from transformers import AutoTokenizer, AutoModelForCausalLM if __name__ == '__main__': model_name = "baidu/ERNIE-4.5-0.3B-PT" tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True) prompt = "Give me a short introduction to large language model." messages = [ {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) model_inputs = tokenizer([text], add_special_tokens=True, return_tensors="pt") # conduct text completion generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=1024 ) output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() # decode the generated ids generate_text = tokenizer.decode(output_ids, skip_special_tokens=True).strip("\n") print("generate_text:", generate_text)