# SPDX-License-Identifier: Apache-2.0 # Copyright 2025 The Baidu team. # Copyright 2023 The vLLM team. # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Inference-only Erine model compatible with HuggingFace weights.""" from collections.abc import Iterable from typing import Any, Optional, Union import torch from torch import nn from transformers import PretrainedConfig from vllm.attention import Attention from vllm.compilation.decorators import support_torch_compile from vllm.config import CacheConfig, VllmConfig from vllm.distributed import get_pp_group, get_tensor_model_parallel_world_size from vllm.logger import init_logger from vllm.model_executor.layers.activation import SiluAndMul from vllm.model_executor.layers.fused_moe import FusedMoE from vllm.model_executor.layers.layernorm import RMSNorm from vllm.model_executor.layers.linear import (MergedColumnParallelLinear, QKVParallelLinear, ReplicatedLinear, RowParallelLinear) from vllm.model_executor.layers.logits_processor import LogitsProcessor from vllm.model_executor.layers.quantization import QuantizationConfig from vllm.model_executor.layers.rotary_embedding import get_rope from vllm.model_executor.layers.vocab_parallel_embedding import ( ParallelLMHead, VocabParallelEmbedding) from vllm.model_executor.model_loader.weight_utils import ( default_weight_loader, maybe_remap_kv_scale_name) from vllm.model_executor.sampling_metadata import SamplingMetadata from vllm.sequence import IntermediateTensors from vllm.utils import F from .interfaces import SupportsPP from .utils import (AutoWeightsLoader, PPMissingLayer, extract_layer_index, is_pp_missing_parameter, make_empty_intermediate_tensors_factory, make_layers, maybe_prefix) logger = init_logger(__name__) class Ernie4_5_MLP(nn.Module): def __init__( self, hidden_size: int, intermediate_size: int, hidden_act: str, use_bias: bool = False, quant_config: Optional[QuantizationConfig] = None, reduce_results: bool = True, prefix: str = "", ) -> None: super().__init__() self.gate_up_proj = MergedColumnParallelLinear( hidden_size, [intermediate_size] * 2, bias=use_bias, quant_config=quant_config, prefix=f"{prefix}.gate_up_proj") self.down_proj = RowParallelLinear(intermediate_size, hidden_size, bias=use_bias, quant_config=quant_config, reduce_results=reduce_results, prefix=f"{prefix}.down_proj") if hidden_act != "silu": raise ValueError(f"Unsupported activation: {hidden_act}. " "Only silu is supported for now.") self.act_fn = SiluAndMul() def forward(self, x): gate_up, _ = self.gate_up_proj(x) x = self.act_fn(gate_up) x, _ = self.down_proj(x) return x class Ernie4_5_Attention(nn.Module): def __init__( self, hidden_size: int, num_heads: int, num_kv_heads: int, head_dim: Optional[int] = None, rope_theta: float = 500000, rope_scaling: Optional[dict[str, Any]] = None, max_position_embeddings: int = 131072, rms_norm_eps: float = 1e-05, qkv_bias: bool = False, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ) -> None: super().__init__() layer_idx = extract_layer_index(prefix) if len(prefix) > 0 else 0 self.layer_idx = layer_idx self.hidden_size = hidden_size tp_size = get_tensor_model_parallel_world_size() self.total_num_heads = num_heads assert self.total_num_heads % tp_size == 0 self.num_heads = self.total_num_heads // tp_size self.total_num_kv_heads = num_kv_heads if self.total_num_kv_heads >= tp_size: # Number of KV heads is greater than TP size, so we partition # the KV heads across multiple tensor parallel GPUs. assert self.total_num_kv_heads % tp_size == 0 else: # Number of KV heads is less than TP size, so we replicate # the KV heads across multiple tensor parallel GPUs. assert tp_size % self.total_num_kv_heads == 0 self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size) self.head_dim = head_dim or (hidden_size // self.total_num_heads) self.q_size = self.num_heads * self.head_dim self.kv_size = self.num_kv_heads * self.head_dim self.scaling = self.head_dim**-0.5 self.rope_theta = rope_theta self.max_position_embeddings = max_position_embeddings self.qkv_proj = QKVParallelLinear(hidden_size, self.head_dim, self.total_num_heads, self.total_num_kv_heads, bias=qkv_bias, quant_config=quant_config, prefix=f"{prefix}.qkv_proj") self.o_proj = RowParallelLinear(self.total_num_heads * self.head_dim, hidden_size, bias=False, quant_config=quant_config, prefix=f"{prefix}.o_proj") self.rotary_emb = get_rope( self.head_dim, rotary_dim=self.head_dim, max_position=max_position_embeddings, base=rope_theta, is_neox_style=False, rope_scaling=rope_scaling, ) self.attn = Attention(self.num_heads, self.head_dim, self.scaling, num_kv_heads=self.num_kv_heads, cache_config=cache_config, quant_config=quant_config, prefix=f"{prefix}.attn") def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, ) -> torch.Tensor: qkv, _ = self.qkv_proj(hidden_states) q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1) q, k = self.rotary_emb(positions, q, k) # Attention attn_output = self.attn(q, k, v) # Output projection output, _ = self.o_proj(attn_output) return output class Ernie4_5_DecoderLayer(nn.Module): def __init__( self, config: PretrainedConfig, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ) -> None: super().__init__() self.hidden_size = config.hidden_size rope_theta = getattr(config, "rope_theta", 500000) rope_scaling = getattr(config, "rope_scaling", None) max_position_embeddings = getattr(config, "max_position_embeddings", 131072) self.self_attn = Ernie4_5_Attention( hidden_size=self.hidden_size, num_heads=config.num_attention_heads, num_kv_heads=config.num_key_value_heads, head_dim=getattr(config, 'head_dim', None), rope_theta=rope_theta, rope_scaling=rope_scaling, max_position_embeddings=max_position_embeddings, rms_norm_eps=config.rms_norm_eps, qkv_bias=getattr(config, 'use_bias', False), cache_config=cache_config, quant_config=quant_config, prefix=f"{prefix}.self_attn", ) self.mlp = Ernie4_5_MLP( hidden_size=config.hidden_size, intermediate_size=config.intermediate_size, hidden_act=config.hidden_act, use_bias=getattr(config, 'use_bias', False), quant_config=quant_config, prefix=f"{prefix}.mlp" ) self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, residual: Optional[torch.Tensor], ) -> torch.Tensor: # Self Attention if residual is None: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) else: hidden_states, residual = self.input_layernorm( hidden_states, residual) hidden_states = self.self_attn( positions=positions, hidden_states=hidden_states, ) # Fully Connected hidden_states, residual = self.post_attention_layernorm( hidden_states, residual) hidden_states = self.mlp(hidden_states) return hidden_states, residual @support_torch_compile class Ernie4_5_Model(nn.Module): def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): super().__init__() config = vllm_config.model_config.hf_config cache_config = vllm_config.cache_config quant_config = vllm_config.quant_config self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.config = config if get_pp_group().is_first_rank: self.embed_tokens = VocabParallelEmbedding( config.vocab_size, config.hidden_size, quant_config=quant_config, prefix=f"{prefix}.embed_tokens") else: self.embed_tokens = PPMissingLayer() self.start_layer, self.end_layer, self.layers = make_layers( config.num_hidden_layers, lambda prefix: Ernie4_5_DecoderLayer(config=config, cache_config=cache_config, quant_config=quant_config, prefix=prefix), prefix=f"{prefix}.layers", ) if get_pp_group().is_last_rank: self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) else: self.norm = PPMissingLayer() self.make_empty_intermediate_tensors = ( make_empty_intermediate_tensors_factory( ["hidden_states", "residual"], config.hidden_size)) def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor: return self.embed_tokens(input_ids) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, intermediate_tensors: Optional[IntermediateTensors] = None, inputs_embeds: Optional[torch.Tensor] = None, ) -> Union[torch.Tensor, IntermediateTensors]: if get_pp_group().is_first_rank: if inputs_embeds is not None: hidden_states = inputs_embeds else: hidden_states = self.get_input_embeddings(input_ids) residual = None else: assert intermediate_tensors is not None hidden_states = intermediate_tensors["hidden_states"] residual = intermediate_tensors["residual"] for i in range(self.start_layer, self.end_layer): layer = self.layers[i] hidden_states, residual = layer(positions, hidden_states, residual) if not get_pp_group().is_last_rank: return IntermediateTensors({ "hidden_states": hidden_states, "residual": residual }) hidden_states, _ = self.norm(hidden_states, residual) return hidden_states def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]: stacked_params_mapping = [ # (param_name, shard_name, shard_id) ("qkv_proj", "q_proj", "q"), ("qkv_proj", "k_proj", "k"), ("qkv_proj", "v_proj", "v"), ("gate_up_proj", "gate_proj", 0), ("gate_up_proj", "up_proj", 1), ] params_dict = dict(self.named_parameters()) loaded_params: set[str] = set() for name, loaded_weight in weights: for (param_name, weight_name, shard_id) in stacked_params_mapping: # Skip non-stacked layers and experts (experts handled below). if weight_name not in name: continue name = name.replace(weight_name, param_name) # Skip loading extra bias for GPTQ models. if ((name.endswith(".bias") or name.endswith("_bias")) and name not in params_dict): continue # Skip layers on other devices. if is_pp_missing_parameter(name, self): continue param = params_dict[name] weight_loader = param.weight_loader weight_loader(param, loaded_weight, shard_id) break else: # Skip loading extra bias for GPTQ models. if ((name.endswith(".bias") or name.endswith("_bias")) and name not in params_dict): continue # Skip layers on other devices. if is_pp_missing_parameter(name, self): continue # Remapping the name of FP8 kv-scale. name = maybe_remap_kv_scale_name(name, params_dict) if name is None: continue param = params_dict[name] weight_loader = getattr(param, "weight_loader", default_weight_loader) weight_loader(param, loaded_weight) loaded_params.add(name) return loaded_params class Ernie4_5_ForCausalLM(nn.Module, SupportsPP): packed_modules_mapping = { "qkv_proj": [ "q_proj", "k_proj", "v_proj", ], "gate_up_proj": [ "gate_proj", "up_proj", ], } fall_back_to_pt_during_load = False def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): super().__init__() config = vllm_config.model_config.hf_config quant_config = vllm_config.quant_config self.config = config self.quant_config = quant_config self.model = Ernie4_5_Model(vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model")) if get_pp_group().is_last_rank: self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size, quant_config=quant_config) else: self.lm_head = PPMissingLayer() if self.config.tie_word_embeddings: self.lm_head.weight = self.model.embed_tokens.weight self.logits_processor = LogitsProcessor(config.vocab_size) self.make_empty_intermediate_tensors = ( self.model.make_empty_intermediate_tensors) def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor: return self.model.get_input_embeddings(input_ids) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, intermediate_tensors: Optional[IntermediateTensors] = None, inputs_embeds: Optional[torch.Tensor] = None, ) -> Union[torch.Tensor, IntermediateTensors]: hidden_states = self.model(input_ids, positions, intermediate_tensors, inputs_embeds) return hidden_states def compute_logits( self, hidden_states: torch.Tensor, sampling_metadata: SamplingMetadata, ) -> Optional[torch.Tensor]: logits = self.logits_processor(self.lm_head, hidden_states, sampling_metadata) return logits def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]: loader = AutoWeightsLoader( self, skip_prefixes=(["lm_head."] if self.config.tie_word_embeddings else None), ) return loader.load_weights(weights)