# Video to Events: Recycling Video Datasets for Event Cameras

Video to Events

This repository contains code that implements video to events conversion as described in Gehrig et al. CVPR'20 and the used dataset. The paper can be found [here](http://rpg.ifi.uzh.ch/docs/CVPR20_Gehrig.pdf) If you use this code in an academic context, please cite the following work: [Daniel Gehrig](https://danielgehrig18.github.io/), [Mathias Gehrig](https://magehrig.github.io/), [Javier Hidalgo-Carrió](https://jhidalgocarrio.github.io/), [Davide Scaramuzza](http://rpg.ifi.uzh.ch/people_scaramuzza.html), "Video to Events: Recycling Video Datasets for Event Cameras", The Conference on Computer Vision and Pattern Recognition (CVPR), 2020 ```bibtex @InProceedings{Gehrig_2020_CVPR, author = {Daniel Gehrig and Mathias Gehrig and Javier Hidalgo-Carri\'o and Davide Scaramuzza}, title = {Video to Events: Recycling Video Datasets for Event Cameras}, booktitle = {{IEEE} Conf. Comput. Vis. Pattern Recog. (CVPR)}, month = {June}, year = {2020} } ``` ## News * We now support frame interpolation done by [FILM](https://github.com/google-research/frame-interpolation). * We release a web app and interactive demo which generates events and converts your webcam to events. Try it out [here](web_app/README.md). * We now also release new python bindings for esim with GPU support. Details are [here](esim_torch/README.md) ## Web App and Interactive Demo Try out our the interactive demo and webcam support [here](web_app/README.md). ## Dataset The synthetic N-Caltech101 dataset, as well as video sequences used for event conversion can be found [here](http://rpg.ifi.uzh.ch/data/VID2E/ncaltech_syn_images.zip). For each sample of each class it contains events in the form `class/image_%04d.npz` and images in the form `class/image_%05d/images/image_%05d.png`, as well as the corresponding timestamps of the images in `class/image_%04d/timestamps.txt`. ## Installation Clone the repo *recursively with submodules* ```bash git clone git@github.com:uzh-rpg/rpg_vid2e.git --recursive ``` ## Installation First download the [FILM](https://github.com/google-research/frame-interpolation) checkpoint, and move it to the current root ```bash wget https://rpg.ifi.uzh.ch/data/VID2E/pretrained_models.zip -O /tmp/temp.zip unzip /tmp/temp.zip -d rpg_vid2e/ rm -rf /tmp/temp.zip ``` make sure to install the following * [Anaconda Python 3.9](https://www.anaconda.com/products/individual) * [CUDA Toolkit 11.2.1](https://developer.nvidia.com/cuda-11.2.1-download-archive) * [cuDNN 8.1.0](https://developer.nvidia.com/rdp/cudnn-download) ```bash conda create --name vid2e python=3.9 conda activate vid2e pip install -r rpg_vid2e/requirements.txt conda install -y -c conda-forge pybind11 matplotlib conda install -y pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch ``` Build the python bindings for ESIM ```bash pip install rpg_vid2e/esim_py/ ``` Build the python bindings with GPU support with ```bash pip install rpg_vid2e/esim_torch/ ``` ## Adaptive Upsampling *This package provides code for adaptive upsampling with frame interpolation based on [Super-SloMo](https://people.cs.umass.edu/~hzjiang/projects/superslomo/)* Consult the [README](upsampling/README.md) for detailed instructions and examples. ## esim\_py *This package exposes python bindings for [ESIM](http://rpg.ifi.uzh.ch/docs/CORL18_Rebecq.pdf) which can be used within a training loop.* For detailed instructions and example consult the [README](esim_py/README.md) ## esim\_torch *This package exposes python bindings for [ESIM](http://rpg.ifi.uzh.ch/docs/CORL18_Rebecq.pdf) with GPU support.* For detailed instructions and example consult the [README](esim_torch/README.md) ## Example To run an example, first upsample the example videos ```bash device=cpu # device=cuda:0 python upsampling/upsample.py --input_dir=example/original --output_dir=example/upsampled --device=$device ``` This will generate upsampling/upsampled with in the `example/upsampled` folder. To generate events, use ```bash python esim_torch/generate_events.py --input_dir=example/upsampled \ --output_dir=example/events \ --contrast_threshold_neg=0.2 \ --contrast_threshold_pos=0.2 \ --refractory_period_ns=0 ```