import argparse import os import pandas as pd import glob import numpy as np import cv2 as cv from lib.data_formats.read_events import read_memmap_events, read_h5_events_dict if __name__ == "__main__": """ Quick demo """ parser = argparse.ArgumentParser() parser.add_argument("path", help="events path") parser.add_argument("flow_path", help="flow path") parser.add_argument("--output_path", type=str, default="/tmp/visualization", help="Where to save image outputs") parser.add_argument('--plot_method', default='between_frames', type=str, help='which method should be used to visualize', choices=['between_frames', 'k_events', 't_seconds']) parser.add_argument('--w_width', type=float, default=0.01, help='new plot is formed every t seconds (required if voxel_method is t_seconds)') parser.add_argument('--sw_width', type=float, help='sliding_window size in seconds (required if voxel_method is t_seconds)') parser.add_argument("--num_bins", type=int, default=6, help="How many bins voxels should have.") parser.add_argument('--show_plot', action='store_true', help='If true, will also display the plot in an interactive window.\ Useful for selecting the desired orientation.') parser.add_argument("--num_show", type=int, default=-1, help="How many events to show per plot. If -1, show all events.") parser.add_argument("--event_size", type=float, default=2, help="Marker size of the plotted events") parser.add_argument("--ts_scale", type=int, default=10000, help="Scales the time axis. Only applicable for mayavi rendering.") parser.add_argument("--elev", type=float, default=0, help="Elevation of plot") parser.add_argument("--azim", type=float, default=45, help="Azimuth of plot") parser.add_argument("--stride", type=int, default=1, help="Downsample stride for plotted images.") parser.add_argument("--skip_frames", type=int, default=1, help="Amount of frames to place per plot.") parser.add_argument("--start_frame", type=int, default=0, help="On which frame to start.") parser.add_argument('--hide_skipped', action='store_true', help='Do not draw skipped frames into plot.') parser.add_argument('--hide_events', action='store_true', help='Do not draw events') parser.add_argument('--hide_frames', action='store_true', help='Do not draw frames') parser.add_argument('--show_axes', action='store_true', help='Draw axes') parser.add_argument("--num_compress", type=int, default=0, help="How many events to draw compressed. If 'auto'\ will automatically determine.", choices=['value', 'auto']) parser.add_argument('--compress_front', action='store_true', help='If set, will put the compressed events at the _start_\ of the event volume, rather than the back.') parser.add_argument('--invert', action='store_true', help='If the figure is for a black background, you can invert the \ colors for better visibility.') parser.add_argument("--crop", type=str, default=None, help="Set a crop of both images and events. Uses 'imagemagick' \ syntax, eg for a crop of 10x20 starting from point 30,40 use: 10x20+30+40.") parser.add_argument("--renderer", type=str, default="matplotlib", help="Which renderer to use (mayavi is faster)", choices=["matplotlib", "mayavi"]) args = parser.parse_args() events = read_h5_events_dict(args.path) xs = events['xs'] ys = events['ys'] ts = events['ts'] ps = events['ps'] t0 = ts[0] ts = ts-t0 frames = [np.flip(np.flip(x/255., axis=0), axis=1) for x in events['frames']] frame_ts = events['frame_timestamps'][1:]-t0 frame_end = events['frame_event_indices'][1:] frame_start = np.concatenate((np.array([0]), frame_end)) frame_idx = np.stack((frame_end, frame_start[0:-1]), axis=1) ys = frames[0].shape[0]-ys xs = frames[0].shape[1]-xs flow_paths = sorted(glob.glob(os.path.join(args.flow_path, "*.npy"))) flow_img_paths = sorted(glob.glob(os.path.join(args.flow_path, "*.png"))) flow_ts = pd.read_csv(os.path.join(args.flow_path, "timestamps.txt"), delimiter=" ", names=["fname", "timestamp"]) flow_ts = np.array(flow_ts["timestamp"]) #flows = [-np.flip(np.flip(np.load(fp), axis=1), axis=2) for fp in flow_paths] flows = [-np.load(fp) for fp in flow_paths] flow_imgs = [cv.imread(fi) for fi in flow_img_paths] print("Loaded {} flow, {} img, {} ts".format(len(flows), len(flow_imgs), len(flow_ts))) if args.plot_method == 'between_frames': if args.renderer == "mayavi": print(args.renderer) pass elif args.renderer == "matplotlib": from lib.visualization.draw_flow import plot_between_frames plot_between_frames(xs, ys, ts, ps, flows, flow_imgs, flow_ts, args) print(args.renderer) pass elif args.plot_method == 'k_events': print(args.renderer) pass elif args.plot_method == 't_seconds': if args.renderer == "mayavi": print(args.renderer) pass elif args.renderer == "matplotlib": print(args.renderer) pass