return state_dict
@BACKBONE_REGISTRY.register()
def build_resnet_backbone(cfg):
"""
Create a ResNet instance from config.
Returns:
ResNet: a :class:`ResNet` instance.
"""
# fmt: off
pretrain = cfg.MODEL.BACKBONE.PRETRAIN
pretrain_path = cfg.MODEL.BACKBONE.PRETRAIN_PATH
last_stride = cfg.MODEL.BACKBONE.LAST_STRIDE
bn_norm = cfg.MODEL.BACKBONE.NORM
with_ibn = cfg.MODEL.BACKBONE.WITH_IBN
with_se = cfg.MODEL.BACKBONE.WITH_SE
with_nl = cfg.MODEL.BACKBONE.WITH_NL
depth = cfg.MODEL.BACKBONE.DEPTH
# fmt: on
num_blocks_per_stage = {
'18x': [2, 2, 2, 2],
'34x': [3, 4, 6, 3],
'50x': [3, 4, 6, 3],
'101x': [3, 4, 23, 3],
}[depth]
nl_layers_per_stage = {
'18x': [0, 0, 0, 0],
'34x': [0, 0, 0, 0],
'50x': [0, 2, 3, 0],
'101x': [0, 2, 9, 0]
}[depth]
block = {
'18x': BasicBlock,
'34x': BasicBlock,
'50x': Bottleneck,
'101x': Bottleneck
}[depth]
model = ResNet(last_stride, bn_norm, with_ibn, with_se, with_nl, block,
num_blocks_per_stage, nl_layers_per_stage)
if pretrain:
# Load pretrain path if specifically
if pretrain_path:
try:
state_dict = torch.load(pretrain_path, map_location=torch.device('cpu'))
logger.info(f"Loading pretrained model from {pretrain_path}")
except FileNotFoundError as e:
logger.info(f'{pretrain_path} is not found! Please check this path.')
raise e
except KeyError as e:
logger.info("State dict keys error! Please check the state dict.")
raise e
else:
key = depth
if with_ibn: key = 'ibn_' + key
if with_se: key = 'se_' + key
state_dict = init_pretrained_weights(key)
incompatible = model.load_state_dict(state_dict, strict=False)
if incompatible.missing_keys:
logger.info(
get_missing_parameters_message(incompatible.missing_keys)
)
if incompatible.unexpected_keys:
logger.info(
get_unexpected_parameters_message(incompatible.unexpected_keys)
)
return model
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment