import argparse import gradio as gr import torch from PIL import Image from donut import DonutModel def demo_process_vqa(input_img, question): global pretrained_model, task_prompt, task_name input_img = Image.fromarray(input_img) user_prompt = task_prompt.replace("{user_input}", question) output = pretrained_model.inference(input_img, prompt=user_prompt)["predictions"][0] return output def demo_process(input_img): global pretrained_model, task_prompt, task_name input_img = Image.fromarray(input_img) output = pretrained_model.inference(image=input_img, prompt=task_prompt)["predictions"][0] return output parser = argparse.ArgumentParser() parser.add_argument("--task", type=str, default="cord-v2") parser.add_argument("--pretrained_path", type=str, default="/home/wanglch/projects/donut/naver-clova-ix/donut-base-finetuned-cord-v2") args, left_argv = parser.parse_known_args() task_name = args.task if "docvqa" == task_name: task_prompt = "{user_input}" else: # rvlcdip, cord, ... task_prompt = f"" pretrained_model = DonutModel.from_pretrained(args.pretrained_path, trust_remote_code=True) if torch.cuda.is_available(): pretrained_model.half() device = torch.device("cuda") pretrained_model.to(device) else: pretrained_model.encoder.to(torch.bfloat16) pretrained_model.eval() demo = gr.Interface( fn=demo_process_vqa if task_name == "docvqa" else demo_process, inputs=["image", "text"] if task_name == "docvqa" else "image", outputs="json", title=f"Donut 🍩 demonstration for `{task_name}` task", ) demo.launch(debug=True)