Commit fba8bde8 authored by bailuo's avatar bailuo
Browse files

update

parents
Pipeline #1808 failed with stages
# Copyright (c) SenseTime Research. All rights reserved.
from .fused_act import FusedLeakyReLU, fused_leaky_relu
from .upfirdn2d import upfirdn2d
# Copyright (c) SenseTime Research. All rights reserved.
import os
import torch
from torch import nn
from torch.nn import functional as F
from torch.autograd import Function
from torch.utils.cpp_extension import load
module_path = os.path.dirname(__file__)
fused = load(
"fused",
sources=[
os.path.join(module_path, "fused_bias_act.cpp"),
os.path.join(module_path, "fused_bias_act_kernel.cu"),
],
)
class FusedLeakyReLUFunctionBackward(Function):
@staticmethod
def forward(ctx, grad_output, out, negative_slope, scale):
ctx.save_for_backward(out)
ctx.negative_slope = negative_slope
ctx.scale = scale
empty = grad_output.new_empty(0)
grad_input = fused.fused_bias_act(
grad_output, empty, out, 3, 1, negative_slope, scale
)
dim = [0]
if grad_input.ndim > 2:
dim += list(range(2, grad_input.ndim))
grad_bias = grad_input.sum(dim).detach()
return grad_input, grad_bias
@staticmethod
def backward(ctx, gradgrad_input, gradgrad_bias):
(out,) = ctx.saved_tensors
gradgrad_out = fused.fused_bias_act(
gradgrad_input, gradgrad_bias, out, 3, 1, ctx.negative_slope, ctx.scale
)
return gradgrad_out, None, None, None
class FusedLeakyReLUFunction(Function):
@staticmethod
def forward(ctx, input, bias, negative_slope, scale):
empty = input.new_empty(0)
out = fused.fused_bias_act(input, bias, empty, 3, 0, negative_slope, scale)
ctx.save_for_backward(out)
ctx.negative_slope = negative_slope
ctx.scale = scale
return out
@staticmethod
def backward(ctx, grad_output):
(out,) = ctx.saved_tensors
grad_input, grad_bias = FusedLeakyReLUFunctionBackward.apply(
grad_output, out, ctx.negative_slope, ctx.scale
)
return grad_input, grad_bias, None, None
class FusedLeakyReLU(nn.Module):
def __init__(self, channel, negative_slope=0.2, scale=2 ** 0.5):
super().__init__()
self.bias = nn.Parameter(torch.zeros(channel))
self.negative_slope = negative_slope
self.scale = scale
def forward(self, input):
return fused_leaky_relu(input, self.bias, self.negative_slope, self.scale)
def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5):
if input.device.type == "cpu":
rest_dim = [1] * (input.ndim - bias.ndim - 1)
return (
F.leaky_relu(
input + bias.view(1, bias.shape[0], *rest_dim), negative_slope=0.2
)
* scale
)
else:
return FusedLeakyReLUFunction.apply(input, bias, negative_slope, scale)
// Copyright (c) SenseTime Research. All rights reserved.
#include <torch/extension.h>
torch::Tensor fused_bias_act_op(const torch::Tensor& input, const torch::Tensor& bias, const torch::Tensor& refer,
int act, int grad, float alpha, float scale);
#define CHECK_CUDA(x) TORCH_CHECK(x.type().is_cuda(), #x " must be a CUDA tensor")
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
#define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x)
torch::Tensor fused_bias_act(const torch::Tensor& input, const torch::Tensor& bias, const torch::Tensor& refer,
int act, int grad, float alpha, float scale) {
CHECK_CUDA(input);
CHECK_CUDA(bias);
return fused_bias_act_op(input, bias, refer, act, grad, alpha, scale);
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("fused_bias_act", &fused_bias_act, "fused bias act (CUDA)");
}
\ No newline at end of file
// Copyright (c) SenseTime Research. All rights reserved.
// Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
//
// This work is made available under the Nvidia Source Code License-NC.
// To view a copy of this license, visit
// https://nvlabs.github.io/stylegan2/license.html
#include <torch/types.h>
#include <ATen/ATen.h>
#include <ATen/AccumulateType.h>
#include <ATen/cuda/CUDAContext.h>
#include <ATen/cuda/CUDAApplyUtils.cuh>
#include <cuda.h>
#include <cuda_runtime.h>
template <typename scalar_t>
static __global__ void fused_bias_act_kernel(scalar_t* out, const scalar_t* p_x, const scalar_t* p_b, const scalar_t* p_ref,
int act, int grad, scalar_t alpha, scalar_t scale, int loop_x, int size_x, int step_b, int size_b, int use_bias, int use_ref) {
int xi = blockIdx.x * loop_x * blockDim.x + threadIdx.x;
scalar_t zero = 0.0;
for (int loop_idx = 0; loop_idx < loop_x && xi < size_x; loop_idx++, xi += blockDim.x) {
scalar_t x = p_x[xi];
if (use_bias) {
x += p_b[(xi / step_b) % size_b];
}
scalar_t ref = use_ref ? p_ref[xi] : zero;
scalar_t y;
switch (act * 10 + grad) {
default:
case 10: y = x; break;
case 11: y = x; break;
case 12: y = 0.0; break;
case 30: y = (x > 0.0) ? x : x * alpha; break;
case 31: y = (ref > 0.0) ? x : x * alpha; break;
case 32: y = 0.0; break;
}
out[xi] = y * scale;
}
}
torch::Tensor fused_bias_act_op(const torch::Tensor& input, const torch::Tensor& bias, const torch::Tensor& refer,
int act, int grad, float alpha, float scale) {
int curDevice = -1;
cudaGetDevice(&curDevice);
cudaStream_t stream = at::cuda::getCurrentCUDAStream(curDevice);
auto x = input.contiguous();
auto b = bias.contiguous();
auto ref = refer.contiguous();
int use_bias = b.numel() ? 1 : 0;
int use_ref = ref.numel() ? 1 : 0;
int size_x = x.numel();
int size_b = b.numel();
int step_b = 1;
for (int i = 1 + 1; i < x.dim(); i++) {
step_b *= x.size(i);
}
int loop_x = 4;
int block_size = 4 * 32;
int grid_size = (size_x - 1) / (loop_x * block_size) + 1;
auto y = torch::empty_like(x);
AT_DISPATCH_FLOATING_TYPES_AND_HALF(x.scalar_type(), "fused_bias_act_kernel", [&] {
fused_bias_act_kernel<scalar_t><<<grid_size, block_size, 0, stream>>>(
y.data_ptr<scalar_t>(),
x.data_ptr<scalar_t>(),
b.data_ptr<scalar_t>(),
ref.data_ptr<scalar_t>(),
act,
grad,
alpha,
scale,
loop_x,
size_x,
step_b,
size_b,
use_bias,
use_ref
);
});
return y;
}
\ No newline at end of file
// Copyright (c) SenseTime Research. All rights reserved.
#include <torch/extension.h>
torch::Tensor upfirdn2d_op(const torch::Tensor& input, const torch::Tensor& kernel,
int up_x, int up_y, int down_x, int down_y,
int pad_x0, int pad_x1, int pad_y0, int pad_y1);
#define CHECK_CUDA(x) TORCH_CHECK(x.type().is_cuda(), #x " must be a CUDA tensor")
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
#define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x)
torch::Tensor upfirdn2d(const torch::Tensor& input, const torch::Tensor& kernel,
int up_x, int up_y, int down_x, int down_y,
int pad_x0, int pad_x1, int pad_y0, int pad_y1) {
CHECK_CUDA(input);
CHECK_CUDA(kernel);
return upfirdn2d_op(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1);
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("upfirdn2d", &upfirdn2d, "upfirdn2d (CUDA)");
}
\ No newline at end of file
# Copyright (c) SenseTime Research. All rights reserved.
import os
import torch
from torch.nn import functional as F
from torch.autograd import Function
from torch.utils.cpp_extension import load
module_path = os.path.dirname(__file__)
upfirdn2d_op = load(
"upfirdn2d",
sources=[
os.path.join(module_path, "upfirdn2d.cpp"),
os.path.join(module_path, "upfirdn2d_kernel.cu"),
],
)
class UpFirDn2dBackward(Function):
@staticmethod
def forward(
ctx, grad_output, kernel, grad_kernel, up, down, pad, g_pad, in_size, out_size
):
up_x, up_y = up
down_x, down_y = down
g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1 = g_pad
grad_output = grad_output.reshape(-1, out_size[0], out_size[1], 1)
grad_input = upfirdn2d_op.upfirdn2d(
grad_output,
grad_kernel,
down_x,
down_y,
up_x,
up_y,
g_pad_x0,
g_pad_x1,
g_pad_y0,
g_pad_y1,
)
grad_input = grad_input.view(in_size[0], in_size[1], in_size[2], in_size[3])
ctx.save_for_backward(kernel)
pad_x0, pad_x1, pad_y0, pad_y1 = pad
ctx.up_x = up_x
ctx.up_y = up_y
ctx.down_x = down_x
ctx.down_y = down_y
ctx.pad_x0 = pad_x0
ctx.pad_x1 = pad_x1
ctx.pad_y0 = pad_y0
ctx.pad_y1 = pad_y1
ctx.in_size = in_size
ctx.out_size = out_size
return grad_input
@staticmethod
def backward(ctx, gradgrad_input):
(kernel,) = ctx.saved_tensors
gradgrad_input = gradgrad_input.reshape(-1, ctx.in_size[2], ctx.in_size[3], 1)
gradgrad_out = upfirdn2d_op.upfirdn2d(
gradgrad_input,
kernel,
ctx.up_x,
ctx.up_y,
ctx.down_x,
ctx.down_y,
ctx.pad_x0,
ctx.pad_x1,
ctx.pad_y0,
ctx.pad_y1,
)
# gradgrad_out = gradgrad_out.view(ctx.in_size[0], ctx.out_size[0], ctx.out_size[1], ctx.in_size[3])
gradgrad_out = gradgrad_out.view(
ctx.in_size[0], ctx.in_size[1], ctx.out_size[0], ctx.out_size[1]
)
return gradgrad_out, None, None, None, None, None, None, None, None
class UpFirDn2d(Function):
@staticmethod
def forward(ctx, input, kernel, up, down, pad):
up_x, up_y = up
down_x, down_y = down
pad_x0, pad_x1, pad_y0, pad_y1 = pad
kernel_h, kernel_w = kernel.shape
batch, channel, in_h, in_w = input.shape
ctx.in_size = input.shape
input = input.reshape(-1, in_h, in_w, 1)
ctx.save_for_backward(kernel, torch.flip(kernel, [0, 1]))
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
ctx.out_size = (out_h, out_w)
ctx.up = (up_x, up_y)
ctx.down = (down_x, down_y)
ctx.pad = (pad_x0, pad_x1, pad_y0, pad_y1)
g_pad_x0 = kernel_w - pad_x0 - 1
g_pad_y0 = kernel_h - pad_y0 - 1
g_pad_x1 = in_w * up_x - out_w * down_x + pad_x0 - up_x + 1
g_pad_y1 = in_h * up_y - out_h * down_y + pad_y0 - up_y + 1
ctx.g_pad = (g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1)
out = upfirdn2d_op.upfirdn2d(
input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1
)
# out = out.view(major, out_h, out_w, minor)
out = out.view(-1, channel, out_h, out_w)
return out
@staticmethod
def backward(ctx, grad_output):
kernel, grad_kernel = ctx.saved_tensors
grad_input = UpFirDn2dBackward.apply(
grad_output,
kernel,
grad_kernel,
ctx.up,
ctx.down,
ctx.pad,
ctx.g_pad,
ctx.in_size,
ctx.out_size,
)
return grad_input, None, None, None, None
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
if input.device.type == "cpu":
out = upfirdn2d_native(
input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1]
)
else:
out = UpFirDn2d.apply(
input, kernel, (up, up), (down, down), (pad[0], pad[1], pad[0], pad[1])
)
return out
def upfirdn2d_native(
input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1
):
_, channel, in_h, in_w = input.shape
input = input.reshape(-1, in_h, in_w, 1)
_, in_h, in_w, minor = input.shape
kernel_h, kernel_w = kernel.shape
out = input.view(-1, in_h, 1, in_w, 1, minor)
out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
out = out.view(-1, in_h * up_y, in_w * up_x, minor)
out = F.pad(
out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)]
)
out = out[
:,
max(-pad_y0, 0) : out.shape[1] - max(-pad_y1, 0),
max(-pad_x0, 0) : out.shape[2] - max(-pad_x1, 0),
:,
]
out = out.permute(0, 3, 1, 2)
out = out.reshape(
[-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1]
)
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
out = F.conv2d(out, w)
out = out.reshape(
-1,
minor,
in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1,
in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1,
)
out = out.permute(0, 2, 3, 1)
out = out[:, ::down_y, ::down_x, :]
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
return out.view(-1, channel, out_h, out_w)
// Copyright (c) SenseTime Research. All rights reserved.
// Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
//
// This work is made available under the Nvidia Source Code License-NC.
// To view a copy of this license, visit
// https://nvlabs.github.io/stylegan2/license.html
#include <torch/types.h>
#include <ATen/ATen.h>
#include <ATen/AccumulateType.h>
#include <ATen/cuda/CUDAApplyUtils.cuh>
#include <ATen/cuda/CUDAContext.h>
#include <cuda.h>
#include <cuda_runtime.h>
static __host__ __device__ __forceinline__ int floor_div(int a, int b) {
int c = a / b;
if (c * b > a) {
c--;
}
return c;
}
struct UpFirDn2DKernelParams {
int up_x;
int up_y;
int down_x;
int down_y;
int pad_x0;
int pad_x1;
int pad_y0;
int pad_y1;
int major_dim;
int in_h;
int in_w;
int minor_dim;
int kernel_h;
int kernel_w;
int out_h;
int out_w;
int loop_major;
int loop_x;
};
template <typename scalar_t>
__global__ void upfirdn2d_kernel_large(scalar_t *out, const scalar_t *input,
const scalar_t *kernel,
const UpFirDn2DKernelParams p) {
int minor_idx = blockIdx.x * blockDim.x + threadIdx.x;
int out_y = minor_idx / p.minor_dim;
minor_idx -= out_y * p.minor_dim;
int out_x_base = blockIdx.y * p.loop_x * blockDim.y + threadIdx.y;
int major_idx_base = blockIdx.z * p.loop_major;
if (out_x_base >= p.out_w || out_y >= p.out_h ||
major_idx_base >= p.major_dim) {
return;
}
int mid_y = out_y * p.down_y + p.up_y - 1 - p.pad_y0;
int in_y = min(max(floor_div(mid_y, p.up_y), 0), p.in_h);
int h = min(max(floor_div(mid_y + p.kernel_h, p.up_y), 0), p.in_h) - in_y;
int kernel_y = mid_y + p.kernel_h - (in_y + 1) * p.up_y;
for (int loop_major = 0, major_idx = major_idx_base;
loop_major < p.loop_major && major_idx < p.major_dim;
loop_major++, major_idx++) {
for (int loop_x = 0, out_x = out_x_base;
loop_x < p.loop_x && out_x < p.out_w; loop_x++, out_x += blockDim.y) {
int mid_x = out_x * p.down_x + p.up_x - 1 - p.pad_x0;
int in_x = min(max(floor_div(mid_x, p.up_x), 0), p.in_w);
int w = min(max(floor_div(mid_x + p.kernel_w, p.up_x), 0), p.in_w) - in_x;
int kernel_x = mid_x + p.kernel_w - (in_x + 1) * p.up_x;
const scalar_t *x_p =
&input[((major_idx * p.in_h + in_y) * p.in_w + in_x) * p.minor_dim +
minor_idx];
const scalar_t *k_p = &kernel[kernel_y * p.kernel_w + kernel_x];
int x_px = p.minor_dim;
int k_px = -p.up_x;
int x_py = p.in_w * p.minor_dim;
int k_py = -p.up_y * p.kernel_w;
scalar_t v = 0.0f;
for (int y = 0; y < h; y++) {
for (int x = 0; x < w; x++) {
v += static_cast<scalar_t>(*x_p) * static_cast<scalar_t>(*k_p);
x_p += x_px;
k_p += k_px;
}
x_p += x_py - w * x_px;
k_p += k_py - w * k_px;
}
out[((major_idx * p.out_h + out_y) * p.out_w + out_x) * p.minor_dim +
minor_idx] = v;
}
}
}
template <typename scalar_t, int up_x, int up_y, int down_x, int down_y,
int kernel_h, int kernel_w, int tile_out_h, int tile_out_w>
__global__ void upfirdn2d_kernel(scalar_t *out, const scalar_t *input,
const scalar_t *kernel,
const UpFirDn2DKernelParams p) {
const int tile_in_h = ((tile_out_h - 1) * down_y + kernel_h - 1) / up_y + 1;
const int tile_in_w = ((tile_out_w - 1) * down_x + kernel_w - 1) / up_x + 1;
__shared__ volatile float sk[kernel_h][kernel_w];
__shared__ volatile float sx[tile_in_h][tile_in_w];
int minor_idx = blockIdx.x;
int tile_out_y = minor_idx / p.minor_dim;
minor_idx -= tile_out_y * p.minor_dim;
tile_out_y *= tile_out_h;
int tile_out_x_base = blockIdx.y * p.loop_x * tile_out_w;
int major_idx_base = blockIdx.z * p.loop_major;
if (tile_out_x_base >= p.out_w | tile_out_y >= p.out_h |
major_idx_base >= p.major_dim) {
return;
}
for (int tap_idx = threadIdx.x; tap_idx < kernel_h * kernel_w;
tap_idx += blockDim.x) {
int ky = tap_idx / kernel_w;
int kx = tap_idx - ky * kernel_w;
scalar_t v = 0.0;
if (kx < p.kernel_w & ky < p.kernel_h) {
v = kernel[(p.kernel_h - 1 - ky) * p.kernel_w + (p.kernel_w - 1 - kx)];
}
sk[ky][kx] = v;
}
for (int loop_major = 0, major_idx = major_idx_base;
loop_major < p.loop_major & major_idx < p.major_dim;
loop_major++, major_idx++) {
for (int loop_x = 0, tile_out_x = tile_out_x_base;
loop_x < p.loop_x & tile_out_x < p.out_w;
loop_x++, tile_out_x += tile_out_w) {
int tile_mid_x = tile_out_x * down_x + up_x - 1 - p.pad_x0;
int tile_mid_y = tile_out_y * down_y + up_y - 1 - p.pad_y0;
int tile_in_x = floor_div(tile_mid_x, up_x);
int tile_in_y = floor_div(tile_mid_y, up_y);
__syncthreads();
for (int in_idx = threadIdx.x; in_idx < tile_in_h * tile_in_w;
in_idx += blockDim.x) {
int rel_in_y = in_idx / tile_in_w;
int rel_in_x = in_idx - rel_in_y * tile_in_w;
int in_x = rel_in_x + tile_in_x;
int in_y = rel_in_y + tile_in_y;
scalar_t v = 0.0;
if (in_x >= 0 & in_y >= 0 & in_x < p.in_w & in_y < p.in_h) {
v = input[((major_idx * p.in_h + in_y) * p.in_w + in_x) *
p.minor_dim +
minor_idx];
}
sx[rel_in_y][rel_in_x] = v;
}
__syncthreads();
for (int out_idx = threadIdx.x; out_idx < tile_out_h * tile_out_w;
out_idx += blockDim.x) {
int rel_out_y = out_idx / tile_out_w;
int rel_out_x = out_idx - rel_out_y * tile_out_w;
int out_x = rel_out_x + tile_out_x;
int out_y = rel_out_y + tile_out_y;
int mid_x = tile_mid_x + rel_out_x * down_x;
int mid_y = tile_mid_y + rel_out_y * down_y;
int in_x = floor_div(mid_x, up_x);
int in_y = floor_div(mid_y, up_y);
int rel_in_x = in_x - tile_in_x;
int rel_in_y = in_y - tile_in_y;
int kernel_x = (in_x + 1) * up_x - mid_x - 1;
int kernel_y = (in_y + 1) * up_y - mid_y - 1;
scalar_t v = 0.0;
#pragma unroll
for (int y = 0; y < kernel_h / up_y; y++)
#pragma unroll
for (int x = 0; x < kernel_w / up_x; x++)
v += sx[rel_in_y + y][rel_in_x + x] *
sk[kernel_y + y * up_y][kernel_x + x * up_x];
if (out_x < p.out_w & out_y < p.out_h) {
out[((major_idx * p.out_h + out_y) * p.out_w + out_x) * p.minor_dim +
minor_idx] = v;
}
}
}
}
}
torch::Tensor upfirdn2d_op(const torch::Tensor &input,
const torch::Tensor &kernel, int up_x, int up_y,
int down_x, int down_y, int pad_x0, int pad_x1,
int pad_y0, int pad_y1) {
int curDevice = -1;
cudaGetDevice(&curDevice);
cudaStream_t stream = at::cuda::getCurrentCUDAStream(curDevice);
UpFirDn2DKernelParams p;
auto x = input.contiguous();
auto k = kernel.contiguous();
p.major_dim = x.size(0);
p.in_h = x.size(1);
p.in_w = x.size(2);
p.minor_dim = x.size(3);
p.kernel_h = k.size(0);
p.kernel_w = k.size(1);
p.up_x = up_x;
p.up_y = up_y;
p.down_x = down_x;
p.down_y = down_y;
p.pad_x0 = pad_x0;
p.pad_x1 = pad_x1;
p.pad_y0 = pad_y0;
p.pad_y1 = pad_y1;
p.out_h = (p.in_h * p.up_y + p.pad_y0 + p.pad_y1 - p.kernel_h + p.down_y) /
p.down_y;
p.out_w = (p.in_w * p.up_x + p.pad_x0 + p.pad_x1 - p.kernel_w + p.down_x) /
p.down_x;
auto out =
at::empty({p.major_dim, p.out_h, p.out_w, p.minor_dim}, x.options());
int mode = -1;
int tile_out_h = -1;
int tile_out_w = -1;
if (p.up_x == 1 && p.up_y == 1 && p.down_x == 1 && p.down_y == 1 &&
p.kernel_h <= 4 && p.kernel_w <= 4) {
mode = 1;
tile_out_h = 16;
tile_out_w = 64;
}
if (p.up_x == 1 && p.up_y == 1 && p.down_x == 1 && p.down_y == 1 &&
p.kernel_h <= 3 && p.kernel_w <= 3) {
mode = 2;
tile_out_h = 16;
tile_out_w = 64;
}
if (p.up_x == 2 && p.up_y == 2 && p.down_x == 1 && p.down_y == 1 &&
p.kernel_h <= 4 && p.kernel_w <= 4) {
mode = 3;
tile_out_h = 16;
tile_out_w = 64;
}
if (p.up_x == 2 && p.up_y == 2 && p.down_x == 1 && p.down_y == 1 &&
p.kernel_h <= 2 && p.kernel_w <= 2) {
mode = 4;
tile_out_h = 16;
tile_out_w = 64;
}
if (p.up_x == 1 && p.up_y == 1 && p.down_x == 2 && p.down_y == 2 &&
p.kernel_h <= 4 && p.kernel_w <= 4) {
mode = 5;
tile_out_h = 8;
tile_out_w = 32;
}
if (p.up_x == 1 && p.up_y == 1 && p.down_x == 2 && p.down_y == 2 &&
p.kernel_h <= 2 && p.kernel_w <= 2) {
mode = 6;
tile_out_h = 8;
tile_out_w = 32;
}
dim3 block_size;
dim3 grid_size;
if (tile_out_h > 0 && tile_out_w > 0) {
p.loop_major = (p.major_dim - 1) / 16384 + 1;
p.loop_x = 1;
block_size = dim3(32 * 8, 1, 1);
grid_size = dim3(((p.out_h - 1) / tile_out_h + 1) * p.minor_dim,
(p.out_w - 1) / (p.loop_x * tile_out_w) + 1,
(p.major_dim - 1) / p.loop_major + 1);
} else {
p.loop_major = (p.major_dim - 1) / 16384 + 1;
p.loop_x = 4;
block_size = dim3(4, 32, 1);
grid_size = dim3((p.out_h * p.minor_dim - 1) / block_size.x + 1,
(p.out_w - 1) / (p.loop_x * block_size.y) + 1,
(p.major_dim - 1) / p.loop_major + 1);
}
AT_DISPATCH_FLOATING_TYPES_AND_HALF(x.scalar_type(), "upfirdn2d_cuda", [&] {
switch (mode) {
case 1:
upfirdn2d_kernel<scalar_t, 1, 1, 1, 1, 4, 4, 16, 64>
<<<grid_size, block_size, 0, stream>>>(out.data_ptr<scalar_t>(),
x.data_ptr<scalar_t>(),
k.data_ptr<scalar_t>(), p);
break;
case 2:
upfirdn2d_kernel<scalar_t, 1, 1, 1, 1, 3, 3, 16, 64>
<<<grid_size, block_size, 0, stream>>>(out.data_ptr<scalar_t>(),
x.data_ptr<scalar_t>(),
k.data_ptr<scalar_t>(), p);
break;
case 3:
upfirdn2d_kernel<scalar_t, 2, 2, 1, 1, 4, 4, 16, 64>
<<<grid_size, block_size, 0, stream>>>(out.data_ptr<scalar_t>(),
x.data_ptr<scalar_t>(),
k.data_ptr<scalar_t>(), p);
break;
case 4:
upfirdn2d_kernel<scalar_t, 2, 2, 1, 1, 2, 2, 16, 64>
<<<grid_size, block_size, 0, stream>>>(out.data_ptr<scalar_t>(),
x.data_ptr<scalar_t>(),
k.data_ptr<scalar_t>(), p);
break;
case 5:
upfirdn2d_kernel<scalar_t, 1, 1, 2, 2, 4, 4, 8, 32>
<<<grid_size, block_size, 0, stream>>>(out.data_ptr<scalar_t>(),
x.data_ptr<scalar_t>(),
k.data_ptr<scalar_t>(), p);
break;
case 6:
upfirdn2d_kernel<scalar_t, 1, 1, 2, 2, 4, 4, 8, 32>
<<<grid_size, block_size, 0, stream>>>(out.data_ptr<scalar_t>(),
x.data_ptr<scalar_t>(),
k.data_ptr<scalar_t>(), p);
break;
default:
upfirdn2d_kernel_large<scalar_t><<<grid_size, block_size, 0, stream>>>(
out.data_ptr<scalar_t>(), x.data_ptr<scalar_t>(),
k.data_ptr<scalar_t>(), p);
}
});
return out;
}
\ No newline at end of file
# Copyright (c) SenseTime Research. All rights reserved.
#empty
\ No newline at end of file
// Copyright (c) SenseTime Research. All rights reserved.
// Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
//
// NVIDIA CORPORATION and its licensors retain all intellectual property
// and proprietary rights in and to this software, related documentation
// and any modifications thereto. Any use, reproduction, disclosure or
// distribution of this software and related documentation without an express
// license agreement from NVIDIA CORPORATION is strictly prohibited.
#include <torch/extension.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include "bias_act.h"
//------------------------------------------------------------------------
static bool has_same_layout(torch::Tensor x, torch::Tensor y)
{
if (x.dim() != y.dim())
return false;
for (int64_t i = 0; i < x.dim(); i++)
{
if (x.size(i) != y.size(i))
return false;
if (x.size(i) >= 2 && x.stride(i) != y.stride(i))
return false;
}
return true;
}
//------------------------------------------------------------------------
static torch::Tensor bias_act(torch::Tensor x, torch::Tensor b, torch::Tensor xref, torch::Tensor yref, torch::Tensor dy, int grad, int dim, int act, float alpha, float gain, float clamp)
{
// Validate arguments.
TORCH_CHECK(x.is_cuda(), "x must reside on CUDA device");
TORCH_CHECK(b.numel() == 0 || (b.dtype() == x.dtype() && b.device() == x.device()), "b must have the same dtype and device as x");
TORCH_CHECK(xref.numel() == 0 || (xref.sizes() == x.sizes() && xref.dtype() == x.dtype() && xref.device() == x.device()), "xref must have the same shape, dtype, and device as x");
TORCH_CHECK(yref.numel() == 0 || (yref.sizes() == x.sizes() && yref.dtype() == x.dtype() && yref.device() == x.device()), "yref must have the same shape, dtype, and device as x");
TORCH_CHECK(dy.numel() == 0 || (dy.sizes() == x.sizes() && dy.dtype() == x.dtype() && dy.device() == x.device()), "dy must have the same dtype and device as x");
TORCH_CHECK(x.numel() <= INT_MAX, "x is too large");
TORCH_CHECK(b.dim() == 1, "b must have rank 1");
TORCH_CHECK(b.numel() == 0 || (dim >= 0 && dim < x.dim()), "dim is out of bounds");
TORCH_CHECK(b.numel() == 0 || b.numel() == x.size(dim), "b has wrong number of elements");
TORCH_CHECK(grad >= 0, "grad must be non-negative");
// Validate layout.
TORCH_CHECK(x.is_non_overlapping_and_dense(), "x must be non-overlapping and dense");
TORCH_CHECK(b.is_contiguous(), "b must be contiguous");
TORCH_CHECK(xref.numel() == 0 || has_same_layout(xref, x), "xref must have the same layout as x");
TORCH_CHECK(yref.numel() == 0 || has_same_layout(yref, x), "yref must have the same layout as x");
TORCH_CHECK(dy.numel() == 0 || has_same_layout(dy, x), "dy must have the same layout as x");
// Create output tensor.
const at::cuda::OptionalCUDAGuard device_guard(device_of(x));
torch::Tensor y = torch::empty_like(x);
TORCH_CHECK(has_same_layout(y, x), "y must have the same layout as x");
// Initialize CUDA kernel parameters.
bias_act_kernel_params p;
p.x = x.data_ptr();
p.b = (b.numel()) ? b.data_ptr() : NULL;
p.xref = (xref.numel()) ? xref.data_ptr() : NULL;
p.yref = (yref.numel()) ? yref.data_ptr() : NULL;
p.dy = (dy.numel()) ? dy.data_ptr() : NULL;
p.y = y.data_ptr();
p.grad = grad;
p.act = act;
p.alpha = alpha;
p.gain = gain;
p.clamp = clamp;
p.sizeX = (int)x.numel();
p.sizeB = (int)b.numel();
p.stepB = (b.numel()) ? (int)x.stride(dim) : 1;
// Choose CUDA kernel.
void* kernel;
AT_DISPATCH_FLOATING_TYPES_AND_HALF(x.scalar_type(), "upfirdn2d_cuda", [&]
{
kernel = choose_bias_act_kernel<scalar_t>(p);
});
TORCH_CHECK(kernel, "no CUDA kernel found for the specified activation func");
// Launch CUDA kernel.
p.loopX = 4;
int blockSize = 4 * 32;
int gridSize = (p.sizeX - 1) / (p.loopX * blockSize) + 1;
void* args[] = {&p};
AT_CUDA_CHECK(hipLaunchKernel(kernel, gridSize, blockSize, args, 0, at::hip::getCurrentHIPStreamMasqueradingAsCUDA()));
return y;
}
//------------------------------------------------------------------------
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m)
{
m.def("bias_act", &bias_act);
}
//------------------------------------------------------------------------
// Copyright (c) SenseTime Research. All rights reserved.
// Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
//
// NVIDIA CORPORATION and its licensors retain all intellectual property
// and proprietary rights in and to this software, related documentation
// and any modifications thereto. Any use, reproduction, disclosure or
// distribution of this software and related documentation without an express
// license agreement from NVIDIA CORPORATION is strictly prohibited.
#include <c10/util/Half.h>
#include "bias_act.h"
//------------------------------------------------------------------------
// Helpers.
template <class T> struct InternalType;
template <> struct InternalType<double> { typedef double scalar_t; };
template <> struct InternalType<float> { typedef float scalar_t; };
template <> struct InternalType<c10::Half> { typedef float scalar_t; };
//------------------------------------------------------------------------
// CUDA kernel.
template <class T, int A>
__global__ void bias_act_kernel(bias_act_kernel_params p)
{
typedef typename InternalType<T>::scalar_t scalar_t;
int G = p.grad;
scalar_t alpha = (scalar_t)p.alpha;
scalar_t gain = (scalar_t)p.gain;
scalar_t clamp = (scalar_t)p.clamp;
scalar_t one = (scalar_t)1;
scalar_t two = (scalar_t)2;
scalar_t expRange = (scalar_t)80;
scalar_t halfExpRange = (scalar_t)40;
scalar_t seluScale = (scalar_t)1.0507009873554804934193349852946;
scalar_t seluAlpha = (scalar_t)1.6732632423543772848170429916717;
// Loop over elements.
int xi = blockIdx.x * p.loopX * blockDim.x + threadIdx.x;
for (int loopIdx = 0; loopIdx < p.loopX && xi < p.sizeX; loopIdx++, xi += blockDim.x)
{
// Load.
scalar_t x = (scalar_t)((const T*)p.x)[xi];
scalar_t b = (p.b) ? (scalar_t)((const T*)p.b)[(xi / p.stepB) % p.sizeB] : 0;
scalar_t xref = (p.xref) ? (scalar_t)((const T*)p.xref)[xi] : 0;
scalar_t yref = (p.yref) ? (scalar_t)((const T*)p.yref)[xi] : 0;
scalar_t dy = (p.dy) ? (scalar_t)((const T*)p.dy)[xi] : one;
scalar_t yy = (gain != 0) ? yref / gain : 0;
scalar_t y = 0;
// Apply bias.
((G == 0) ? x : xref) += b;
// linear
if (A == 1)
{
if (G == 0) y = x;
if (G == 1) y = x;
}
// relu
if (A == 2)
{
if (G == 0) y = (x > 0) ? x : 0;
if (G == 1) y = (yy > 0) ? x : 0;
}
// lrelu
if (A == 3)
{
if (G == 0) y = (x > 0) ? x : x * alpha;
if (G == 1) y = (yy > 0) ? x : x * alpha;
}
// tanh
if (A == 4)
{
if (G == 0) { scalar_t c = exp(x); scalar_t d = one / c; y = (x < -expRange) ? -one : (x > expRange) ? one : (c - d) / (c + d); }
if (G == 1) y = x * (one - yy * yy);
if (G == 2) y = x * (one - yy * yy) * (-two * yy);
}
// sigmoid
if (A == 5)
{
if (G == 0) y = (x < -expRange) ? 0 : one / (exp(-x) + one);
if (G == 1) y = x * yy * (one - yy);
if (G == 2) y = x * yy * (one - yy) * (one - two * yy);
}
// elu
if (A == 6)
{
if (G == 0) y = (x >= 0) ? x : exp(x) - one;
if (G == 1) y = (yy >= 0) ? x : x * (yy + one);
if (G == 2) y = (yy >= 0) ? 0 : x * (yy + one);
}
// selu
if (A == 7)
{
if (G == 0) y = (x >= 0) ? seluScale * x : (seluScale * seluAlpha) * (exp(x) - one);
if (G == 1) y = (yy >= 0) ? x * seluScale : x * (yy + seluScale * seluAlpha);
if (G == 2) y = (yy >= 0) ? 0 : x * (yy + seluScale * seluAlpha);
}
// softplus
if (A == 8)
{
if (G == 0) y = (x > expRange) ? x : log(exp(x) + one);
if (G == 1) y = x * (one - exp(-yy));
if (G == 2) { scalar_t c = exp(-yy); y = x * c * (one - c); }
}
// swish
if (A == 9)
{
if (G == 0)
y = (x < -expRange) ? 0 : x / (exp(-x) + one);
else
{
scalar_t c = exp(xref);
scalar_t d = c + one;
if (G == 1)
y = (xref > halfExpRange) ? x : x * c * (xref + d) / (d * d);
else
y = (xref > halfExpRange) ? 0 : x * c * (xref * (two - d) + two * d) / (d * d * d);
yref = (xref < -expRange) ? 0 : xref / (exp(-xref) + one) * gain;
}
}
// Apply gain.
y *= gain * dy;
// Clamp.
if (clamp >= 0)
{
if (G == 0)
y = (y > -clamp & y < clamp) ? y : (y >= 0) ? clamp : -clamp;
else
y = (yref > -clamp & yref < clamp) ? y : 0;
}
// Store.
((T*)p.y)[xi] = (T)y;
}
}
//------------------------------------------------------------------------
// CUDA kernel selection.
template <class T> void* choose_bias_act_kernel(const bias_act_kernel_params& p)
{
if (p.act == 1) return (void*)bias_act_kernel<T, 1>;
if (p.act == 2) return (void*)bias_act_kernel<T, 2>;
if (p.act == 3) return (void*)bias_act_kernel<T, 3>;
if (p.act == 4) return (void*)bias_act_kernel<T, 4>;
if (p.act == 5) return (void*)bias_act_kernel<T, 5>;
if (p.act == 6) return (void*)bias_act_kernel<T, 6>;
if (p.act == 7) return (void*)bias_act_kernel<T, 7>;
if (p.act == 8) return (void*)bias_act_kernel<T, 8>;
if (p.act == 9) return (void*)bias_act_kernel<T, 9>;
return NULL;
}
//------------------------------------------------------------------------
// Template specializations.
template void* choose_bias_act_kernel<double> (const bias_act_kernel_params& p);
template void* choose_bias_act_kernel<float> (const bias_act_kernel_params& p);
template void* choose_bias_act_kernel<c10::Half> (const bias_act_kernel_params& p);
//------------------------------------------------------------------------
// Copyright (c) SenseTime Research. All rights reserved.
// Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
//
// NVIDIA CORPORATION and its licensors retain all intellectual property
// and proprietary rights in and to this software, related documentation
// and any modifications thereto. Any use, reproduction, disclosure or
// distribution of this software and related documentation without an express
// license agreement from NVIDIA CORPORATION is strictly prohibited.
//------------------------------------------------------------------------
// CUDA kernel parameters.
struct bias_act_kernel_params
{
const void* x; // [sizeX]
const void* b; // [sizeB] or NULL
const void* xref; // [sizeX] or NULL
const void* yref; // [sizeX] or NULL
const void* dy; // [sizeX] or NULL
void* y; // [sizeX]
int grad;
int act;
float alpha;
float gain;
float clamp;
int sizeX;
int sizeB;
int stepB;
int loopX;
};
//------------------------------------------------------------------------
// CUDA kernel selection.
template <class T> void* choose_bias_act_kernel(const bias_act_kernel_params& p);
//------------------------------------------------------------------------
# Copyright (c) SenseTime Research. All rights reserved.
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
"""Custom PyTorch ops for efficient bias and activation."""
import os
import warnings
import numpy as np
import torch
import dnnlib
import traceback
from .. import custom_ops
from .. import misc
#----------------------------------------------------------------------------
activation_funcs = {
'linear': dnnlib.EasyDict(func=lambda x, **_: x, def_alpha=0, def_gain=1, cuda_idx=1, ref='', has_2nd_grad=False),
'relu': dnnlib.EasyDict(func=lambda x, **_: torch.nn.functional.relu(x), def_alpha=0, def_gain=np.sqrt(2), cuda_idx=2, ref='y', has_2nd_grad=False),
'lrelu': dnnlib.EasyDict(func=lambda x, alpha, **_: torch.nn.functional.leaky_relu(x, alpha), def_alpha=0.2, def_gain=np.sqrt(2), cuda_idx=3, ref='y', has_2nd_grad=False),
'tanh': dnnlib.EasyDict(func=lambda x, **_: torch.tanh(x), def_alpha=0, def_gain=1, cuda_idx=4, ref='y', has_2nd_grad=True),
'sigmoid': dnnlib.EasyDict(func=lambda x, **_: torch.sigmoid(x), def_alpha=0, def_gain=1, cuda_idx=5, ref='y', has_2nd_grad=True),
'elu': dnnlib.EasyDict(func=lambda x, **_: torch.nn.functional.elu(x), def_alpha=0, def_gain=1, cuda_idx=6, ref='y', has_2nd_grad=True),
'selu': dnnlib.EasyDict(func=lambda x, **_: torch.nn.functional.selu(x), def_alpha=0, def_gain=1, cuda_idx=7, ref='y', has_2nd_grad=True),
'softplus': dnnlib.EasyDict(func=lambda x, **_: torch.nn.functional.softplus(x), def_alpha=0, def_gain=1, cuda_idx=8, ref='y', has_2nd_grad=True),
'swish': dnnlib.EasyDict(func=lambda x, **_: torch.sigmoid(x) * x, def_alpha=0, def_gain=np.sqrt(2), cuda_idx=9, ref='x', has_2nd_grad=True),
}
#----------------------------------------------------------------------------
_inited = False
_plugin = None
_null_tensor = torch.empty([0])
def _init():
global _inited, _plugin
if not _inited:
_inited = True
sources = ['bias_act.cpp', 'bias_act.cu']
sources = [os.path.join(os.path.dirname(__file__), s) for s in sources]
try:
_plugin = custom_ops.get_plugin('bias_act_plugin', sources=sources, extra_cuda_cflags=['--use_fast_math'])
except:
warnings.warn('Failed to build CUDA kernels for bias_act. Falling back to slow reference implementation. Details:\n\n' + traceback.format_exc())
return _plugin is not None
#----------------------------------------------------------------------------
def bias_act(x, b=None, dim=1, act='linear', alpha=None, gain=None, clamp=None, impl='cuda'):
r"""Fused bias and activation function.
Adds bias `b` to activation tensor `x`, evaluates activation function `act`,
and scales the result by `gain`. Each of the steps is optional. In most cases,
the fused op is considerably more efficient than performing the same calculation
using standard PyTorch ops. It supports first and second order gradients,
but not third order gradients.
Args:
x: Input activation tensor. Can be of any shape.
b: Bias vector, or `None` to disable. Must be a 1D tensor of the same type
as `x`. The shape must be known, and it must match the dimension of `x`
corresponding to `dim`.
dim: The dimension in `x` corresponding to the elements of `b`.
The value of `dim` is ignored if `b` is not specified.
act: Name of the activation function to evaluate, or `"linear"` to disable.
Can be e.g. `"relu"`, `"lrelu"`, `"tanh"`, `"sigmoid"`, `"swish"`, etc.
See `activation_funcs` for a full list. `None` is not allowed.
alpha: Shape parameter for the activation function, or `None` to use the default.
gain: Scaling factor for the output tensor, or `None` to use default.
See `activation_funcs` for the default scaling of each activation function.
If unsure, consider specifying 1.
clamp: Clamp the output values to `[-clamp, +clamp]`, or `None` to disable
the clamping (default).
impl: Name of the implementation to use. Can be `"ref"` or `"cuda"` (default).
Returns:
Tensor of the same shape and datatype as `x`.
"""
assert isinstance(x, torch.Tensor)
assert impl in ['ref', 'cuda']
if impl == 'ref' and x.device.type == 'cuda' and _init():
return _bias_act_cuda(dim=dim, act=act, alpha=alpha, gain=gain, clamp=clamp).apply(x, b)
return _bias_act_ref(x=x, b=b, dim=dim, act=act, alpha=alpha, gain=gain, clamp=clamp)
#----------------------------------------------------------------------------
@misc.profiled_function
def _bias_act_ref(x, b=None, dim=1, act='linear', alpha=None, gain=None, clamp=None):
"""Slow reference implementation of `bias_act()` using standard TensorFlow ops.
"""
assert isinstance(x, torch.Tensor)
assert clamp is None or clamp >= 0
spec = activation_funcs[act]
alpha = float(alpha if alpha is not None else spec.def_alpha)
gain = float(gain if gain is not None else spec.def_gain)
clamp = float(clamp if clamp is not None else -1)
# Add bias.
if b is not None:
assert isinstance(b, torch.Tensor) and b.ndim == 1
assert 0 <= dim < x.ndim
assert b.shape[0] == x.shape[dim]
x = x + b.reshape([-1 if i == dim else 1 for i in range(x.ndim)])
# Evaluate activation function.
alpha = float(alpha)
x = spec.func(x, alpha=alpha)
# Scale by gain.
gain = float(gain)
if gain != 1:
x = x * gain
# Clamp.
if clamp >= 0:
x = x.clamp(-clamp, clamp) # pylint: disable=invalid-unary-operand-type
return x
#----------------------------------------------------------------------------
_bias_act_cuda_cache = dict()
def _bias_act_cuda(dim=1, act='linear', alpha=None, gain=None, clamp=None):
"""Fast CUDA implementation of `bias_act()` using custom ops.
"""
# Parse arguments.
assert clamp is None or clamp >= 0
spec = activation_funcs[act]
alpha = float(alpha if alpha is not None else spec.def_alpha)
gain = float(gain if gain is not None else spec.def_gain)
clamp = float(clamp if clamp is not None else -1)
# Lookup from cache.
key = (dim, act, alpha, gain, clamp)
if key in _bias_act_cuda_cache:
return _bias_act_cuda_cache[key]
# Forward op.
class BiasActCuda(torch.autograd.Function):
@staticmethod
def forward(ctx, x, b): # pylint: disable=arguments-differ
ctx.memory_format = torch.channels_last if x.ndim > 2 and x.stride()[1] == 1 else torch.contiguous_format
x = x.contiguous(memory_format=ctx.memory_format)
b = b.contiguous() if b is not None else _null_tensor
y = x
if act != 'linear' or gain != 1 or clamp >= 0 or b is not _null_tensor:
y = _plugin.bias_act(x, b, _null_tensor, _null_tensor, _null_tensor, 0, dim, spec.cuda_idx, alpha, gain, clamp)
ctx.save_for_backward(
x if 'x' in spec.ref or spec.has_2nd_grad else _null_tensor,
b if 'x' in spec.ref or spec.has_2nd_grad else _null_tensor,
y if 'y' in spec.ref else _null_tensor)
return y
@staticmethod
def backward(ctx, dy): # pylint: disable=arguments-differ
dy = dy.contiguous(memory_format=ctx.memory_format)
x, b, y = ctx.saved_tensors
dx = None
db = None
if ctx.needs_input_grad[0] or ctx.needs_input_grad[1]:
dx = dy
if act != 'linear' or gain != 1 or clamp >= 0:
dx = BiasActCudaGrad.apply(dy, x, b, y)
if ctx.needs_input_grad[1]:
db = dx.sum([i for i in range(dx.ndim) if i != dim])
return dx, db
# Backward op.
class BiasActCudaGrad(torch.autograd.Function):
@staticmethod
def forward(ctx, dy, x, b, y): # pylint: disable=arguments-differ
ctx.memory_format = torch.channels_last if dy.ndim > 2 and dy.stride()[1] == 1 else torch.contiguous_format
dx = _plugin.bias_act(dy, b, x, y, _null_tensor, 1, dim, spec.cuda_idx, alpha, gain, clamp)
ctx.save_for_backward(
dy if spec.has_2nd_grad else _null_tensor,
x, b, y)
return dx
@staticmethod
def backward(ctx, d_dx): # pylint: disable=arguments-differ
d_dx = d_dx.contiguous(memory_format=ctx.memory_format)
dy, x, b, y = ctx.saved_tensors
d_dy = None
d_x = None
d_b = None
d_y = None
if ctx.needs_input_grad[0]:
d_dy = BiasActCudaGrad.apply(d_dx, x, b, y)
if spec.has_2nd_grad and (ctx.needs_input_grad[1] or ctx.needs_input_grad[2]):
d_x = _plugin.bias_act(d_dx, b, x, y, dy, 2, dim, spec.cuda_idx, alpha, gain, clamp)
if spec.has_2nd_grad and ctx.needs_input_grad[2]:
d_b = d_x.sum([i for i in range(d_x.ndim) if i != dim])
return d_dy, d_x, d_b, d_y
# Add to cache.
_bias_act_cuda_cache[key] = BiasActCuda
return BiasActCuda
#----------------------------------------------------------------------------
# Copyright (c) SenseTime Research. All rights reserved.
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
"""Custom replacement for `torch.nn.functional.conv2d` that supports
arbitrarily high order gradients with zero performance penalty."""
import warnings
import contextlib
import torch
# pylint: disable=redefined-builtin
# pylint: disable=arguments-differ
# pylint: disable=protected-access
#----------------------------------------------------------------------------
enabled = False # Enable the custom op by setting this to true.
weight_gradients_disabled = False # Forcefully disable computation of gradients with respect to the weights.
@contextlib.contextmanager
def no_weight_gradients():
global weight_gradients_disabled
old = weight_gradients_disabled
weight_gradients_disabled = True
yield
weight_gradients_disabled = old
#----------------------------------------------------------------------------
def conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1):
if _should_use_custom_op(input):
return _conv2d_gradfix(transpose=False, weight_shape=weight.shape, stride=stride, padding=padding, output_padding=0, dilation=dilation, groups=groups).apply(input, weight, bias)
return torch.nn.functional.conv2d(input=input, weight=weight, bias=bias, stride=stride, padding=padding, dilation=dilation, groups=groups)
def conv_transpose2d(input, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1):
if _should_use_custom_op(input):
return _conv2d_gradfix(transpose=True, weight_shape=weight.shape, stride=stride, padding=padding, output_padding=output_padding, groups=groups, dilation=dilation).apply(input, weight, bias)
return torch.nn.functional.conv_transpose2d(input=input, weight=weight, bias=bias, stride=stride, padding=padding, output_padding=output_padding, groups=groups, dilation=dilation)
#----------------------------------------------------------------------------
def _should_use_custom_op(input):
assert isinstance(input, torch.Tensor)
if (not enabled) or (not torch.backends.cudnn.enabled):
return False
if input.device.type != 'cuda':
return False
if any(torch.__version__.startswith(x) for x in ['1.7.', '1.8.', '1.9']):
return True
warnings.warn(f'conv2d_gradfix not supported on PyTorch {torch.__version__}. Falling back to torch.nn.functional.conv2d().')
return False
def _tuple_of_ints(xs, ndim):
xs = tuple(xs) if isinstance(xs, (tuple, list)) else (xs,) * ndim
assert len(xs) == ndim
assert all(isinstance(x, int) for x in xs)
return xs
#----------------------------------------------------------------------------
_conv2d_gradfix_cache = dict()
def _conv2d_gradfix(transpose, weight_shape, stride, padding, output_padding, dilation, groups):
# Parse arguments.
ndim = 2
weight_shape = tuple(weight_shape)
stride = _tuple_of_ints(stride, ndim)
padding = _tuple_of_ints(padding, ndim)
output_padding = _tuple_of_ints(output_padding, ndim)
dilation = _tuple_of_ints(dilation, ndim)
# Lookup from cache.
key = (transpose, weight_shape, stride, padding, output_padding, dilation, groups)
if key in _conv2d_gradfix_cache:
return _conv2d_gradfix_cache[key]
# Validate arguments.
assert groups >= 1
assert len(weight_shape) == ndim + 2
assert all(stride[i] >= 1 for i in range(ndim))
assert all(padding[i] >= 0 for i in range(ndim))
assert all(dilation[i] >= 0 for i in range(ndim))
if not transpose:
assert all(output_padding[i] == 0 for i in range(ndim))
else: # transpose
assert all(0 <= output_padding[i] < max(stride[i], dilation[i]) for i in range(ndim))
# Helpers.
common_kwargs = dict(stride=stride, padding=padding, dilation=dilation, groups=groups)
def calc_output_padding(input_shape, output_shape):
if transpose:
return [0, 0]
return [
input_shape[i + 2]
- (output_shape[i + 2] - 1) * stride[i]
- (1 - 2 * padding[i])
- dilation[i] * (weight_shape[i + 2] - 1)
for i in range(ndim)
]
# Forward & backward.
class Conv2d(torch.autograd.Function):
@staticmethod
def forward(ctx, input, weight, bias):
assert weight.shape == weight_shape
if not transpose:
output = torch.nn.functional.conv2d(input=input, weight=weight, bias=bias, **common_kwargs)
else: # transpose
output = torch.nn.functional.conv_transpose2d(input=input, weight=weight, bias=bias, output_padding=output_padding, **common_kwargs)
ctx.save_for_backward(input, weight)
return output
@staticmethod
def backward(ctx, grad_output):
input, weight = ctx.saved_tensors
grad_input = None
grad_weight = None
grad_bias = None
if ctx.needs_input_grad[0]:
p = calc_output_padding(input_shape=input.shape, output_shape=grad_output.shape)
grad_input = _conv2d_gradfix(transpose=(not transpose), weight_shape=weight_shape, output_padding=p, **common_kwargs).apply(grad_output, weight, None)
assert grad_input.shape == input.shape
if ctx.needs_input_grad[1] and not weight_gradients_disabled:
grad_weight = Conv2dGradWeight.apply(grad_output, input)
assert grad_weight.shape == weight_shape
if ctx.needs_input_grad[2]:
grad_bias = grad_output.sum([0, 2, 3])
return grad_input, grad_weight, grad_bias
# Gradient with respect to the weights.
class Conv2dGradWeight(torch.autograd.Function):
@staticmethod
def forward(ctx, grad_output, input):
op = torch._C._jit_get_operation('aten::cudnn_convolution_backward_weight' if not transpose else 'aten::cudnn_convolution_transpose_backward_weight')
flags = [torch.backends.cudnn.benchmark, torch.backends.cudnn.deterministic, torch.backends.cudnn.allow_tf32]
grad_weight = op(weight_shape, grad_output, input, padding, stride, dilation, groups, *flags)
assert grad_weight.shape == weight_shape
ctx.save_for_backward(grad_output, input)
return grad_weight
@staticmethod
def backward(ctx, grad2_grad_weight):
grad_output, input = ctx.saved_tensors
grad2_grad_output = None
grad2_input = None
if ctx.needs_input_grad[0]:
grad2_grad_output = Conv2d.apply(input, grad2_grad_weight, None)
assert grad2_grad_output.shape == grad_output.shape
if ctx.needs_input_grad[1]:
p = calc_output_padding(input_shape=input.shape, output_shape=grad_output.shape)
grad2_input = _conv2d_gradfix(transpose=(not transpose), weight_shape=weight_shape, output_padding=p, **common_kwargs).apply(grad_output, grad2_grad_weight, None)
assert grad2_input.shape == input.shape
return grad2_grad_output, grad2_input
_conv2d_gradfix_cache[key] = Conv2d
return Conv2d
#----------------------------------------------------------------------------
# Copyright (c) SenseTime Research. All rights reserved.
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
"""2D convolution with optional up/downsampling."""
import torch
from .. import misc
from . import conv2d_gradfix
from . import upfirdn2d
from .upfirdn2d import _parse_padding
from .upfirdn2d import _get_filter_size
#----------------------------------------------------------------------------
def _get_weight_shape(w):
with misc.suppress_tracer_warnings(): # this value will be treated as a constant
shape = [int(sz) for sz in w.shape]
misc.assert_shape(w, shape)
return shape
#----------------------------------------------------------------------------
def _conv2d_wrapper(x, w, stride=1, padding=0, groups=1, transpose=False, flip_weight=True):
"""Wrapper for the underlying `conv2d()` and `conv_transpose2d()` implementations.
"""
out_channels, in_channels_per_group, kh, kw = _get_weight_shape(w)
# Flip weight if requested.
if not flip_weight: # conv2d() actually performs correlation (flip_weight=True) not convolution (flip_weight=False).
w = w.flip([2, 3])
# Workaround performance pitfall in cuDNN 8.0.5, triggered when using
# 1x1 kernel + memory_format=channels_last + less than 64 channels.
if kw == 1 and kh == 1 and stride == 1 and padding in [0, [0, 0], (0, 0)] and not transpose:
if x.stride()[1] == 1 and min(out_channels, in_channels_per_group) < 64:
if out_channels <= 4 and groups == 1:
in_shape = x.shape
x = w.squeeze(3).squeeze(2) @ x.reshape([in_shape[0], in_channels_per_group, -1])
x = x.reshape([in_shape[0], out_channels, in_shape[2], in_shape[3]])
else:
x = x.to(memory_format=torch.contiguous_format)
w = w.to(memory_format=torch.contiguous_format)
x = conv2d_gradfix.conv2d(x, w, groups=groups)
return x.to(memory_format=torch.channels_last)
# Otherwise => execute using conv2d_gradfix.
op = conv2d_gradfix.conv_transpose2d if transpose else conv2d_gradfix.conv2d
return op(x, w, stride=stride, padding=padding, groups=groups)
#----------------------------------------------------------------------------
@misc.profiled_function
def conv2d_resample(x, w, f=None, up=1, down=1, padding=0, groups=1, flip_weight=True, flip_filter=False):
r"""2D convolution with optional up/downsampling.
Padding is performed only once at the beginning, not between the operations.
Args:
x: Input tensor of shape
`[batch_size, in_channels, in_height, in_width]`.
w: Weight tensor of shape
`[out_channels, in_channels//groups, kernel_height, kernel_width]`.
f: Low-pass filter for up/downsampling. Must be prepared beforehand by
calling upfirdn2d.setup_filter(). None = identity (default).
up: Integer upsampling factor (default: 1).
down: Integer downsampling factor (default: 1).
padding: Padding with respect to the upsampled image. Can be a single number
or a list/tuple `[x, y]` or `[x_before, x_after, y_before, y_after]`
(default: 0).
groups: Split input channels into N groups (default: 1).
flip_weight: False = convolution, True = correlation (default: True).
flip_filter: False = convolution, True = correlation (default: False).
Returns:
Tensor of the shape `[batch_size, num_channels, out_height, out_width]`.
"""
# Validate arguments.
assert isinstance(x, torch.Tensor) and (x.ndim == 4)
assert isinstance(w, torch.Tensor) and (w.ndim == 4) and (w.dtype == x.dtype)
assert f is None or (isinstance(f, torch.Tensor) and f.ndim in [1, 2] and f.dtype == torch.float32)
assert isinstance(up, int) and (up >= 1)
assert isinstance(down, int) and (down >= 1)
assert isinstance(groups, int) and (groups >= 1)
out_channels, in_channels_per_group, kh, kw = _get_weight_shape(w)
fw, fh = _get_filter_size(f)
px0, px1, py0, py1 = _parse_padding(padding)
# Adjust padding to account for up/downsampling.
if up > 1:
px0 += (fw + up - 1) // 2
px1 += (fw - up) // 2
py0 += (fh + up - 1) // 2
py1 += (fh - up) // 2
if down > 1:
px0 += (fw - down + 1) // 2
px1 += (fw - down) // 2
py0 += (fh - down + 1) // 2
py1 += (fh - down) // 2
# Fast path: 1x1 convolution with downsampling only => downsample first, then convolve.
if kw == 1 and kh == 1 and (down > 1 and up == 1):
x = upfirdn2d.upfirdn2d(x=x, f=f, down=down, padding=[px0,px1,py0,py1], flip_filter=flip_filter)
x = _conv2d_wrapper(x=x, w=w, groups=groups, flip_weight=flip_weight)
return x
# Fast path: 1x1 convolution with upsampling only => convolve first, then upsample.
if kw == 1 and kh == 1 and (up > 1 and down == 1):
x = _conv2d_wrapper(x=x, w=w, groups=groups, flip_weight=flip_weight)
x = upfirdn2d.upfirdn2d(x=x, f=f, up=up, padding=[px0,px1,py0,py1], gain=up**2, flip_filter=flip_filter)
return x
# Fast path: downsampling only => use strided convolution.
if down > 1 and up == 1:
x = upfirdn2d.upfirdn2d(x=x, f=f, padding=[px0,px1,py0,py1], flip_filter=flip_filter)
x = _conv2d_wrapper(x=x, w=w, stride=down, groups=groups, flip_weight=flip_weight)
return x
# Fast path: upsampling with optional downsampling => use transpose strided convolution.
if up > 1:
if groups == 1:
w = w.transpose(0, 1)
else:
w = w.reshape(groups, out_channels // groups, in_channels_per_group, kh, kw)
w = w.transpose(1, 2)
w = w.reshape(groups * in_channels_per_group, out_channels // groups, kh, kw)
px0 -= kw - 1
px1 -= kw - up
py0 -= kh - 1
py1 -= kh - up
pxt = max(min(-px0, -px1), 0)
pyt = max(min(-py0, -py1), 0)
x = _conv2d_wrapper(x=x, w=w, stride=up, padding=[pyt,pxt], groups=groups, transpose=True, flip_weight=(not flip_weight))
x = upfirdn2d.upfirdn2d(x=x, f=f, padding=[px0+pxt,px1+pxt,py0+pyt,py1+pyt], gain=up**2, flip_filter=flip_filter)
if down > 1:
x = upfirdn2d.upfirdn2d(x=x, f=f, down=down, flip_filter=flip_filter)
return x
# Fast path: no up/downsampling, padding supported by the underlying implementation => use plain conv2d.
if up == 1 and down == 1:
if px0 == px1 and py0 == py1 and px0 >= 0 and py0 >= 0:
return _conv2d_wrapper(x=x, w=w, padding=[py0,px0], groups=groups, flip_weight=flip_weight)
# Fallback: Generic reference implementation.
x = upfirdn2d.upfirdn2d(x=x, f=(f if up > 1 else None), up=up, padding=[px0,px1,py0,py1], gain=up**2, flip_filter=flip_filter)
x = _conv2d_wrapper(x=x, w=w, groups=groups, flip_weight=flip_weight)
if down > 1:
x = upfirdn2d.upfirdn2d(x=x, f=f, down=down, flip_filter=flip_filter)
return x
#----------------------------------------------------------------------------
// Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
//
// NVIDIA CORPORATION and its licensors retain all intellectual property
// and proprietary rights in and to this software, related documentation
// and any modifications thereto. Any use, reproduction, disclosure or
// distribution of this software and related documentation without an express
// license agreement from NVIDIA CORPORATION is strictly prohibited.
#include <torch/extension.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include "filtered_lrelu.h"
//------------------------------------------------------------------------
static std::tuple<torch::Tensor, torch::Tensor, int> filtered_lrelu(
torch::Tensor x, torch::Tensor fu, torch::Tensor fd, torch::Tensor b, torch::Tensor si,
int up, int down, int px0, int px1, int py0, int py1, int sx, int sy, float gain, float slope, float clamp, bool flip_filters, bool writeSigns)
{
// Set CUDA device.
TORCH_CHECK(x.is_cuda(), "x must reside on CUDA device");
const at::cuda::OptionalCUDAGuard device_guard(device_of(x));
// Validate arguments.
TORCH_CHECK(fu.device() == x.device() && fd.device() == x.device() && b.device() == x.device(), "all input tensors must reside on the same device");
TORCH_CHECK(fu.dtype() == torch::kFloat && fd.dtype() == torch::kFloat, "fu and fd must be float32");
TORCH_CHECK(b.dtype() == x.dtype(), "x and b must have the same dtype");
TORCH_CHECK(x.dtype() == torch::kHalf || x.dtype() == torch::kFloat, "x and b must be float16 or float32");
TORCH_CHECK(x.dim() == 4, "x must be rank 4");
TORCH_CHECK(x.size(0) * x.size(1) <= INT_MAX && x.size(2) <= INT_MAX && x.size(3) <= INT_MAX, "x is too large");
TORCH_CHECK(x.numel() > 0, "x is empty");
TORCH_CHECK((fu.dim() == 1 || fu.dim() == 2) && (fd.dim() == 1 || fd.dim() == 2), "fu and fd must be rank 1 or 2");
TORCH_CHECK(fu.size(0) <= INT_MAX && fu.size(-1) <= INT_MAX, "fu is too large");
TORCH_CHECK(fd.size(0) <= INT_MAX && fd.size(-1) <= INT_MAX, "fd is too large");
TORCH_CHECK(fu.numel() > 0, "fu is empty");
TORCH_CHECK(fd.numel() > 0, "fd is empty");
TORCH_CHECK(b.dim() == 1 && b.size(0) == x.size(1), "b must be a vector with the same number of channels as x");
TORCH_CHECK(up >= 1 && down >= 1, "up and down must be at least 1");
// Figure out how much shared memory is available on the device.
int maxSharedBytes = 0;
AT_CUDA_CHECK(cudaDeviceGetAttribute(&maxSharedBytes, cudaDevAttrMaxSharedMemoryPerBlockOptin, x.device().index()));
int sharedKB = maxSharedBytes >> 10;
// Populate enough launch parameters to check if a CUDA kernel exists.
filtered_lrelu_kernel_params p;
p.up = up;
p.down = down;
p.fuShape = make_int2((int)fu.size(-1), fu.dim() == 2 ? (int)fu.size(0) : 0); // shape [n, 0] indicates separable filter.
p.fdShape = make_int2((int)fd.size(-1), fd.dim() == 2 ? (int)fd.size(0) : 0);
filtered_lrelu_kernel_spec test_spec = choose_filtered_lrelu_kernel<float, int32_t, false, false>(p, sharedKB);
if (!test_spec.exec)
{
// No kernel found - return empty tensors and indicate missing kernel with return code of -1.
return std::make_tuple(torch::Tensor(), torch::Tensor(), -1);
}
// Input/output element size.
int64_t sz = (x.dtype() == torch::kHalf) ? 2 : 4;
// Input sizes.
int64_t xw = (int)x.size(3);
int64_t xh = (int)x.size(2);
int64_t fut_w = (int)fu.size(-1) - 1;
int64_t fut_h = (int)fu.size(0) - 1;
int64_t fdt_w = (int)fd.size(-1) - 1;
int64_t fdt_h = (int)fd.size(0) - 1;
// Logical size of upsampled buffer.
int64_t cw = xw * up + (px0 + px1) - fut_w;
int64_t ch = xh * up + (py0 + py1) - fut_h;
TORCH_CHECK(cw > fdt_w && ch > fdt_h, "upsampled buffer must be at least the size of downsampling filter");
TORCH_CHECK(cw <= INT_MAX && ch <= INT_MAX, "upsampled buffer is too large");
// Compute output size and allocate.
int64_t yw = (cw - fdt_w + (down - 1)) / down;
int64_t yh = (ch - fdt_h + (down - 1)) / down;
TORCH_CHECK(yw > 0 && yh > 0, "output must be at least 1x1");
TORCH_CHECK(yw <= INT_MAX && yh <= INT_MAX, "output is too large");
torch::Tensor y = torch::empty({x.size(0), x.size(1), yh, yw}, x.options(), x.suggest_memory_format());
// Allocate sign tensor.
torch::Tensor so;
torch::Tensor s = si;
bool readSigns = !!s.numel();
int64_t sw_active = 0; // Active width of sign tensor.
if (writeSigns)
{
sw_active = yw * down - (down - 1) + fdt_w; // Active width in elements.
int64_t sh = yh * down - (down - 1) + fdt_h; // Height = active height.
int64_t sw = (sw_active + 15) & ~15; // Width = active width in elements, rounded up to multiple of 16.
TORCH_CHECK(sh <= INT_MAX && (sw >> 2) <= INT_MAX, "signs is too large");
s = so = torch::empty({x.size(0), x.size(1), sh, sw >> 2}, x.options().dtype(torch::kUInt8), at::MemoryFormat::Contiguous);
}
else if (readSigns)
sw_active = s.size(3) << 2;
// Validate sign tensor if in use.
if (readSigns || writeSigns)
{
TORCH_CHECK(s.is_contiguous(), "signs must be contiguous");
TORCH_CHECK(s.dtype() == torch::kUInt8, "signs must be uint8");
TORCH_CHECK(s.device() == x.device(), "signs must reside on the same device as x");
TORCH_CHECK(s.dim() == 4, "signs must be rank 4");
TORCH_CHECK(s.size(0) == x.size(0) && s.size(1) == x.size(1), "signs must have same batch & channels as x");
TORCH_CHECK(s.size(2) <= INT_MAX && s.size(3) <= INT_MAX, "signs is too large");
}
// Populate rest of CUDA kernel parameters.
p.x = x.data_ptr();
p.y = y.data_ptr();
p.b = b.data_ptr();
p.s = (readSigns || writeSigns) ? s.data_ptr<unsigned char>() : 0;
p.fu = fu.data_ptr<float>();
p.fd = fd.data_ptr<float>();
p.pad0 = make_int2(px0, py0);
p.gain = gain;
p.slope = slope;
p.clamp = clamp;
p.flip = (flip_filters) ? 1 : 0;
p.xShape = make_int4((int)x.size(3), (int)x.size(2), (int)x.size(1), (int)x.size(0));
p.yShape = make_int4((int)y.size(3), (int)y.size(2), (int)y.size(1), (int)y.size(0));
p.sShape = (readSigns || writeSigns) ? make_int2((int)s.size(3), (int)s.size(2)) : make_int2(0, 0); // Width is in bytes. Contiguous.
p.sOfs = make_int2(sx, sy);
p.swLimit = (sw_active + 3) >> 2; // Rounded up to bytes.
// x, y, b strides are in bytes.
p.xStride = make_longlong4(sz * x.stride(3), sz * x.stride(2), sz * x.stride(1), sz * x.stride(0));
p.yStride = make_longlong4(sz * y.stride(3), sz * y.stride(2), sz * y.stride(1), sz * y.stride(0));
p.bStride = sz * b.stride(0);
// fu, fd strides are in elements.
p.fuStride = make_longlong3(fu.stride(-1), fu.dim() == 2 ? fu.stride(0) : 0, 0);
p.fdStride = make_longlong3(fd.stride(-1), fd.dim() == 2 ? fd.stride(0) : 0, 0);
// Determine if indices don't fit in int32. Support negative strides although Torch currently never produces those.
bool index64b = false;
if (std::abs(p.bStride * x.size(1)) > INT_MAX) index64b = true;
if (std::min(x.size(0) * p.xStride.w, 0ll) + std::min(x.size(1) * p.xStride.z, 0ll) + std::min(x.size(2) * p.xStride.y, 0ll) + std::min(x.size(3) * p.xStride.x, 0ll) < -INT_MAX) index64b = true;
if (std::max(x.size(0) * p.xStride.w, 0ll) + std::max(x.size(1) * p.xStride.z, 0ll) + std::max(x.size(2) * p.xStride.y, 0ll) + std::max(x.size(3) * p.xStride.x, 0ll) > INT_MAX) index64b = true;
if (std::min(y.size(0) * p.yStride.w, 0ll) + std::min(y.size(1) * p.yStride.z, 0ll) + std::min(y.size(2) * p.yStride.y, 0ll) + std::min(y.size(3) * p.yStride.x, 0ll) < -INT_MAX) index64b = true;
if (std::max(y.size(0) * p.yStride.w, 0ll) + std::max(y.size(1) * p.yStride.z, 0ll) + std::max(y.size(2) * p.yStride.y, 0ll) + std::max(y.size(3) * p.yStride.x, 0ll) > INT_MAX) index64b = true;
if (s.numel() > INT_MAX) index64b = true;
// Choose CUDA kernel.
filtered_lrelu_kernel_spec spec = { 0 };
AT_DISPATCH_FLOATING_TYPES_AND_HALF(x.scalar_type(), "filtered_lrelu_cuda", [&]
{
if constexpr (sizeof(scalar_t) <= 4) // Exclude doubles. constexpr prevents template instantiation.
{
// Choose kernel based on index type, datatype and sign read/write modes.
if (!index64b && writeSigns && !readSigns) spec = choose_filtered_lrelu_kernel<scalar_t, int32_t, true, false>(p, sharedKB);
else if (!index64b && !writeSigns && readSigns) spec = choose_filtered_lrelu_kernel<scalar_t, int32_t, false, true >(p, sharedKB);
else if (!index64b && !writeSigns && !readSigns) spec = choose_filtered_lrelu_kernel<scalar_t, int32_t, false, false>(p, sharedKB);
else if ( index64b && writeSigns && !readSigns) spec = choose_filtered_lrelu_kernel<scalar_t, int64_t, true, false>(p, sharedKB);
else if ( index64b && !writeSigns && readSigns) spec = choose_filtered_lrelu_kernel<scalar_t, int64_t, false, true >(p, sharedKB);
else if ( index64b && !writeSigns && !readSigns) spec = choose_filtered_lrelu_kernel<scalar_t, int64_t, false, false>(p, sharedKB);
}
});
TORCH_CHECK(spec.exec, "internal error - CUDA kernel not found") // This should not happen because we tested earlier that kernel exists.
// Launch CUDA kernel.
void* args[] = {&p};
int bx = spec.numWarps * 32;
int gx = (p.yShape.x - 1) / spec.tileOut.x + 1;
int gy = (p.yShape.y - 1) / spec.tileOut.y + 1;
int gz = p.yShape.z * p.yShape.w;
// Repeat multiple horizontal tiles in a CTA?
if (spec.xrep)
{
p.tilesXrep = spec.xrep;
p.tilesXdim = gx;
gx = (gx + p.tilesXrep - 1) / p.tilesXrep;
std::swap(gx, gy);
}
else
{
p.tilesXrep = 0;
p.tilesXdim = 0;
}
// Launch filter setup kernel.
AT_CUDA_CHECK(cudaLaunchKernel(spec.setup, 1, 1024, args, 0, at::cuda::getCurrentCUDAStream()));
// Copy kernels to constant memory.
if ( writeSigns && !readSigns) AT_CUDA_CHECK((copy_filters<true, false>(at::cuda::getCurrentCUDAStream())));
else if (!writeSigns && readSigns) AT_CUDA_CHECK((copy_filters<false, true >(at::cuda::getCurrentCUDAStream())));
else if (!writeSigns && !readSigns) AT_CUDA_CHECK((copy_filters<false, false>(at::cuda::getCurrentCUDAStream())));
// Set cache and shared memory configurations for main kernel.
AT_CUDA_CHECK(cudaFuncSetCacheConfig(spec.exec, cudaFuncCachePreferShared));
if (spec.dynamicSharedKB) // Need dynamically allocated shared memory?
AT_CUDA_CHECK(cudaFuncSetAttribute(spec.exec, cudaFuncAttributeMaxDynamicSharedMemorySize, spec.dynamicSharedKB << 10));
AT_CUDA_CHECK(cudaFuncSetSharedMemConfig(spec.exec, cudaSharedMemBankSizeFourByte));
// Launch main kernel.
const int maxSubGz = 65535; // CUDA maximum for block z dimension.
for (int zofs=0; zofs < gz; zofs += maxSubGz) // Do multiple launches if gz is too big.
{
p.blockZofs = zofs;
int subGz = std::min(maxSubGz, gz - zofs);
AT_CUDA_CHECK(cudaLaunchKernel(spec.exec, dim3(gx, gy, subGz), bx, args, spec.dynamicSharedKB << 10, at::cuda::getCurrentCUDAStream()));
}
// Done.
return std::make_tuple(y, so, 0);
}
//------------------------------------------------------------------------
static torch::Tensor filtered_lrelu_act(torch::Tensor x, torch::Tensor si, int sx, int sy, float gain, float slope, float clamp, bool writeSigns)
{
// Set CUDA device.
TORCH_CHECK(x.is_cuda(), "x must reside on CUDA device");
const at::cuda::OptionalCUDAGuard device_guard(device_of(x));
// Validate arguments.
TORCH_CHECK(x.dim() == 4, "x must be rank 4");
TORCH_CHECK(x.size(0) * x.size(1) <= INT_MAX && x.size(2) <= INT_MAX && x.size(3) <= INT_MAX, "x is too large");
TORCH_CHECK(x.numel() > 0, "x is empty");
TORCH_CHECK(x.dtype() == torch::kHalf || x.dtype() == torch::kFloat || x.dtype() == torch::kDouble, "x must be float16, float32 or float64");
// Output signs if we don't have sign input.
torch::Tensor so;
torch::Tensor s = si;
bool readSigns = !!s.numel();
if (writeSigns)
{
int64_t sw = x.size(3);
sw = (sw + 15) & ~15; // Round to a multiple of 16 for coalescing.
s = so = torch::empty({x.size(0), x.size(1), x.size(2), sw >> 2}, x.options().dtype(torch::kUInt8), at::MemoryFormat::Contiguous);
}
// Validate sign tensor if in use.
if (readSigns || writeSigns)
{
TORCH_CHECK(s.is_contiguous(), "signs must be contiguous");
TORCH_CHECK(s.dtype() == torch::kUInt8, "signs must be uint8");
TORCH_CHECK(s.device() == x.device(), "signs must reside on the same device as x");
TORCH_CHECK(s.dim() == 4, "signs must be rank 4");
TORCH_CHECK(s.size(0) == x.size(0) && s.size(1) == x.size(1), "signs must have same batch & channels as x");
TORCH_CHECK(s.size(2) <= INT_MAX && (s.size(3) << 2) <= INT_MAX, "signs tensor is too large");
}
// Initialize CUDA kernel parameters.
filtered_lrelu_act_kernel_params p;
p.x = x.data_ptr();
p.s = (readSigns || writeSigns) ? s.data_ptr<unsigned char>() : 0;
p.gain = gain;
p.slope = slope;
p.clamp = clamp;
p.xShape = make_int4((int)x.size(3), (int)x.size(2), (int)x.size(1), (int)x.size(0));
p.xStride = make_longlong4(x.stride(3), x.stride(2), x.stride(1), x.stride(0));
p.sShape = (readSigns || writeSigns) ? make_int2((int)s.size(3) << 2, (int)s.size(2)) : make_int2(0, 0); // Width is in elements. Contiguous.
p.sOfs = make_int2(sx, sy);
// Choose CUDA kernel.
void* func = 0;
AT_DISPATCH_FLOATING_TYPES_AND_HALF(x.scalar_type(), "filtered_lrelu_act_cuda", [&]
{
if (writeSigns)
func = choose_filtered_lrelu_act_kernel<scalar_t, true, false>();
else if (readSigns)
func = choose_filtered_lrelu_act_kernel<scalar_t, false, true>();
else
func = choose_filtered_lrelu_act_kernel<scalar_t, false, false>();
});
TORCH_CHECK(func, "internal error - CUDA kernel not found");
// Launch CUDA kernel.
void* args[] = {&p};
int bx = 128; // 4 warps per block.
// Logical size of launch = writeSigns ? p.s : p.x
uint32_t gx = writeSigns ? p.sShape.x : p.xShape.x;
uint32_t gy = writeSigns ? p.sShape.y : p.xShape.y;
uint32_t gz = p.xShape.z * p.xShape.w; // Same as in p.sShape if signs are in use.
gx = (gx - 1) / bx + 1;
// Make sure grid y and z dimensions are within CUDA launch limits. Kernel loops internally to do the rest.
const uint32_t gmax = 65535;
gy = std::min(gy, gmax);
gz = std::min(gz, gmax);
// Launch.
AT_CUDA_CHECK(cudaLaunchKernel(func, dim3(gx, gy, gz), bx, args, 0, at::cuda::getCurrentCUDAStream()));
return so;
}
//------------------------------------------------------------------------
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m)
{
m.def("filtered_lrelu", &filtered_lrelu); // The whole thing.
m.def("filtered_lrelu_act_", &filtered_lrelu_act); // Activation and sign tensor handling only. Modifies data tensor in-place.
}
//------------------------------------------------------------------------
\ No newline at end of file
// Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
//
// NVIDIA CORPORATION and its licensors retain all intellectual property
// and proprietary rights in and to this software, related documentation
// and any modifications thereto. Any use, reproduction, disclosure or
// distribution of this software and related documentation without an express
// license agreement from NVIDIA CORPORATION is strictly prohibited.
#include <c10/util/Half.h>
#include "filtered_lrelu.h"
#include <cstdint>
//------------------------------------------------------------------------
// Helpers.
enum // Filter modes.
{
MODE_SUSD = 0, // Separable upsampling, separable downsampling.
MODE_FUSD = 1, // Full upsampling, separable downsampling.
MODE_SUFD = 2, // Separable upsampling, full downsampling.
MODE_FUFD = 3, // Full upsampling, full downsampling.
};
template <class T> struct InternalType;
template <> struct InternalType<double>
{
typedef double scalar_t; typedef double2 vec2_t; typedef double4 vec4_t;
__device__ __forceinline__ static vec2_t zero_vec2(void) { return make_double2(0, 0); }
__device__ __forceinline__ static vec4_t zero_vec4(void) { return make_double4(0, 0, 0, 0); }
__device__ __forceinline__ static double clamp(double x, double c) { return fmin(fmax(x, -c), c); }
};
template <> struct InternalType<float>
{
typedef float scalar_t; typedef float2 vec2_t; typedef float4 vec4_t;
__device__ __forceinline__ static vec2_t zero_vec2(void) { return make_float2(0, 0); }
__device__ __forceinline__ static vec4_t zero_vec4(void) { return make_float4(0, 0, 0, 0); }
__device__ __forceinline__ static float clamp(float x, float c) { return fminf(fmaxf(x, -c), c); }
};
template <> struct InternalType<c10::Half>
{
typedef float scalar_t; typedef float2 vec2_t; typedef float4 vec4_t;
__device__ __forceinline__ static vec2_t zero_vec2(void) { return make_float2(0, 0); }
__device__ __forceinline__ static vec4_t zero_vec4(void) { return make_float4(0, 0, 0, 0); }
__device__ __forceinline__ static float clamp(float x, float c) { return fminf(fmaxf(x, -c), c); }
};
#define MIN(A, B) ((A) < (B) ? (A) : (B))
#define MAX(A, B) ((A) > (B) ? (A) : (B))
#define CEIL_DIV(A, B) (((B)==1) ? (A) : \
((B)==2) ? ((int)((A)+1) >> 1) : \
((B)==4) ? ((int)((A)+3) >> 2) : \
(((A) + ((A) > 0 ? (B) - 1 : 0)) / (B)))
// This works only up to blocks of size 256 x 256 and for all N that are powers of two.
template <int N> __device__ __forceinline__ void fast_div_mod(int& x, int& y, unsigned int i)
{
if ((N & (N-1)) && N <= 256)
y = (i * ((1<<24)/N + 1)) >> 24; // Assumes N <= 256, i < N*256.
else
y = i/N;
x = i - y*N;
}
// Type cast stride before reading it.
template <class T> __device__ __forceinline__ T get_stride(const int64_t& x)
{
return *reinterpret_cast<const T*>(&x);
}
//------------------------------------------------------------------------
// Filters, setup kernel, copying function.
#define MAX_FILTER_SIZE 32
// Combined up/down filter buffers so that transfer can be done with one copy.
__device__ float g_fbuf[2 * MAX_FILTER_SIZE * MAX_FILTER_SIZE]; // Filters in global memory, written by setup kernel.
__device__ __constant__ float c_fbuf[2 * MAX_FILTER_SIZE * MAX_FILTER_SIZE]; // Filters in constant memory, read by main kernel.
// Accessors to combined buffers to index up/down filters individually.
#define c_fu (c_fbuf)
#define c_fd (c_fbuf + MAX_FILTER_SIZE * MAX_FILTER_SIZE)
#define g_fu (g_fbuf)
#define g_fd (g_fbuf + MAX_FILTER_SIZE * MAX_FILTER_SIZE)
// Set up filters into global memory buffer.
static __global__ void setup_filters_kernel(filtered_lrelu_kernel_params p)
{
for (int idx = threadIdx.x; idx < MAX_FILTER_SIZE * MAX_FILTER_SIZE; idx += blockDim.x)
{
int x, y;
fast_div_mod<MAX_FILTER_SIZE>(x, y, idx);
int fu_x = p.flip ? x : (p.fuShape.x - 1 - x);
int fu_y = p.flip ? y : (p.fuShape.y - 1 - y);
if (p.fuShape.y > 0)
g_fu[idx] = (x >= p.fuShape.x || y >= p.fuShape.y) ? 0.0f : p.fu[fu_x * p.fuStride.x + fu_y * p.fuStride.y];
else
g_fu[idx] = (x >= p.fuShape.x || y > 0) ? 0.0f : p.fu[fu_x * p.fuStride.x];
int fd_x = p.flip ? x : (p.fdShape.x - 1 - x);
int fd_y = p.flip ? y : (p.fdShape.y - 1 - y);
if (p.fdShape.y > 0)
g_fd[idx] = (x >= p.fdShape.x || y >= p.fdShape.y) ? 0.0f : p.fd[fd_x * p.fdStride.x + fd_y * p.fdStride.y];
else
g_fd[idx] = (x >= p.fdShape.x || y > 0) ? 0.0f : p.fd[fd_x * p.fdStride.x];
}
}
// Host function to copy filters written by setup kernel into constant buffer for main kernel.
template <bool, bool> static cudaError_t copy_filters(cudaStream_t stream)
{
void* src = 0;
cudaError_t err = cudaGetSymbolAddress(&src, g_fbuf);
if (err) return err;
return cudaMemcpyToSymbolAsync(c_fbuf, src, 2 * MAX_FILTER_SIZE * MAX_FILTER_SIZE * sizeof(float), 0, cudaMemcpyDeviceToDevice, stream);
}
//------------------------------------------------------------------------
// Coordinate spaces:
// - Relative to input tensor: inX, inY, tileInX, tileInY
// - Relative to input tile: relInX, relInY, tileInW, tileInH
// - Relative to upsampled tile: relUpX, relUpY, tileUpW, tileUpH
// - Relative to output tile: relOutX, relOutY, tileOutW, tileOutH
// - Relative to output tensor: outX, outY, tileOutX, tileOutY
//
// Relationships between coordinate spaces:
// - inX = tileInX + relInX
// - inY = tileInY + relInY
// - relUpX = relInX * up + phaseInX
// - relUpY = relInY * up + phaseInY
// - relUpX = relOutX * down
// - relUpY = relOutY * down
// - outX = tileOutX + relOutX
// - outY = tileOutY + relOutY
extern __shared__ char s_buf_raw[]; // When sharedKB <= 48, allocate shared memory statically inside the kernel, otherwise use the externally allocated shared memory buffer.
template <class T, class index_t, int sharedKB, bool signWrite, bool signRead, int filterMode, int up, int fuSize, int down, int fdSize, int tileOutW, int tileOutH, int threadsPerBlock, bool enableXrep, bool enableWriteSkip>
static __global__ void filtered_lrelu_kernel(filtered_lrelu_kernel_params p)
{
// Check that we don't try to support non-existing filter modes.
static_assert(up == 1 || up == 2 || up == 4, "only up=1, up=2, up=4 scales supported");
static_assert(down == 1 || down == 2 || down == 4, "only down=1, down=2, down=4 scales supported");
static_assert(fuSize >= up, "upsampling filter size must be at least upsampling factor");
static_assert(fdSize >= down, "downsampling filter size must be at least downsampling factor");
static_assert(fuSize % up == 0, "upsampling filter size must be divisible with upsampling factor");
static_assert(fdSize % down == 0, "downsampling filter size must be divisible with downsampling factor");
static_assert(fuSize <= MAX_FILTER_SIZE && fdSize <= MAX_FILTER_SIZE, "filter size greater than MAX_FILTER_SIZE");
static_assert(up != 1 || (fuSize == 1 && (filterMode == MODE_FUFD || filterMode == MODE_FUSD)), "up=1 supported only for 1x1 full filters");
static_assert(down != 1 || (fdSize == 1 && (filterMode == MODE_FUFD || filterMode == MODE_SUFD)), "down=1 supported only for 1x1 full filters");
static_assert(!(up == 4 && (filterMode == MODE_FUFD || filterMode == MODE_FUSD)), "full filters not supported for up=4");
static_assert(!(down == 4 && (filterMode == MODE_FUFD || filterMode == MODE_SUFD)), "full filters not supported for down=4");
// Static definitions.
typedef typename InternalType<T>::scalar_t scalar_t;
typedef typename InternalType<T>::vec2_t vec2_t;
typedef typename InternalType<T>::vec4_t vec4_t;
const int tileUpW = (tileOutW * down + (fdSize - 1) - (down - 1) + 3) & ~3; // Upsampled tile width, rounded up to multiple of 4.
const int tileUpH = tileOutH * down + (fdSize - 1) - (down - 1); // Upsampled tile height.
const int tileInW = CEIL_DIV(tileUpW + (fuSize - 1), up); // Input tile width.
const int tileInH = CEIL_DIV(tileUpH + (fuSize - 1), up); // Input tile height.
const int tileUpH_up = CEIL_DIV(tileUpH, up) * up; // Upsampled tile height rounded up to a multiple of up.
const int tileInH_up = CEIL_DIV(tileUpH_up + (fuSize - 1), up); // For allocations only, to avoid shared memory read overruns with up=2 and up=4.
// Merge 1x1 downsampling into last upsampling step for upf1 and ups2.
const bool downInline = (down == 1) && ((up == 1 && filterMode == MODE_FUFD) || (up == 2 && filterMode == MODE_SUFD));
// Sizes of logical buffers.
const int szIn = tileInH_up * tileInW;
const int szUpX = tileInH_up * tileUpW;
const int szUpXY = downInline ? 0 : (tileUpH * tileUpW);
const int szDownX = tileUpH * tileOutW;
// Sizes for shared memory arrays.
const int s_buf0_size_base =
(filterMode == MODE_SUSD) ? MAX(szIn, szUpXY) :
(filterMode == MODE_FUSD) ? MAX(szIn, szDownX) :
(filterMode == MODE_SUFD) ? MAX(szIn, szUpXY) :
(filterMode == MODE_FUFD) ? szIn :
-1;
const int s_buf1_size_base =
(filterMode == MODE_SUSD) ? MAX(szUpX, szDownX) :
(filterMode == MODE_FUSD) ? szUpXY :
(filterMode == MODE_SUFD) ? szUpX :
(filterMode == MODE_FUFD) ? szUpXY :
-1;
// Ensure U128 alignment.
const int s_buf0_size = (s_buf0_size_base + 3) & ~3;
const int s_buf1_size = (s_buf1_size_base + 3) & ~3;
// Check at compile time that we don't use too much shared memory.
static_assert((s_buf0_size + s_buf1_size) * sizeof(scalar_t) <= (sharedKB << 10), "shared memory overflow");
// Declare shared memory arrays.
scalar_t* s_buf0;
scalar_t* s_buf1;
if (sharedKB <= 48)
{
// Allocate shared memory arrays here.
__shared__ scalar_t s_buf0_st[(sharedKB > 48) ? (1<<24) : (s_buf0_size + s_buf1_size)]; // Prevent launching if this isn't optimized away when unused.
s_buf0 = s_buf0_st;
s_buf1 = s_buf0 + s_buf0_size;
}
else
{
// Use the dynamically allocated shared memory array.
s_buf0 = (scalar_t*)s_buf_raw;
s_buf1 = s_buf0 + s_buf0_size;
}
// Pointers to the buffers.
scalar_t* s_tileIn; // Input tile: [relInX * tileInH + relInY]
scalar_t* s_tileUpX; // After horizontal upsampling: [relInY * tileUpW + relUpX]
scalar_t* s_tileUpXY; // After upsampling: [relUpY * tileUpW + relUpX]
scalar_t* s_tileDownX; // After horizontal downsampling: [relUpY * tileOutW + relOutX]
if (filterMode == MODE_SUSD)
{
s_tileIn = s_buf0;
s_tileUpX = s_buf1;
s_tileUpXY = s_buf0;
s_tileDownX = s_buf1;
}
else if (filterMode == MODE_FUSD)
{
s_tileIn = s_buf0;
s_tileUpXY = s_buf1;
s_tileDownX = s_buf0;
}
else if (filterMode == MODE_SUFD)
{
s_tileIn = s_buf0;
s_tileUpX = s_buf1;
s_tileUpXY = s_buf0;
}
else if (filterMode == MODE_FUFD)
{
s_tileIn = s_buf0;
s_tileUpXY = s_buf1;
}
// Allow large grids in z direction via per-launch offset.
int channelIdx = blockIdx.z + p.blockZofs;
int batchIdx = channelIdx / p.yShape.z;
channelIdx -= batchIdx * p.yShape.z;
// Offset to output feature map. In bytes.
index_t mapOfsOut = channelIdx * get_stride<index_t>(p.yStride.z) + batchIdx * get_stride<index_t>(p.yStride.w);
// Sign shift amount.
uint32_t signXo = ((threadIdx.x + p.sOfs.x) << 1) & 6;
// Inner tile loop.
#pragma unroll 1
for (int tileIdx = 0; !enableXrep || (tileIdx < MIN(p.tilesXrep, p.tilesXdim - p.tilesXrep * blockIdx.y)); tileIdx++)
{
// Locate output tile.
int tileX = enableXrep ? blockIdx.y * p.tilesXrep + tileIdx : blockIdx.x;
int tileOutX = tileX * tileOutW;
int tileOutY = (enableXrep ? blockIdx.x : blockIdx.y) * tileOutH;
// Locate input tile.
int tmpX = tileOutX * down - p.pad0.x;
int tmpY = tileOutY * down - p.pad0.y;
int tileInX = CEIL_DIV(tmpX, up);
int tileInY = CEIL_DIV(tmpY, up);
const int phaseInX = tileInX * up - tmpX;
const int phaseInY = tileInY * up - tmpY;
// Extra sync if input and output buffers are the same and we are not on first tile.
if (enableXrep && tileIdx > 0 && (filterMode == MODE_FUSD || (filterMode == MODE_SUFD && !downInline) || (filterMode == MODE_FUFD && downInline)))
__syncthreads();
// Load input tile & apply bias. Unrolled.
scalar_t b = (scalar_t)*(const T*)((const char*)p.b + (channelIdx * get_stride<index_t>(p.bStride)));
index_t mapOfsIn = channelIdx * get_stride<index_t>(p.xStride.z) + batchIdx * get_stride<index_t>(p.xStride.w);
int idx = threadIdx.x;
const int loopCountIN = CEIL_DIV(tileInW * tileInH, threadsPerBlock);
#pragma unroll
for (int loop = 0; loop < loopCountIN; loop++)
{
int relInX, relInY;
fast_div_mod<tileInW>(relInX, relInY, idx);
int inX = tileInX + relInX;
int inY = tileInY + relInY;
scalar_t v = 0;
if ((uint32_t)inX < p.xShape.x && (uint32_t)inY < p.xShape.y)
v = (scalar_t)*((const T*)((const char*)p.x + (inX * get_stride<index_t>(p.xStride.x) + inY * get_stride<index_t>(p.xStride.y) + mapOfsIn))) + b;
bool skip = (loop == loopCountIN-1) && (idx >= tileInW * tileInH);
if (!skip)
s_tileIn[idx] = v;
idx += threadsPerBlock;
}
if (filterMode == MODE_SUSD || filterMode == MODE_SUFD) // Separable upsampling filter.
{
// Horizontal upsampling.
__syncthreads();
if (up == 4)
{
for (int idx = threadIdx.x*up; idx < tileUpW * tileInH; idx += blockDim.x*up)
{
int relUpX0, relInY;
fast_div_mod<tileUpW>(relUpX0, relInY, idx);
int relInX0 = relUpX0 / up;
int src0 = relInX0 + tileInW * relInY;
int dst = relInY * tileUpW + relUpX0;
vec4_t v = InternalType<T>::zero_vec4();
scalar_t a = s_tileIn[src0];
if (phaseInX == 0)
{
#pragma unroll
for (int step = 0; step < fuSize / up; step++)
{
v.x += a * (scalar_t)c_fu[step * up + 0];
a = s_tileIn[src0 + step + 1];
v.y += a * (scalar_t)c_fu[step * up + 3];
v.z += a * (scalar_t)c_fu[step * up + 2];
v.w += a * (scalar_t)c_fu[step * up + 1];
}
}
else if (phaseInX == 1)
{
#pragma unroll
for (int step = 0; step < fuSize / up; step++)
{
v.x += a * (scalar_t)c_fu[step * up + 1];
v.y += a * (scalar_t)c_fu[step * up + 0];
a = s_tileIn[src0 + step + 1];
v.z += a * (scalar_t)c_fu[step * up + 3];
v.w += a * (scalar_t)c_fu[step * up + 2];
}
}
else if (phaseInX == 2)
{
#pragma unroll
for (int step = 0; step < fuSize / up; step++)
{
v.x += a * (scalar_t)c_fu[step * up + 2];
v.y += a * (scalar_t)c_fu[step * up + 1];
v.z += a * (scalar_t)c_fu[step * up + 0];
a = s_tileIn[src0 + step + 1];
v.w += a * (scalar_t)c_fu[step * up + 3];
}
}
else // (phaseInX == 3)
{
#pragma unroll
for (int step = 0; step < fuSize / up; step++)
{
v.x += a * (scalar_t)c_fu[step * up + 3];
v.y += a * (scalar_t)c_fu[step * up + 2];
v.z += a * (scalar_t)c_fu[step * up + 1];
v.w += a * (scalar_t)c_fu[step * up + 0];
a = s_tileIn[src0 + step + 1];
}
}
s_tileUpX[dst+0] = v.x;
s_tileUpX[dst+1] = v.y;
s_tileUpX[dst+2] = v.z;
s_tileUpX[dst+3] = v.w;
}
}
else if (up == 2)
{
bool p0 = (phaseInX == 0);
for (int idx = threadIdx.x*up; idx < tileUpW * tileInH; idx += blockDim.x*up)
{
int relUpX0, relInY;
fast_div_mod<tileUpW>(relUpX0, relInY, idx);
int relInX0 = relUpX0 / up;
int src0 = relInX0 + tileInW * relInY;
int dst = relInY * tileUpW + relUpX0;
vec2_t v = InternalType<T>::zero_vec2();
scalar_t a = s_tileIn[src0];
if (p0) // (phaseInX == 0)
{
#pragma unroll
for (int step = 0; step < fuSize / up; step++)
{
v.x += a * (scalar_t)c_fu[step * up + 0];
a = s_tileIn[src0 + step + 1];
v.y += a * (scalar_t)c_fu[step * up + 1];
}
}
else // (phaseInX == 1)
{
#pragma unroll
for (int step = 0; step < fuSize / up; step++)
{
v.x += a * (scalar_t)c_fu[step * up + 1];
v.y += a * (scalar_t)c_fu[step * up + 0];
a = s_tileIn[src0 + step + 1];
}
}
s_tileUpX[dst+0] = v.x;
s_tileUpX[dst+1] = v.y;
}
}
// Vertical upsampling & nonlinearity.
__syncthreads();
int groupMask = 15 << ((threadIdx.x & 31) & ~3);
int minY = tileOutY ? (tileOutY - tileOutH) * down + tileUpH : 0; // Skip already written signs.
int sShapeMaxY = MIN(p.sShape.y, tileOutY * down + tileUpH); // Avoid out-of-tile sign writes.
if (up == 4)
{
minY -= 3; // Adjust according to block height.
for (int idx = threadIdx.x; idx < tileUpW * tileUpH_up / up; idx += blockDim.x)
{
int relUpX, relInY0;
fast_div_mod<tileUpW>(relUpX, relInY0, idx);
int relUpY0 = relInY0 * up;
int src0 = relInY0 * tileUpW + relUpX;
int dst = relUpY0 * tileUpW + relUpX;
vec4_t v = InternalType<T>::zero_vec4();
scalar_t a = s_tileUpX[src0];
if (phaseInY == 0)
{
#pragma unroll
for (int step = 0; step < fuSize / up; step++)
{
v.x += a * (scalar_t)c_fu[step * up + 0];
a = s_tileUpX[src0 + (step + 1) * tileUpW];
v.y += a * (scalar_t)c_fu[step * up + 3];
v.z += a * (scalar_t)c_fu[step * up + 2];
v.w += a * (scalar_t)c_fu[step * up + 1];
}
}
else if (phaseInY == 1)
{
#pragma unroll
for (int step = 0; step < fuSize / up; step++)
{
v.x += a * (scalar_t)c_fu[step * up + 1];
v.y += a * (scalar_t)c_fu[step * up + 0];
a = s_tileUpX[src0 + (step + 1) * tileUpW];
v.z += a * (scalar_t)c_fu[step * up + 3];
v.w += a * (scalar_t)c_fu[step * up + 2];
}
}
else if (phaseInY == 2)
{
#pragma unroll
for (int step = 0; step < fuSize / up; step++)
{
v.x += a * (scalar_t)c_fu[step * up + 2];
v.y += a * (scalar_t)c_fu[step * up + 1];
v.z += a * (scalar_t)c_fu[step * up + 0];
a = s_tileUpX[src0 + (step + 1) * tileUpW];
v.w += a * (scalar_t)c_fu[step * up + 3];
}
}
else // (phaseInY == 3)
{
#pragma unroll
for (int step = 0; step < fuSize / up; step++)
{
v.x += a * (scalar_t)c_fu[step * up + 3];
v.y += a * (scalar_t)c_fu[step * up + 2];
v.z += a * (scalar_t)c_fu[step * up + 1];
v.w += a * (scalar_t)c_fu[step * up + 0];
a = s_tileUpX[src0 + (step + 1) * tileUpW];
}
}
int x = tileOutX * down + relUpX;
int y = tileOutY * down + relUpY0;
int signX = x + p.sOfs.x;
int signY = y + p.sOfs.y;
int signZ = blockIdx.z + p.blockZofs;
int signXb = signX >> 2;
index_t si0 = signXb + p.sShape.x * (signY + (index_t)p.sShape.y * signZ);
index_t si1 = si0 + p.sShape.x;
index_t si2 = si0 + p.sShape.x * 2;
index_t si3 = si0 + p.sShape.x * 3;
v.x *= (scalar_t)((float)up * (float)up * p.gain);
v.y *= (scalar_t)((float)up * (float)up * p.gain);
v.z *= (scalar_t)((float)up * (float)up * p.gain);
v.w *= (scalar_t)((float)up * (float)up * p.gain);
if (signWrite)
{
if (!enableWriteSkip)
{
// Determine and write signs.
int sx = __float_as_uint(v.x) >> 31 << 0;
int sy = __float_as_uint(v.y) >> 31 << 8;
int sz = __float_as_uint(v.z) >> 31 << 16;
int sw = __float_as_uint(v.w) >> 31 << 24;
if (sx) v.x *= p.slope;
if (sy) v.y *= p.slope;
if (sz) v.z *= p.slope;
if (sw) v.w *= p.slope;
if (fabsf(v.x) > p.clamp) { sx = 2 << 0; v.x = InternalType<T>::clamp(v.x, p.clamp); }
if (fabsf(v.y) > p.clamp) { sy = 2 << 8; v.y = InternalType<T>::clamp(v.y, p.clamp); }
if (fabsf(v.z) > p.clamp) { sz = 2 << 16; v.z = InternalType<T>::clamp(v.z, p.clamp); }
if (fabsf(v.w) > p.clamp) { sw = 2 << 24; v.w = InternalType<T>::clamp(v.w, p.clamp); }
if ((uint32_t)signXb < p.swLimit && signY >= minY)
{
// Combine signs.
uint32_t s = sx + sy + sw + sz;
s <<= (signX & 3) << 1;
s |= __shfl_xor_sync(groupMask, s, 1);
s |= __shfl_xor_sync(groupMask, s, 2);
// Write signs.
if ((uint32_t)(signY + 0) < sShapeMaxY) { p.s[si0] = (unsigned char)(s >> 0); }
if ((uint32_t)(signY + 1) < sShapeMaxY) { p.s[si1] = (unsigned char)(s >> 8); }
if ((uint32_t)(signY + 2) < sShapeMaxY) { p.s[si2] = (unsigned char)(s >> 16); }
if ((uint32_t)(signY + 3) < sShapeMaxY) { p.s[si3] = (unsigned char)(s >> 24); }
}
}
else
{
// Determine and write signs.
if ((uint32_t)signXb < p.swLimit && signY >= minY)
{
int sx = __float_as_uint(v.x) >> 31 << 0;
int sy = __float_as_uint(v.y) >> 31 << 8;
int sz = __float_as_uint(v.z) >> 31 << 16;
int sw = __float_as_uint(v.w) >> 31 << 24;
if (sx) v.x *= p.slope;
if (sy) v.y *= p.slope;
if (sz) v.z *= p.slope;
if (sw) v.w *= p.slope;
if (fabsf(v.x) > p.clamp) { sx = 2 << 0; v.x = InternalType<T>::clamp(v.x, p.clamp); }
if (fabsf(v.y) > p.clamp) { sy = 2 << 8; v.y = InternalType<T>::clamp(v.y, p.clamp); }
if (fabsf(v.z) > p.clamp) { sz = 2 << 16; v.z = InternalType<T>::clamp(v.z, p.clamp); }
if (fabsf(v.w) > p.clamp) { sw = 2 << 24; v.w = InternalType<T>::clamp(v.w, p.clamp); }
// Combine signs.
uint32_t s = sx + sy + sw + sz;
s <<= (signX & 3) << 1;
s |= __shfl_xor_sync(groupMask, s, 1);
s |= __shfl_xor_sync(groupMask, s, 2);
// Write signs.
if ((uint32_t)(signY + 0) < sShapeMaxY) { p.s[si0] = (unsigned char)(s >> 0); }
if ((uint32_t)(signY + 1) < sShapeMaxY) { p.s[si1] = (unsigned char)(s >> 8); }
if ((uint32_t)(signY + 2) < sShapeMaxY) { p.s[si2] = (unsigned char)(s >> 16); }
if ((uint32_t)(signY + 3) < sShapeMaxY) { p.s[si3] = (unsigned char)(s >> 24); }
}
else
{
// Just compute the values.
if (v.x < 0.f) v.x *= p.slope; v.x = InternalType<T>::clamp(v.x, p.clamp);
if (v.y < 0.f) v.y *= p.slope; v.y = InternalType<T>::clamp(v.y, p.clamp);
if (v.z < 0.f) v.z *= p.slope; v.z = InternalType<T>::clamp(v.z, p.clamp);
if (v.w < 0.f) v.w *= p.slope; v.w = InternalType<T>::clamp(v.w, p.clamp);
}
}
}
else if (signRead) // Read signs and apply.
{
if ((uint32_t)signXb < p.swLimit)
{
int ss = (signX & 3) << 1;
if ((uint32_t)(signY + 0) < p.sShape.y) { int s = p.s[si0] >> ss; if (s & 1) v.x *= p.slope; if (s & 2) v.x = 0.f; }
if ((uint32_t)(signY + 1) < p.sShape.y) { int s = p.s[si1] >> ss; if (s & 1) v.y *= p.slope; if (s & 2) v.y = 0.f; }
if ((uint32_t)(signY + 2) < p.sShape.y) { int s = p.s[si2] >> ss; if (s & 1) v.z *= p.slope; if (s & 2) v.z = 0.f; }
if ((uint32_t)(signY + 3) < p.sShape.y) { int s = p.s[si3] >> ss; if (s & 1) v.w *= p.slope; if (s & 2) v.w = 0.f; }
}
}
else // Forward pass with no sign write.
{
if (v.x < 0.f) v.x *= p.slope; v.x = InternalType<T>::clamp(v.x, p.clamp);
if (v.y < 0.f) v.y *= p.slope; v.y = InternalType<T>::clamp(v.y, p.clamp);
if (v.z < 0.f) v.z *= p.slope; v.z = InternalType<T>::clamp(v.z, p.clamp);
if (v.w < 0.f) v.w *= p.slope; v.w = InternalType<T>::clamp(v.w, p.clamp);
}
s_tileUpXY[dst + 0 * tileUpW] = v.x;
if (relUpY0 + 1 < tileUpH) s_tileUpXY[dst + 1 * tileUpW] = v.y;
if (relUpY0 + 2 < tileUpH) s_tileUpXY[dst + 2 * tileUpW] = v.z;
if (relUpY0 + 3 < tileUpH) s_tileUpXY[dst + 3 * tileUpW] = v.w;
}
}
else if (up == 2)
{
minY -= 1; // Adjust according to block height.
for (int idx = threadIdx.x; idx < tileUpW * tileUpH_up / up; idx += blockDim.x)
{
int relUpX, relInY0;
fast_div_mod<tileUpW>(relUpX, relInY0, idx);
int relUpY0 = relInY0 * up;
int src0 = relInY0 * tileUpW + relUpX;
int dst = relUpY0 * tileUpW + relUpX;
vec2_t v = InternalType<T>::zero_vec2();
scalar_t a = s_tileUpX[src0];
if (phaseInY == 0)
{
#pragma unroll
for (int step = 0; step < fuSize / up; step++)
{
v.x += a * (scalar_t)c_fu[step * up + 0];
a = s_tileUpX[src0 + (step + 1) * tileUpW];
v.y += a * (scalar_t)c_fu[step * up + 1];
}
}
else // (phaseInY == 1)
{
#pragma unroll
for (int step = 0; step < fuSize / up; step++)
{
v.x += a * (scalar_t)c_fu[step * up + 1];
v.y += a * (scalar_t)c_fu[step * up + 0];
a = s_tileUpX[src0 + (step + 1) * tileUpW];
}
}
int x = tileOutX * down + relUpX;
int y = tileOutY * down + relUpY0;
int signX = x + p.sOfs.x;
int signY = y + p.sOfs.y;
int signZ = blockIdx.z + p.blockZofs;
int signXb = signX >> 2;
index_t si0 = signXb + p.sShape.x * (signY + (index_t)p.sShape.y * signZ);
index_t si1 = si0 + p.sShape.x;
v.x *= (scalar_t)((float)up * (float)up * p.gain);
v.y *= (scalar_t)((float)up * (float)up * p.gain);
if (signWrite)
{
if (!enableWriteSkip)
{
// Determine and write signs.
int sx = __float_as_uint(v.x) >> 31 << 0;
int sy = __float_as_uint(v.y) >> 31 << 8;
if (sx) v.x *= p.slope;
if (sy) v.y *= p.slope;
if (fabsf(v.x) > p.clamp) { sx = 2 << 0; v.x = InternalType<T>::clamp(v.x, p.clamp); }
if (fabsf(v.y) > p.clamp) { sy = 2 << 8; v.y = InternalType<T>::clamp(v.y, p.clamp); }
if ((uint32_t)signXb < p.swLimit && signY >= minY)
{
// Combine signs.
int s = sx + sy;
s <<= signXo;
s |= __shfl_xor_sync(groupMask, s, 1);
s |= __shfl_xor_sync(groupMask, s, 2);
// Write signs.
if ((uint32_t)(signY + 0) < sShapeMaxY) { p.s[si0] = (unsigned char)(s >> 0); }
if ((uint32_t)(signY + 1) < sShapeMaxY) { p.s[si1] = (unsigned char)(s >> 8); }
}
}
else
{
// Determine and write signs.
if ((uint32_t)signXb < p.swLimit && signY >= minY)
{
int sx = __float_as_uint(v.x) >> 31 << 0;
int sy = __float_as_uint(v.y) >> 31 << 8;
if (sx) v.x *= p.slope;
if (sy) v.y *= p.slope;
if (fabsf(v.x) > p.clamp) { sx = 2 << 0; v.x = InternalType<T>::clamp(v.x, p.clamp); }
if (fabsf(v.y) > p.clamp) { sy = 2 << 8; v.y = InternalType<T>::clamp(v.y, p.clamp); }
// Combine signs.
int s = sx + sy;
s <<= signXo;
s |= __shfl_xor_sync(groupMask, s, 1);
s |= __shfl_xor_sync(groupMask, s, 2);
// Write signs.
if ((uint32_t)(signY + 0) < sShapeMaxY) { p.s[si0] = (unsigned char)(s >> 0); }
if ((uint32_t)(signY + 1) < sShapeMaxY) { p.s[si1] = (unsigned char)(s >> 8); }
}
else
{
// Just compute the values.
if (v.x < 0.f) v.x *= p.slope; v.x = InternalType<T>::clamp(v.x, p.clamp);
if (v.y < 0.f) v.y *= p.slope; v.y = InternalType<T>::clamp(v.y, p.clamp);
}
}
}
else if (signRead) // Read signs and apply.
{
if ((uint32_t)signXb < p.swLimit)
{
if ((uint32_t)(signY + 0) < p.sShape.y) { int s = p.s[si0] >> signXo; if (s & 1) v.x *= p.slope; if (s & 2) v.x = 0.f; }
if ((uint32_t)(signY + 1) < p.sShape.y) { int s = p.s[si1] >> signXo; if (s & 1) v.y *= p.slope; if (s & 2) v.y = 0.f; }
}
}
else // Forward pass with no sign write.
{
if (v.x < 0.f) v.x *= p.slope; v.x = InternalType<T>::clamp(v.x, p.clamp);
if (v.y < 0.f) v.y *= p.slope; v.y = InternalType<T>::clamp(v.y, p.clamp);
}
if (!downInline)
{
// Write into temporary buffer.
s_tileUpXY[dst] = v.x;
if (relUpY0 < tileUpH - 1)
s_tileUpXY[dst + tileUpW] = v.y;
}
else
{
// Write directly into output buffer.
if ((uint32_t)x < p.yShape.x)
{
int ymax = MIN(p.yShape.y, tileUpH + tileOutY * down);
index_t ofs = x * get_stride<index_t>(p.yStride.x) + y * get_stride<index_t>(p.yStride.y) + mapOfsOut;
if ((uint32_t)y + 0 < p.yShape.y) *((T*)((char*)p.y + ofs)) = (T)(v.x * (scalar_t)c_fd[0]);
if ((uint32_t)y + 1 < ymax) *((T*)((char*)p.y + ofs + get_stride<index_t>(p.yStride.y))) = (T)(v.y * (scalar_t)c_fd[0]);
}
}
}
}
}
else if (filterMode == MODE_FUSD || filterMode == MODE_FUFD)
{
// Full upsampling filter.
if (up == 2)
{
// 2 x 2-wide.
__syncthreads();
int minY = tileOutY ? (tileOutY - tileOutH) * down + tileUpH + p.sOfs.y : 0; // Skip already written signs.
for (int idx = threadIdx.x * 4; idx < tileUpW * tileUpH; idx += blockDim.x * 4)
{
int relUpX0, relUpY0;
fast_div_mod<tileUpW>(relUpX0, relUpY0, idx);
int relInX0 = CEIL_DIV(relUpX0 - phaseInX, up);
int relInY0 = CEIL_DIV(relUpY0 - phaseInY, up);
int src0 = relInX0 + tileInW * relInY0;
int tap0y = (relInY0 * up + phaseInY - relUpY0);
#define X_LOOP(TAPY, PX) \
for (int sx = 0; sx < fuSize / up; sx++) \
{ \
v.x += a * (scalar_t)c_fu[(sx * up + (((PX) - 0) & (up - 1))) + (sy * up + (TAPY)) * MAX_FILTER_SIZE]; \
v.z += b * (scalar_t)c_fu[(sx * up + (((PX) - 0) & (up - 1))) + (sy * up + (TAPY)) * MAX_FILTER_SIZE]; if ((PX) == 0) { a = b; b = s_tileIn[src0 + 2 + sx + sy * tileInW]; } \
v.y += a * (scalar_t)c_fu[(sx * up + (((PX) - 1) & (up - 1))) + (sy * up + (TAPY)) * MAX_FILTER_SIZE]; \
v.w += b * (scalar_t)c_fu[(sx * up + (((PX) - 1) & (up - 1))) + (sy * up + (TAPY)) * MAX_FILTER_SIZE]; if ((PX) == 1) { a = b; b = s_tileIn[src0 + 2 + sx + sy * tileInW]; } \
}
vec4_t v = InternalType<T>::zero_vec4();
if (tap0y == 0 && phaseInX == 0)
#pragma unroll
for (int sy = 0; sy < fuSize / up; sy++) { scalar_t a = s_tileIn[src0 + sy * tileInW]; scalar_t b = s_tileIn[src0 + sy * tileInW + 1];
#pragma unroll
X_LOOP(0, 0) }
if (tap0y == 0 && phaseInX == 1)
#pragma unroll
for (int sy = 0; sy < fuSize / up; sy++) { scalar_t a = s_tileIn[src0 + sy * tileInW]; scalar_t b = s_tileIn[src0 + sy * tileInW + 1];
#pragma unroll
X_LOOP(0, 1) }
if (tap0y == 1 && phaseInX == 0)
#pragma unroll
for (int sy = 0; sy < fuSize / up; sy++) { scalar_t a = s_tileIn[src0 + sy * tileInW]; scalar_t b = s_tileIn[src0 + sy * tileInW + 1];
#pragma unroll
X_LOOP(1, 0) }
if (tap0y == 1 && phaseInX == 1)
#pragma unroll
for (int sy = 0; sy < fuSize / up; sy++) { scalar_t a = s_tileIn[src0 + sy * tileInW]; scalar_t b = s_tileIn[src0 + sy * tileInW + 1];
#pragma unroll
X_LOOP(1, 1) }
#undef X_LOOP
int x = tileOutX * down + relUpX0;
int y = tileOutY * down + relUpY0;
int signX = x + p.sOfs.x;
int signY = y + p.sOfs.y;
int signZ = blockIdx.z + p.blockZofs;
int signXb = signX >> 2;
index_t si = signXb + p.sShape.x * (signY + (index_t)p.sShape.y * signZ);
v.x *= (scalar_t)((float)up * (float)up * p.gain);
v.y *= (scalar_t)((float)up * (float)up * p.gain);
v.z *= (scalar_t)((float)up * (float)up * p.gain);
v.w *= (scalar_t)((float)up * (float)up * p.gain);
if (signWrite)
{
if (!enableWriteSkip)
{
// Determine and write signs.
int sx = __float_as_uint(v.x) >> 31;
int sy = __float_as_uint(v.y) >> 31;
int sz = __float_as_uint(v.z) >> 31;
int sw = __float_as_uint(v.w) >> 31;
if (sx) v.x *= p.slope; if (fabsf(v.x) > p.clamp) { sx = 2; v.x = InternalType<T>::clamp(v.x, p.clamp); }
if (sy) v.y *= p.slope; if (fabsf(v.y) > p.clamp) { sy = 2; v.y = InternalType<T>::clamp(v.y, p.clamp); }
if (sz) v.z *= p.slope; if (fabsf(v.z) > p.clamp) { sz = 2; v.z = InternalType<T>::clamp(v.z, p.clamp); }
if (sw) v.w *= p.slope; if (fabsf(v.w) > p.clamp) { sw = 2; v.w = InternalType<T>::clamp(v.w, p.clamp); }
if ((uint32_t)signXb < p.swLimit && (uint32_t)signY < p.sShape.y && signY >= minY)
{
p.s[si] = sx + (sy << 2) + (sz << 4) + (sw << 6);
}
}
else
{
// Determine and write signs.
if ((uint32_t)signXb < p.swLimit && (uint32_t)signY < p.sShape.y && signY >= minY)
{
int sx = __float_as_uint(v.x) >> 31;
int sy = __float_as_uint(v.y) >> 31;
int sz = __float_as_uint(v.z) >> 31;
int sw = __float_as_uint(v.w) >> 31;
if (sx) v.x *= p.slope; if (fabsf(v.x) > p.clamp) { sx = 2; v.x = InternalType<T>::clamp(v.x, p.clamp); }
if (sy) v.y *= p.slope; if (fabsf(v.y) > p.clamp) { sy = 2; v.y = InternalType<T>::clamp(v.y, p.clamp); }
if (sz) v.z *= p.slope; if (fabsf(v.z) > p.clamp) { sz = 2; v.z = InternalType<T>::clamp(v.z, p.clamp); }
if (sw) v.w *= p.slope; if (fabsf(v.w) > p.clamp) { sw = 2; v.w = InternalType<T>::clamp(v.w, p.clamp); }
p.s[si] = sx + (sy << 2) + (sz << 4) + (sw << 6);
}
else
{
// Just compute the values.
if (v.x < 0.f) v.x *= p.slope; v.x = InternalType<T>::clamp(v.x, p.clamp);
if (v.y < 0.f) v.y *= p.slope; v.y = InternalType<T>::clamp(v.y, p.clamp);
if (v.z < 0.f) v.z *= p.slope; v.z = InternalType<T>::clamp(v.z, p.clamp);
if (v.w < 0.f) v.w *= p.slope; v.w = InternalType<T>::clamp(v.w, p.clamp);
}
}
}
else if (signRead) // Read sign and apply.
{
if ((uint32_t)signY < p.sShape.y)
{
int s = 0;
if ((uint32_t)signXb < p.swLimit) s = p.s[si];
if ((uint32_t)signXb + 1 < p.swLimit) s |= p.s[si + 1] << 8;
s >>= (signX & 3) << 1;
if (s & 0x01) v.x *= p.slope; if (s & 0x02) v.x = 0.f;
if (s & 0x04) v.y *= p.slope; if (s & 0x08) v.y = 0.f;
if (s & 0x10) v.z *= p.slope; if (s & 0x20) v.z = 0.f;
if (s & 0x40) v.w *= p.slope; if (s & 0x80) v.w = 0.f;
}
}
else // Forward pass with no sign write.
{
if (v.x < 0.f) v.x *= p.slope; v.x = InternalType<T>::clamp(v.x, p.clamp);
if (v.y < 0.f) v.y *= p.slope; v.y = InternalType<T>::clamp(v.y, p.clamp);
if (v.z < 0.f) v.z *= p.slope; v.z = InternalType<T>::clamp(v.z, p.clamp);
if (v.w < 0.f) v.w *= p.slope; v.w = InternalType<T>::clamp(v.w, p.clamp);
}
s_tileUpXY[idx + 0] = v.x;
s_tileUpXY[idx + 1] = v.y;
s_tileUpXY[idx + 2] = v.z;
s_tileUpXY[idx + 3] = v.w;
}
}
else if (up == 1)
{
__syncthreads();
uint32_t groupMask = 15 << ((threadIdx.x & 31) & ~3);
int minY = tileOutY ? (tileOutY - tileOutH) * down + tileUpH : 0; // Skip already written signs.
for (int idx = threadIdx.x; idx < tileUpW * tileUpH; idx += blockDim.x)
{
int relUpX0, relUpY0;
fast_div_mod<tileUpW>(relUpX0, relUpY0, idx);
scalar_t v = s_tileIn[idx] * (scalar_t)c_fu[0]; // 1x1 filter.
int x = tileOutX * down + relUpX0;
int y = tileOutY * down + relUpY0;
int signX = x + p.sOfs.x;
int signY = y + p.sOfs.y;
int signZ = blockIdx.z + p.blockZofs;
int signXb = signX >> 2;
index_t si = signXb + p.sShape.x * (signY + (index_t)p.sShape.y * signZ);
v *= (scalar_t)((float)up * (float)up * p.gain);
if (signWrite)
{
if (!enableWriteSkip)
{
// Determine and write sign.
uint32_t s = 0;
uint32_t signXbit = (1u << signXo);
if (v < 0.f)
{
s = signXbit;
v *= p.slope;
}
if (fabsf(v) > p.clamp)
{
s = signXbit * 2;
v = InternalType<T>::clamp(v, p.clamp);
}
if ((uint32_t)signXb < p.swLimit && (uint32_t)signY < p.sShape.y && signY >= minY)
{
s += __shfl_xor_sync(groupMask, s, 1); // Coalesce.
s += __shfl_xor_sync(groupMask, s, 2); // Coalesce.
p.s[si] = s; // Write.
}
}
else
{
// Determine and write sign.
if ((uint32_t)signXb < p.swLimit && (uint32_t)signY < p.sShape.y && signY >= minY)
{
uint32_t s = 0;
uint32_t signXbit = (1u << signXo);
if (v < 0.f)
{
s = signXbit;
v *= p.slope;
}
if (fabsf(v) > p.clamp)
{
s = signXbit * 2;
v = InternalType<T>::clamp(v, p.clamp);
}
s += __shfl_xor_sync(groupMask, s, 1); // Coalesce.
s += __shfl_xor_sync(groupMask, s, 2); // Coalesce.
p.s[si] = s; // Write.
}
else
{
// Just compute the value.
if (v < 0.f) v *= p.slope;
v = InternalType<T>::clamp(v, p.clamp);
}
}
}
else if (signRead)
{
// Read sign and apply if within sign tensor bounds.
if ((uint32_t)signXb < p.swLimit && (uint32_t)signY < p.sShape.y)
{
int s = p.s[si];
s >>= signXo;
if (s & 1) v *= p.slope;
if (s & 2) v = 0.f;
}
}
else // Forward pass with no sign write.
{
if (v < 0.f) v *= p.slope;
v = InternalType<T>::clamp(v, p.clamp);
}
if (!downInline) // Write into temporary buffer.
s_tileUpXY[idx] = v;
else if ((uint32_t)x < p.yShape.x && (uint32_t)y < p.yShape.y) // Write directly into output buffer
*((T*)((char*)p.y + (x * get_stride<index_t>(p.yStride.x) + y * get_stride<index_t>(p.yStride.y) + mapOfsOut))) = (T)(v * (scalar_t)c_fd[0]);
}
}
}
// Downsampling.
if (filterMode == MODE_SUSD || filterMode == MODE_FUSD)
{
// Horizontal downsampling.
__syncthreads();
if (down == 4 && tileOutW % 4 == 0)
{
// Calculate 4 pixels at a time.
for (int idx = threadIdx.x * 4; idx < tileOutW * tileUpH; idx += blockDim.x * 4)
{
int relOutX0, relUpY;
fast_div_mod<tileOutW>(relOutX0, relUpY, idx);
int relUpX0 = relOutX0 * down;
int src0 = relUpY * tileUpW + relUpX0;
vec4_t v = InternalType<T>::zero_vec4();
#pragma unroll
for (int step = 0; step < fdSize; step++)
{
v.x += s_tileUpXY[src0 + 0 + step] * (scalar_t)c_fd[step];
v.y += s_tileUpXY[src0 + 4 + step] * (scalar_t)c_fd[step];
v.z += s_tileUpXY[src0 + 8 + step] * (scalar_t)c_fd[step];
v.w += s_tileUpXY[src0 + 12 + step] * (scalar_t)c_fd[step];
}
s_tileDownX[idx+0] = v.x;
s_tileDownX[idx+1] = v.y;
s_tileDownX[idx+2] = v.z;
s_tileDownX[idx+3] = v.w;
}
}
else if ((down == 2 || down == 4) && (tileOutW % 2 == 0))
{
// Calculate 2 pixels at a time.
for (int idx = threadIdx.x * 2; idx < tileOutW * tileUpH; idx += blockDim.x * 2)
{
int relOutX0, relUpY;
fast_div_mod<tileOutW>(relOutX0, relUpY, idx);
int relUpX0 = relOutX0 * down;
int src0 = relUpY * tileUpW + relUpX0;
vec2_t v = InternalType<T>::zero_vec2();
#pragma unroll
for (int step = 0; step < fdSize; step++)
{
v.x += s_tileUpXY[src0 + 0 + step] * (scalar_t)c_fd[step];
v.y += s_tileUpXY[src0 + down + step] * (scalar_t)c_fd[step];
}
s_tileDownX[idx+0] = v.x;
s_tileDownX[idx+1] = v.y;
}
}
else
{
// Calculate 1 pixel at a time.
for (int idx = threadIdx.x; idx < tileOutW * tileUpH; idx += blockDim.x)
{
int relOutX0, relUpY;
fast_div_mod<tileOutW>(relOutX0, relUpY, idx);
int relUpX0 = relOutX0 * down;
int src = relUpY * tileUpW + relUpX0;
scalar_t v = 0.f;
#pragma unroll
for (int step = 0; step < fdSize; step++)
v += s_tileUpXY[src + step] * (scalar_t)c_fd[step];
s_tileDownX[idx] = v;
}
}
// Vertical downsampling & store output tile.
__syncthreads();
for (int idx = threadIdx.x; idx < tileOutW * tileOutH; idx += blockDim.x)
{
int relOutX, relOutY0;
fast_div_mod<tileOutW>(relOutX, relOutY0, idx);
int relUpY0 = relOutY0 * down;
int src0 = relUpY0 * tileOutW + relOutX;
scalar_t v = 0;
#pragma unroll
for (int step = 0; step < fdSize; step++)
v += s_tileDownX[src0 + step * tileOutW] * (scalar_t)c_fd[step];
int outX = tileOutX + relOutX;
int outY = tileOutY + relOutY0;
if (outX < p.yShape.x & outY < p.yShape.y)
*((T*)((char*)p.y + (outX * get_stride<index_t>(p.yStride.x) + outY * get_stride<index_t>(p.yStride.y) + mapOfsOut))) = (T)v;
}
}
else if (filterMode == MODE_SUFD || filterMode == MODE_FUFD)
{
// Full downsampling filter.
if (down == 2)
{
// 2-wide.
__syncthreads();
for (int idx = threadIdx.x * 2; idx < tileOutW * tileOutH; idx += blockDim.x * 2)
{
int relOutX0, relOutY0;
fast_div_mod<tileOutW>(relOutX0, relOutY0, idx);
int relUpX0 = relOutX0 * down;
int relUpY0 = relOutY0 * down;
int src0 = relUpY0 * tileUpW + relUpX0;
vec2_t v = InternalType<T>::zero_vec2();
#pragma unroll
for (int sy = 0; sy < fdSize; sy++)
#pragma unroll
for (int sx = 0; sx < fdSize; sx++)
{
v.x += s_tileUpXY[src0 + 0 + sx + sy * tileUpW] * (scalar_t)c_fd[sx + sy * MAX_FILTER_SIZE];
v.y += s_tileUpXY[src0 + 2 + sx + sy * tileUpW] * (scalar_t)c_fd[sx + sy * MAX_FILTER_SIZE];
}
int outX = tileOutX + relOutX0;
int outY = tileOutY + relOutY0;
if ((uint32_t)outY < p.yShape.y)
{
index_t ofs = outX * get_stride<index_t>(p.yStride.x) + outY * get_stride<index_t>(p.yStride.y) + mapOfsOut;
if (outX + 0 < p.yShape.x) *((T*)((char*)p.y + ofs)) = (T)v.x;
if (outX + 1 < p.yShape.x) *((T*)((char*)p.y + ofs + get_stride<index_t>(p.yStride.x))) = (T)v.y;
}
}
}
else if (down == 1 && !downInline)
{
// Thread per pixel.
__syncthreads();
for (int idx = threadIdx.x; idx < tileOutW * tileOutH; idx += blockDim.x)
{
int relOutX0, relOutY0;
fast_div_mod<tileOutW>(relOutX0, relOutY0, idx);
scalar_t v = s_tileUpXY[idx] * (scalar_t)c_fd[0]; // 1x1 filter.
int outX = tileOutX + relOutX0;
int outY = tileOutY + relOutY0;
if ((uint32_t)outX < p.yShape.x && (uint32_t)outY < p.yShape.y)
*((T*)((char*)p.y + (outX * get_stride<index_t>(p.yStride.x) + outY * get_stride<index_t>(p.yStride.y) + mapOfsOut))) = (T)v;
}
}
}
if (!enableXrep)
break;
}
}
//------------------------------------------------------------------------
// Compute activation function and signs for upsampled data tensor, modifying data tensor in-place. Used for accelerating the generic variant.
// Sign tensor is known to be contiguous, and p.x and p.s have the same z, w dimensions. 64-bit indexing is always used.
template <class T, bool signWrite, bool signRead>
static __global__ void filtered_lrelu_act_kernel(filtered_lrelu_act_kernel_params p)
{
typedef typename InternalType<T>::scalar_t scalar_t;
// Indexing.
int32_t x = threadIdx.x + blockIdx.x * blockDim.x;
int32_t ymax = signWrite ? p.sShape.y : p.xShape.y;
int32_t qmax = p.xShape.z * p.xShape.w; // Combined minibatch*channel maximum index.
// Loop to accommodate oversized tensors.
for (int32_t q = blockIdx.z; q < qmax; q += gridDim.z)
for (int32_t y = blockIdx.y; y < ymax; y += gridDim.y)
{
// Extract z and w (channel, minibatch index).
int32_t w = q / p.xShape.z;
int32_t z = q - w * p.xShape.z;
// Choose behavior based on sign read/write mode.
if (signWrite)
{
// Process value if in p.x.
uint32_t s = 0;
if (x < p.xShape.x && y < p.xShape.y)
{
int64_t ix = x * p.xStride.x + y * p.xStride.y + z * p.xStride.z + w * p.xStride.w;
T* pv = ((T*)p.x) + ix;
scalar_t v = (scalar_t)(*pv);
// Gain, LReLU, clamp.
v *= p.gain;
if (v < 0.f)
{
v *= p.slope;
s = 1; // Sign.
}
if (fabsf(v) > p.clamp)
{
v = InternalType<T>::clamp(v, p.clamp);
s = 2; // Clamp.
}
*pv = (T)v; // Write value.
}
// Coalesce into threads 0 and 16 of warp.
uint32_t m = (threadIdx.x & 16) ? 0xffff0000u : 0x0000ffffu;
s <<= ((threadIdx.x & 15) << 1); // Shift into place.
s |= __shfl_xor_sync(m, s, 1); // Distribute.
s |= __shfl_xor_sync(m, s, 2);
s |= __shfl_xor_sync(m, s, 4);
s |= __shfl_xor_sync(m, s, 8);
// Write signs if leader and in p.s.
if (!(threadIdx.x & 15) && x < p.sShape.x) // y is always in.
{
uint64_t is = x + p.sShape.x * (y + (int64_t)p.sShape.y * q); // Contiguous.
((uint32_t*)p.s)[is >> 4] = s;
}
}
else if (signRead)
{
// Process value if in p.x.
if (x < p.xShape.x) // y is always in.
{
int64_t ix = x * p.xStride.x + y * p.xStride.y + z * p.xStride.z + w * p.xStride.w;
T* pv = ((T*)p.x) + ix;
scalar_t v = (scalar_t)(*pv);
v *= p.gain;
// Apply sign buffer offset.
uint32_t sx = x + p.sOfs.x;
uint32_t sy = y + p.sOfs.y;
// Read and apply signs if we land inside valid region of sign buffer.
if (sx < p.sShape.x && sy < p.sShape.y)
{
uint64_t is = (sx >> 2) + (p.sShape.x >> 2) * (sy + (uint64_t)p.sShape.y * q); // Contiguous.
unsigned char s = p.s[is];
s >>= (sx & 3) << 1; // Shift into place.
if (s & 1) // Sign?
v *= p.slope;
if (s & 2) // Clamp?
v = 0.f;
}
*pv = (T)v; // Write value.
}
}
else
{
// Forward pass with no sign write. Process value if in p.x.
if (x < p.xShape.x) // y is always in.
{
int64_t ix = x * p.xStride.x + y * p.xStride.y + z * p.xStride.z + w * p.xStride.w;
T* pv = ((T*)p.x) + ix;
scalar_t v = (scalar_t)(*pv);
v *= p.gain;
if (v < 0.f)
v *= p.slope;
if (fabsf(v) > p.clamp)
v = InternalType<T>::clamp(v, p.clamp);
*pv = (T)v; // Write value.
}
}
}
}
template <class T, bool signWrite, bool signRead> void* choose_filtered_lrelu_act_kernel(void)
{
return (void*)filtered_lrelu_act_kernel<T, signWrite, signRead>;
}
//------------------------------------------------------------------------
// CUDA kernel selection.
template <class T, class index_t, bool signWrite, bool signRead> filtered_lrelu_kernel_spec choose_filtered_lrelu_kernel(const filtered_lrelu_kernel_params& p, int sharedKB)
{
filtered_lrelu_kernel_spec s = { 0 };
// Return the first matching kernel.
#define CASE(SH, U, FU, D, FD, MODE, TW, TH, W, XR, WS) \
if (sharedKB >= SH) \
if ((p.fuShape.y == 0 && (MODE == MODE_SUSD || MODE == MODE_SUFD)) || (p.fuShape.y > 0 && (MODE == MODE_FUSD || MODE == MODE_FUFD))) \
if ((p.fdShape.y == 0 && (MODE == MODE_SUSD || MODE == MODE_FUSD)) || (p.fdShape.y > 0 && (MODE == MODE_SUFD || MODE == MODE_FUFD))) \
if (p.up == U && p.fuShape.x <= FU && p.fuShape.y <= FU && p.down == D && p.fdShape.x <= FD && p.fdShape.y <= FD) \
{ \
static_assert((D*TW % 4) == 0, "down * tileWidth must be divisible by 4"); \
static_assert(FU % U == 0, "upscaling filter size must be multiple of upscaling factor"); \
static_assert(FD % D == 0, "downscaling filter size must be multiple of downscaling factor"); \
s.setup = (void*)setup_filters_kernel; \
s.exec = (void*)filtered_lrelu_kernel<T, index_t, SH, signWrite, signRead, MODE, U, FU, D, FD, TW, TH, W*32, !!XR, !!WS>; \
s.tileOut = make_int2(TW, TH); \
s.numWarps = W; \
s.xrep = XR; \
s.dynamicSharedKB = (SH == 48) ? 0 : SH; \
return s; \
}
// Launch parameters for various kernel specializations.
// Small filters must be listed before large filters, otherwise the kernel for larger filter will always match first.
// Kernels that use more shared memory must be listed before those that use less, for the same reason.
CASE(/*sharedKB*/48, /*up,fu*/1,1, /*down,fd*/1,1, /*mode*/MODE_FUFD, /*tw,th,warps,xrep,wskip*/64, 178, 32, 0, 0) // 1t-upf1-downf1
CASE(/*sharedKB*/48, /*up,fu*/2,8, /*down,fd*/1,1, /*mode*/MODE_SUFD, /*tw,th,warps,xrep,wskip*/152, 95, 16, 0, 0) // 4t-ups2-downf1
CASE(/*sharedKB*/48, /*up,fu*/1,1, /*down,fd*/2,8, /*mode*/MODE_FUSD, /*tw,th,warps,xrep,wskip*/56, 22, 16, 0, 0) // 4t-upf1-downs2
CASE(/*sharedKB*/48, /*up,fu*/2,8, /*down,fd*/2,8, /*mode*/MODE_SUSD, /*tw,th,warps,xrep,wskip*/56, 29, 16, 11, 0) // 4t-ups2-downs2
CASE(/*sharedKB*/48, /*up,fu*/2,8, /*down,fd*/2,8, /*mode*/MODE_FUSD, /*tw,th,warps,xrep,wskip*/60, 28, 16, 0, 0) // 4t-upf2-downs2
CASE(/*sharedKB*/48, /*up,fu*/2,8, /*down,fd*/2,8, /*mode*/MODE_SUFD, /*tw,th,warps,xrep,wskip*/56, 28, 16, 0, 0) // 4t-ups2-downf2
CASE(/*sharedKB*/48, /*up,fu*/4,16, /*down,fd*/2,8, /*mode*/MODE_SUSD, /*tw,th,warps,xrep,wskip*/56, 31, 16, 11, 0) // 4t-ups4-downs2
CASE(/*sharedKB*/48, /*up,fu*/4,16, /*down,fd*/2,8, /*mode*/MODE_SUFD, /*tw,th,warps,xrep,wskip*/56, 36, 16, 0, 0) // 4t-ups4-downf2
CASE(/*sharedKB*/48, /*up,fu*/2,8, /*down,fd*/4,16, /*mode*/MODE_SUSD, /*tw,th,warps,xrep,wskip*/16, 22, 16, 12, 0) // 4t-ups2-downs4
CASE(/*sharedKB*/48, /*up,fu*/2,8, /*down,fd*/4,16, /*mode*/MODE_FUSD, /*tw,th,warps,xrep,wskip*/29, 15, 16, 0, 0) // 4t-upf2-downs4
CASE(/*sharedKB*/48, /*up,fu*/2,12, /*down,fd*/1,1, /*mode*/MODE_SUFD, /*tw,th,warps,xrep,wskip*/96, 150, 28, 0, 0) // 6t-ups2-downf1
CASE(/*sharedKB*/48, /*up,fu*/1,1, /*down,fd*/2,12, /*mode*/MODE_FUSD, /*tw,th,warps,xrep,wskip*/32, 35, 24, 0, 0) // 6t-upf1-downs2
CASE(/*sharedKB*/48, /*up,fu*/2,12, /*down,fd*/2,12, /*mode*/MODE_SUSD, /*tw,th,warps,xrep,wskip*/32, 46, 16, 10, 0) // 6t-ups2-downs2
CASE(/*sharedKB*/48, /*up,fu*/2,12, /*down,fd*/2,12, /*mode*/MODE_FUSD, /*tw,th,warps,xrep,wskip*/58, 28, 24, 8, 0) // 6t-upf2-downs2
CASE(/*sharedKB*/48, /*up,fu*/2,12, /*down,fd*/2,12, /*mode*/MODE_SUFD, /*tw,th,warps,xrep,wskip*/52, 28, 16, 0, 0) // 6t-ups2-downf2
CASE(/*sharedKB*/48, /*up,fu*/4,24, /*down,fd*/2,12, /*mode*/MODE_SUSD, /*tw,th,warps,xrep,wskip*/32, 51, 16, 5, 0) // 6t-ups4-downs2
CASE(/*sharedKB*/48, /*up,fu*/4,24, /*down,fd*/2,12, /*mode*/MODE_SUFD, /*tw,th,warps,xrep,wskip*/32, 56, 16, 6, 0) // 6t-ups4-downf2
CASE(/*sharedKB*/48, /*up,fu*/2,12, /*down,fd*/4,24, /*mode*/MODE_SUSD, /*tw,th,warps,xrep,wskip*/16, 18, 16, 12, 0) // 6t-ups2-downs4
CASE(/*sharedKB*/96, /*up,fu*/2,12, /*down,fd*/4,24, /*mode*/MODE_FUSD, /*tw,th,warps,xrep,wskip*/27, 31, 32, 6, 0) // 6t-upf2-downs4 96kB
CASE(/*sharedKB*/48, /*up,fu*/2,12, /*down,fd*/4,24, /*mode*/MODE_FUSD, /*tw,th,warps,xrep,wskip*/27, 13, 24, 0, 0) // 6t-upf2-downs4
CASE(/*sharedKB*/48, /*up,fu*/2,16, /*down,fd*/1,1, /*mode*/MODE_SUFD, /*tw,th,warps,xrep,wskip*/148, 89, 24, 0, 0) // 8t-ups2-downf1
CASE(/*sharedKB*/48, /*up,fu*/1,1, /*down,fd*/2,16, /*mode*/MODE_FUSD, /*tw,th,warps,xrep,wskip*/32, 31, 16, 5, 0) // 8t-upf1-downs2
CASE(/*sharedKB*/48, /*up,fu*/2,16, /*down,fd*/2,16, /*mode*/MODE_SUSD, /*tw,th,warps,xrep,wskip*/32, 41, 16, 9, 0) // 8t-ups2-downs2
CASE(/*sharedKB*/48, /*up,fu*/2,16, /*down,fd*/2,16, /*mode*/MODE_FUSD, /*tw,th,warps,xrep,wskip*/56, 26, 24, 0, 0) // 8t-upf2-downs2
CASE(/*sharedKB*/48, /*up,fu*/2,16, /*down,fd*/2,16, /*mode*/MODE_SUFD, /*tw,th,warps,xrep,wskip*/32, 40, 16, 0, 0) // 8t-ups2-downf2
CASE(/*sharedKB*/48, /*up,fu*/4,32, /*down,fd*/2,16, /*mode*/MODE_SUSD, /*tw,th,warps,xrep,wskip*/32, 46, 24, 5, 0) // 8t-ups4-downs2
CASE(/*sharedKB*/48, /*up,fu*/4,32, /*down,fd*/2,16, /*mode*/MODE_SUFD, /*tw,th,warps,xrep,wskip*/32, 50, 16, 0, 0) // 8t-ups4-downf2
CASE(/*sharedKB*/96, /*up,fu*/2,16, /*down,fd*/4,32, /*mode*/MODE_SUSD, /*tw,th,warps,xrep,wskip*/24, 24, 32, 12, 1) // 8t-ups2-downs4 96kB
CASE(/*sharedKB*/48, /*up,fu*/2,16, /*down,fd*/4,32, /*mode*/MODE_SUSD, /*tw,th,warps,xrep,wskip*/16, 13, 16, 10, 1) // 8t-ups2-downs4
CASE(/*sharedKB*/96, /*up,fu*/2,16, /*down,fd*/4,32, /*mode*/MODE_FUSD, /*tw,th,warps,xrep,wskip*/25, 28, 28, 4, 0) // 8t-upf2-downs4 96kB
CASE(/*sharedKB*/48, /*up,fu*/2,16, /*down,fd*/4,32, /*mode*/MODE_FUSD, /*tw,th,warps,xrep,wskip*/25, 10, 24, 0, 0) // 8t-upf2-downs4
#undef CASE
return s; // No kernel found.
}
//------------------------------------------------------------------------
\ No newline at end of file
// Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
//
// NVIDIA CORPORATION and its licensors retain all intellectual property
// and proprietary rights in and to this software, related documentation
// and any modifications thereto. Any use, reproduction, disclosure or
// distribution of this software and related documentation without an express
// license agreement from NVIDIA CORPORATION is strictly prohibited.
#include <cuda_runtime.h>
//------------------------------------------------------------------------
// CUDA kernel parameters.
struct filtered_lrelu_kernel_params
{
// These parameters decide which kernel to use.
int up; // upsampling ratio (1, 2, 4)
int down; // downsampling ratio (1, 2, 4)
int2 fuShape; // [size, 1] | [size, size]
int2 fdShape; // [size, 1] | [size, size]
int _dummy; // Alignment.
// Rest of the parameters.
const void* x; // Input tensor.
void* y; // Output tensor.
const void* b; // Bias tensor.
unsigned char* s; // Sign tensor in/out. NULL if unused.
const float* fu; // Upsampling filter.
const float* fd; // Downsampling filter.
int2 pad0; // Left/top padding.
float gain; // Additional gain factor.
float slope; // Leaky ReLU slope on negative side.
float clamp; // Clamp after nonlinearity.
int flip; // Filter kernel flip for gradient computation.
int tilesXdim; // Original number of horizontal output tiles.
int tilesXrep; // Number of horizontal tiles per CTA.
int blockZofs; // Block z offset to support large minibatch, channel dimensions.
int4 xShape; // [width, height, channel, batch]
int4 yShape; // [width, height, channel, batch]
int2 sShape; // [width, height] - width is in bytes. Contiguous. Zeros if unused.
int2 sOfs; // [ofs_x, ofs_y] - offset between upsampled data and sign tensor.
int swLimit; // Active width of sign tensor in bytes.
longlong4 xStride; // Strides of all tensors except signs, same component order as shapes.
longlong4 yStride; //
int64_t bStride; //
longlong3 fuStride; //
longlong3 fdStride; //
};
struct filtered_lrelu_act_kernel_params
{
void* x; // Input/output, modified in-place.
unsigned char* s; // Sign tensor in/out. NULL if unused.
float gain; // Additional gain factor.
float slope; // Leaky ReLU slope on negative side.
float clamp; // Clamp after nonlinearity.
int4 xShape; // [width, height, channel, batch]
longlong4 xStride; // Input/output tensor strides, same order as in shape.
int2 sShape; // [width, height] - width is in elements. Contiguous. Zeros if unused.
int2 sOfs; // [ofs_x, ofs_y] - offset between upsampled data and sign tensor.
};
//------------------------------------------------------------------------
// CUDA kernel specialization.
struct filtered_lrelu_kernel_spec
{
void* setup; // Function for filter kernel setup.
void* exec; // Function for main operation.
int2 tileOut; // Width/height of launch tile.
int numWarps; // Number of warps per thread block, determines launch block size.
int xrep; // For processing multiple horizontal tiles per thread block.
int dynamicSharedKB; // How much dynamic shared memory the exec kernel wants.
};
//------------------------------------------------------------------------
// CUDA kernel selection.
template <class T, class index_t, bool signWrite, bool signRead> filtered_lrelu_kernel_spec choose_filtered_lrelu_kernel(const filtered_lrelu_kernel_params& p, int sharedKB);
template <class T, bool signWrite, bool signRead> void* choose_filtered_lrelu_act_kernel(void);
template <bool signWrite, bool signRead> cudaError_t copy_filters(cudaStream_t stream);
//------------------------------------------------------------------------
\ No newline at end of file
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import os
import numpy as np
import torch
import warnings
from .. import custom_ops
from .. import misc
from . import upfirdn2d
from . import bias_act
#----------------------------------------------------------------------------
_plugin = None
def _init():
global _plugin
if _plugin is None:
# sources=['filtered_lrelu.h', 'filtered_lrelu.cu', 'filtered_lrelu.cpp', 'filtered_lrelu_wr.cu', 'filtered_lrelu_rd.cu', 'filtered_lrelu_ns.cu']
# sources = [os.path.join(os.path.dirname(__file__), s) for s in sources]
# try:
# _plugin = custom_ops.get_plugin('filtered_lrelu_plugin', sources=sources, extra_cuda_cflags=['--use_fast_math', '--allow-unsupported-compiler'])
# except:
# warnings.warn('Failed to build CUDA kernels for filtered_lrelu_plugin. Falling back to slow reference implementation. Details:\n\n' + traceback.format_exc())
_plugin = custom_ops.get_plugin_v3(
module_name='filtered_lrelu_plugin',
sources=['filtered_lrelu.cpp', 'filtered_lrelu_wr.cu', 'filtered_lrelu_rd.cu', 'filtered_lrelu_ns.cu'],
headers=['filtered_lrelu.h', 'filtered_lrelu.cu'],
source_dir=os.path.dirname(__file__),
extra_cuda_cflags=['--use_fast_math', '--allow-unsupported-compiler'],
)
return True
def _get_filter_size(f):
if f is None:
return 1, 1
assert isinstance(f, torch.Tensor)
assert 1 <= f.ndim <= 2
return f.shape[-1], f.shape[0] # width, height
def _parse_padding(padding):
if isinstance(padding, int):
padding = [padding, padding]
assert isinstance(padding, (list, tuple))
assert all(isinstance(x, (int, np.integer)) for x in padding)
padding = [int(x) for x in padding]
if len(padding) == 2:
px, py = padding
padding = [px, px, py, py]
px0, px1, py0, py1 = padding
return px0, px1, py0, py1
#----------------------------------------------------------------------------
def filtered_lrelu(x, fu=None, fd=None, b=None, up=1, down=1, padding=0, gain=np.sqrt(2), slope=0.2, clamp=None, flip_filter=False, impl='cuda'):
r"""Filtered leaky ReLU for a batch of 2D images.
Performs the following sequence of operations for each channel:
1. Add channel-specific bias if provided (`b`).
2. Upsample the image by inserting N-1 zeros after each pixel (`up`).
3. Pad the image with the specified number of zeros on each side (`padding`).
Negative padding corresponds to cropping the image.
4. Convolve the image with the specified upsampling FIR filter (`fu`), shrinking it
so that the footprint of all output pixels lies within the input image.
5. Multiply each value by the provided gain factor (`gain`).
6. Apply leaky ReLU activation function to each value.
7. Clamp each value between -clamp and +clamp, if `clamp` parameter is provided.
8. Convolve the image with the specified downsampling FIR filter (`fd`), shrinking
it so that the footprint of all output pixels lies within the input image.
9. Downsample the image by keeping every Nth pixel (`down`).
The fused op is considerably more efficient than performing the same calculation
using standard PyTorch ops. It supports gradients of arbitrary order.
Args:
x: Float32/float16/float64 input tensor of the shape
`[batch_size, num_channels, in_height, in_width]`.
fu: Float32 upsampling FIR filter of the shape
`[filter_height, filter_width]` (non-separable),
`[filter_taps]` (separable), or
`None` (identity).
fd: Float32 downsampling FIR filter of the shape
`[filter_height, filter_width]` (non-separable),
`[filter_taps]` (separable), or
`None` (identity).
b: Bias vector, or `None` to disable. Must be a 1D tensor of the same type
as `x`. The length of vector must must match the channel dimension of `x`.
up: Integer upsampling factor (default: 1).
down: Integer downsampling factor. (default: 1).
padding: Padding with respect to the upsampled image. Can be a single number
or a list/tuple `[x, y]` or `[x_before, x_after, y_before, y_after]`
(default: 0).
gain: Overall scaling factor for signal magnitude (default: sqrt(2)).
slope: Slope on the negative side of leaky ReLU (default: 0.2).
clamp: Maximum magnitude for leaky ReLU output (default: None).
flip_filter: False = convolution, True = correlation (default: False).
impl: Implementation to use. Can be `'ref'` or `'cuda'` (default: `'cuda'`).
Returns:
Tensor of the shape `[batch_size, num_channels, out_height, out_width]`.
"""
assert isinstance(x, torch.Tensor)
assert impl in ['ref', 'cuda']
if impl == 'ref' and x.device.type == 'cuda' and _init():
return _filtered_lrelu_cuda(up=up, down=down, padding=padding, gain=gain, slope=slope, clamp=clamp, flip_filter=flip_filter).apply(x, fu, fd, b, None, 0, 0)
return _filtered_lrelu_ref(x, fu=fu, fd=fd, b=b, up=up, down=down, padding=padding, gain=gain, slope=slope, clamp=clamp, flip_filter=flip_filter)
#----------------------------------------------------------------------------
@misc.profiled_function
def _filtered_lrelu_ref(x, fu=None, fd=None, b=None, up=1, down=1, padding=0, gain=np.sqrt(2), slope=0.2, clamp=None, flip_filter=False):
"""Slow and memory-inefficient reference implementation of `filtered_lrelu()` using
existing `upfirdn2n()` and `bias_act()` ops.
"""
assert isinstance(x, torch.Tensor) and x.ndim == 4
fu_w, fu_h = _get_filter_size(fu)
fd_w, fd_h = _get_filter_size(fd)
if b is not None:
assert isinstance(b, torch.Tensor) and b.dtype == x.dtype
misc.assert_shape(b, [x.shape[1]])
assert isinstance(up, int) and up >= 1
assert isinstance(down, int) and down >= 1
px0, px1, py0, py1 = _parse_padding(padding)
assert gain == float(gain) and gain > 0
assert slope == float(slope) and slope >= 0
assert clamp is None or (clamp == float(clamp) and clamp >= 0)
# Calculate output size.
batch_size, channels, in_h, in_w = x.shape
in_dtype = x.dtype
out_w = (in_w * up + (px0 + px1) - (fu_w - 1) - (fd_w - 1) + (down - 1)) // down
out_h = (in_h * up + (py0 + py1) - (fu_h - 1) - (fd_h - 1) + (down - 1)) // down
# Compute using existing ops.
x = bias_act.bias_act(x=x, b=b) # Apply bias.
x = upfirdn2d.upfirdn2d(x=x, f=fu, up=up, padding=[px0, px1, py0, py1], gain=up**2, flip_filter=flip_filter) # Upsample.
x = bias_act.bias_act(x=x, act='lrelu', alpha=slope, gain=gain, clamp=clamp) # Bias, leaky ReLU, clamp.
x = upfirdn2d.upfirdn2d(x=x, f=fd, down=down, flip_filter=flip_filter) # Downsample.
# Check output shape & dtype.
misc.assert_shape(x, [batch_size, channels, out_h, out_w])
assert x.dtype == in_dtype
return x
#----------------------------------------------------------------------------
_filtered_lrelu_cuda_cache = dict()
def _filtered_lrelu_cuda(up=1, down=1, padding=0, gain=np.sqrt(2), slope=0.2, clamp=None, flip_filter=False):
"""Fast CUDA implementation of `filtered_lrelu()` using custom ops.
"""
assert isinstance(up, int) and up >= 1
assert isinstance(down, int) and down >= 1
px0, px1, py0, py1 = _parse_padding(padding)
assert gain == float(gain) and gain > 0
gain = float(gain)
assert slope == float(slope) and slope >= 0
slope = float(slope)
assert clamp is None or (clamp == float(clamp) and clamp >= 0)
clamp = float(clamp if clamp is not None else 'inf')
# Lookup from cache.
key = (up, down, px0, px1, py0, py1, gain, slope, clamp, flip_filter)
if key in _filtered_lrelu_cuda_cache:
return _filtered_lrelu_cuda_cache[key]
# Forward op.
class FilteredLReluCuda(torch.autograd.Function):
@staticmethod
def forward(ctx, x, fu, fd, b, si, sx, sy): # pylint: disable=arguments-differ
assert isinstance(x, torch.Tensor) and x.ndim == 4
# Replace empty up/downsample kernels with full 1x1 kernels (faster than separable).
if fu is None:
fu = torch.ones([1, 1], dtype=torch.float32, device=x.device)
if fd is None:
fd = torch.ones([1, 1], dtype=torch.float32, device=x.device)
assert 1 <= fu.ndim <= 2
assert 1 <= fd.ndim <= 2
# Replace separable 1x1 kernels with full 1x1 kernels when scale factor is 1.
if up == 1 and fu.ndim == 1 and fu.shape[0] == 1:
fu = fu.square()[None]
if down == 1 and fd.ndim == 1 and fd.shape[0] == 1:
fd = fd.square()[None]
# Missing sign input tensor.
if si is None:
si = torch.empty([0])
# Missing bias tensor.
if b is None:
b = torch.zeros([x.shape[1]], dtype=x.dtype, device=x.device)
# Construct internal sign tensor only if gradients are needed.
write_signs = (si.numel() == 0) and (x.requires_grad or b.requires_grad)
# Warn if input storage strides are not in decreasing order due to e.g. channels-last layout.
strides = [x.stride(i) for i in range(x.ndim) if x.size(i) > 1]
if any(a < b for a, b in zip(strides[:-1], strides[1:])):
warnings.warn("low-performance memory layout detected in filtered_lrelu input", RuntimeWarning)
# Call C++/Cuda plugin if datatype is supported.
if x.dtype in [torch.float16, torch.float32]:
if torch.cuda.current_stream(x.device) != torch.cuda.default_stream(x.device):
warnings.warn("filtered_lrelu called with non-default cuda stream but concurrent execution is not supported", RuntimeWarning)
y, so, return_code = _plugin.filtered_lrelu(x, fu, fd, b, si, up, down, px0, px1, py0, py1, sx, sy, gain, slope, clamp, flip_filter, write_signs)
else:
return_code = -1
# No Cuda kernel found? Fall back to generic implementation. Still more memory efficient than the reference implementation because
# only the bit-packed sign tensor is retained for gradient computation.
if return_code < 0:
warnings.warn("filtered_lrelu called with parameters that have no optimized CUDA kernel, using generic fallback", RuntimeWarning)
y = x.add(b.unsqueeze(-1).unsqueeze(-1)) # Add bias.
y = upfirdn2d.upfirdn2d(x=y, f=fu, up=up, padding=[px0, px1, py0, py1], gain=up**2, flip_filter=flip_filter) # Upsample.
so = _plugin.filtered_lrelu_act_(y, si, sx, sy, gain, slope, clamp, write_signs) # Activation function and sign handling. Modifies y in-place.
y = upfirdn2d.upfirdn2d(x=y, f=fd, down=down, flip_filter=flip_filter) # Downsample.
# Prepare for gradient computation.
ctx.save_for_backward(fu, fd, (si if si.numel() else so))
ctx.x_shape = x.shape
ctx.y_shape = y.shape
ctx.s_ofs = sx, sy
return y
@staticmethod
def backward(ctx, dy): # pylint: disable=arguments-differ
fu, fd, si = ctx.saved_tensors
_, _, xh, xw = ctx.x_shape
_, _, yh, yw = ctx.y_shape
sx, sy = ctx.s_ofs
dx = None # 0
dfu = None; assert not ctx.needs_input_grad[1]
dfd = None; assert not ctx.needs_input_grad[2]
db = None # 3
dsi = None; assert not ctx.needs_input_grad[4]
dsx = None; assert not ctx.needs_input_grad[5]
dsy = None; assert not ctx.needs_input_grad[6]
if ctx.needs_input_grad[0] or ctx.needs_input_grad[3]:
pp = [
(fu.shape[-1] - 1) + (fd.shape[-1] - 1) - px0,
xw * up - yw * down + px0 - (up - 1),
(fu.shape[0] - 1) + (fd.shape[0] - 1) - py0,
xh * up - yh * down + py0 - (up - 1),
]
gg = gain * (up ** 2) / (down ** 2)
ff = (not flip_filter)
sx = sx - (fu.shape[-1] - 1) + px0
sy = sy - (fu.shape[0] - 1) + py0
dx = _filtered_lrelu_cuda(up=down, down=up, padding=pp, gain=gg, slope=slope, clamp=None, flip_filter=ff).apply(dy, fd, fu, None, si, sx, sy)
if ctx.needs_input_grad[3]:
db = dx.sum([0, 2, 3])
return dx, dfu, dfd, db, dsi, dsx, dsy
# Add to cache.
_filtered_lrelu_cuda_cache[key] = FilteredLReluCuda
return FilteredLReluCuda
#----------------------------------------------------------------------------
\ No newline at end of file
// Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
//
// NVIDIA CORPORATION and its licensors retain all intellectual property
// and proprietary rights in and to this software, related documentation
// and any modifications thereto. Any use, reproduction, disclosure or
// distribution of this software and related documentation without an express
// license agreement from NVIDIA CORPORATION is strictly prohibited.
#include "filtered_lrelu.cu"
// Template/kernel specializations for no signs mode (no gradients required).
// Full op, 32-bit indexing.
template filtered_lrelu_kernel_spec choose_filtered_lrelu_kernel<c10::Half, int32_t, false, false>(const filtered_lrelu_kernel_params& p, int sharedKB);
template filtered_lrelu_kernel_spec choose_filtered_lrelu_kernel<float, int32_t, false, false>(const filtered_lrelu_kernel_params& p, int sharedKB);
// Full op, 64-bit indexing.
template filtered_lrelu_kernel_spec choose_filtered_lrelu_kernel<c10::Half, int64_t, false, false>(const filtered_lrelu_kernel_params& p, int sharedKB);
template filtered_lrelu_kernel_spec choose_filtered_lrelu_kernel<float, int64_t, false, false>(const filtered_lrelu_kernel_params& p, int sharedKB);
// Activation/signs only for generic variant. 64-bit indexing.
template void* choose_filtered_lrelu_act_kernel<c10::Half, false, false>(void);
template void* choose_filtered_lrelu_act_kernel<float, false, false>(void);
template void* choose_filtered_lrelu_act_kernel<double, false, false>(void);
// Copy filters to constant memory.
template cudaError_t copy_filters<false, false>(cudaStream_t stream);
\ No newline at end of file
// Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
//
// NVIDIA CORPORATION and its licensors retain all intellectual property
// and proprietary rights in and to this software, related documentation
// and any modifications thereto. Any use, reproduction, disclosure or
// distribution of this software and related documentation without an express
// license agreement from NVIDIA CORPORATION is strictly prohibited.
#include "filtered_lrelu.cu"
// Template/kernel specializations for sign read mode.
// Full op, 32-bit indexing.
template filtered_lrelu_kernel_spec choose_filtered_lrelu_kernel<c10::Half, int32_t, false, true>(const filtered_lrelu_kernel_params& p, int sharedKB);
template filtered_lrelu_kernel_spec choose_filtered_lrelu_kernel<float, int32_t, false, true>(const filtered_lrelu_kernel_params& p, int sharedKB);
// Full op, 64-bit indexing.
template filtered_lrelu_kernel_spec choose_filtered_lrelu_kernel<c10::Half, int64_t, false, true>(const filtered_lrelu_kernel_params& p, int sharedKB);
template filtered_lrelu_kernel_spec choose_filtered_lrelu_kernel<float, int64_t, false, true>(const filtered_lrelu_kernel_params& p, int sharedKB);
// Activation/signs only for generic variant. 64-bit indexing.
template void* choose_filtered_lrelu_act_kernel<c10::Half, false, true>(void);
template void* choose_filtered_lrelu_act_kernel<float, false, true>(void);
template void* choose_filtered_lrelu_act_kernel<double, false, true>(void);
// Copy filters to constant memory.
template cudaError_t copy_filters<false, true>(cudaStream_t stream);
\ No newline at end of file
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment