Commit 8d5e7527 authored by Geewook Kim's avatar Geewook Kim
Browse files

initial commit

parents
"""
Donut
Copyright (c) 2022-present NAVER Corp.
MIT License
"""
import json
import os
import re
from typing import Any, List
import numpy as np
from elements import Background, Document
from PIL import Image
from synthtiger import components, layers, templates
class SynthDoG(templates.Template):
def __init__(self, config=None, split_ratio: List[float] = [0.8, 0.1, 0.1]):
super().__init__(config)
if config is None:
config = {}
self.quality = config.get("quality", [50, 95])
self.landscape = config.get("landscape", 0.5)
self.short_size = config.get("short_size", [720, 1024])
self.aspect_ratio = config.get("aspect_ratio", [1, 2])
self.background = Background(config.get("background", {}))
self.document = Document(config.get("document", {}))
self.effect = components.Iterator(
[
components.Switch(components.RGB()),
components.Switch(components.Shadow()),
components.Switch(components.Contrast()),
components.Switch(components.Brightness()),
components.Switch(components.MotionBlur()),
components.Switch(components.GaussianBlur()),
],
**config.get("effect", {}),
)
# config for splits (output_filename, split_ratio etc)
self.splits = ["train", "validation", "test"]
self.split_indexes = [0, 0, 0]
self.split_ratio = [sum(split_ratio[: i + 1]) for i in range(0, len(split_ratio))]
def generate(self):
landscape = np.random.rand() < self.landscape
short_size = np.random.randint(self.short_size[0], self.short_size[1] + 1)
aspect_ratio = np.random.uniform(self.aspect_ratio[0], self.aspect_ratio[1])
long_size = int(short_size * aspect_ratio)
size = (long_size, short_size) if landscape else (short_size, long_size)
bg_layer = self.background.generate(size)
paper_layer, text_layers, texts = self.document.generate(size)
document_group = layers.Group([*text_layers, paper_layer])
document_space = np.clip(size - document_group.size, 0, None)
document_group.left = np.random.randint(document_space[0] + 1)
document_group.top = np.random.randint(document_space[1] + 1)
roi = np.array(paper_layer.quad, dtype=int)
layer = layers.Group([*document_group.layers, bg_layer]).merge()
self.effect.apply([layer])
image = layer.output(bbox=[0, 0, *size])
label = " ".join(texts)
label = label.strip()
label = re.sub(r"\s+", " ", label)
quality = np.random.randint(self.quality[0], self.quality[1] + 1)
data = {
"image": image,
"label": label,
"quality": quality,
"roi": roi,
}
return data
def init_save(self, root):
if not os.path.exists(root):
os.makedirs(root, exist_ok=True)
def save(self, root, data, idx):
image = data["image"]
label = data["label"]
quality = data["quality"]
roi = data["roi"]
# split
output_dirpath = os.path.join(root, "train")
file_idx = idx
split_prob = np.random.rand()
for _idx, (split, ratio) in enumerate(zip(self.splits, self.split_ratio)):
if split_prob < ratio:
output_dirpath = os.path.join(root, split)
file_idx = self.split_indexes[_idx]
self.split_indexes[_idx] += 1
break
# save image
image_filename = f"image_{file_idx}.jpg"
image_filepath = os.path.join(output_dirpath, image_filename)
os.makedirs(os.path.dirname(image_filepath), exist_ok=True)
image = Image.fromarray(image[..., :3].astype(np.uint8))
image.save(image_filepath, quality=quality)
# save metadata (gt_json)
metadata_filename = "metadata.jsonl"
metadata_filepath = os.path.join(output_dirpath, metadata_filename)
os.makedirs(os.path.dirname(metadata_filepath), exist_ok=True)
metadata = self.format_metadata(image_filename=image_filename, keys=["text_sequence"], values=[label])
with open(metadata_filepath, "a") as fp:
json.dump(metadata, fp, ensure_ascii=False)
fp.write("\n")
def end_save(self, root):
pass
def format_metadata(self, image_filename: str, keys: List[str], values: List[Any]):
"""
Fit gt_parse contents to huggingface dataset's format
keys and values, whose lengths are equal, are used to constrcut 'gt_parse' field in 'ground_truth' field
Args:
keys: List of task_name
values: List of actual gt data corresponding to each task_name
"""
assert len(keys) == len(values), "Length does not match: keys({}), values({})".format(len(keys), len(values))
_gt_parse_v = dict()
for k, v in zip(keys, values):
_gt_parse_v[k] = v
gt_parse = {"gt_parse": _gt_parse_v}
gt_parse_str = json.dumps(gt_parse, ensure_ascii=False)
metadata = {"file_name": image_filename, "ground_truth": gt_parse_str}
return metadata
"""
Donut
Copyright (c) 2022-present NAVER Corp.
MIT License
"""
from utils.text_reader import TextReader
__all__ = ["TextReader"]
"""
Donut
Copyright (c) 2022-present NAVER Corp.
MIT License
"""
from collections import OrderedDict
class TextReader:
def __init__(self, path, cache_size=2 ** 28, block_size=2 ** 20):
self.fp = open(path, "r", encoding="utf-8")
self.length = 0
self.offsets = [0]
self.cache = OrderedDict()
self.cache_size = cache_size
self.block_size = block_size
self.bucket_size = cache_size // block_size
self.idx = 0
while True:
text = self.fp.read(self.block_size)
if not text:
break
self.length += len(text)
self.offsets.append(self.fp.tell())
def __len__(self):
return self.length
def __iter__(self):
return self
def __next__(self):
char = self.get()
self.next()
return char
def move(self, idx):
self.idx = idx
def next(self):
self.idx = (self.idx + 1) % self.length
def prev(self):
self.idx = (self.idx - 1) % self.length
def get(self):
key = self.idx // self.block_size
if key in self.cache:
text = self.cache[key]
else:
if len(self.cache) >= self.bucket_size:
self.cache.popitem(last=False)
offset = self.offsets[key]
self.fp.seek(offset, 0)
text = self.fp.read(self.block_size)
self.cache[key] = text
self.cache.move_to_end(key)
char = text[self.idx % self.block_size]
return char
"""
Donut
Copyright (c) 2022-present NAVER Corp.
MIT License
"""
import argparse
import json
import os
import re
from pathlib import Path
import numpy as np
import torch
from datasets import load_dataset
from PIL import Image
from tqdm import tqdm
from donut import DonutModel, JSONParseEvaluator, load_json, save_json
def test(args):
pretrained_model = DonutModel.from_pretrained(args.pretrained_path)
if torch.cuda.is_available():
pretrained_model.half()
pretrained_model.to("cuda")
else:
pretrained_model.encoder.to(torch.bfloat16)
pretrained_model.eval()
if args.save_path:
os.makedirs(os.path.dirname(args.save_path), exist_ok=True)
output_list = []
accs = []
dataset = load_dataset(args.dataset_name_or_path, split=args.split)
for idx, sample in tqdm(enumerate(dataset), total=len(dataset)):
ground_truth = json.loads(sample["ground_truth"])
if args.task_name == "docvqa":
output = pretrained_model.inference(
image=sample["image"],
prompt=f"<s_{args.task_name}><s_question>{ground_truth["gt_parses"][0]['question'].lower()}</s_question><s_answer>",
)["predictions"][0]
else:
output = pretrained_model.inference(image=sample["image"], prompt=f"<s_{args.task_name}>")["predictions"][0]
if args.task_name == "rvlcdip":
gt = ground_truth["gt_parse"]
score = float(output["class"] == gt["class"])
elif args.task_name == "docvqa":
score = 0.0 # note: docvqa is evaluated on the official website
else:
gt = ground_truth["gt_parse"]
evaluator = JSONParseEvaluator()
score = evaluator.cal_acc(output, gt)
accs.append(score)
output_list.append(output)
scores = {"accuracies": accs, "mean_accuracy": np.mean(accs)}
print(scores, f"length : {len(accs)}")
if args.save_path:
scores["predictions"] = output_list
save_json(args.save_path, scores)
return output_list
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--pretrained_path", type=str)
parser.add_argument("--dataset_name_or_path", type=str)
parser.add_argument("--split", type=str, default="test")
parser.add_argument("--task_name", type=str, default=None)
parser.add_argument("--save_path", type=str, default=None)
args, left_argv = parser.parse_known_args()
if args.task_name is None:
args.task_name = os.path.basename(args.dataset_name_or_path)
predicts = test(args)
"""
Donut
Copyright (c) 2022-present NAVER Corp.
MIT License
"""
import argparse
import datetime
import json
import os
import random
from io import BytesIO
from os.path import basename
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import LearningRateMonitor, ModelCheckpoint
from pytorch_lightning.loggers.tensorboard import TensorBoardLogger
from pytorch_lightning.plugins import CheckpointIO
from pytorch_lightning.utilities import rank_zero_only
from sconf import Config
from donut import DonutDataset
from lightning_module import DonutDataPLModule, DonutModelPLModule
class CustomCheckpointIO(CheckpointIO):
def save_checkpoint(self, checkpoint, path, storage_options=None):
del checkpoint["state_dict"]
torch.save(checkpoint, path)
def load_checkpoint(self, path, storage_options=None):
checkpoint = torch.load(path + "artifacts.ckpt")
state_dict = torch.load(path + "pytorch_model.bin")
checkpoint["state_dict"] = {"model." + key: value for key, value in state_dict.items()}
return checkpoint
def remove_checkpoint(self, path) -> None:
return super().remove_checkpoint(path)
@rank_zero_only
def save_config_file(config, path):
if not Path(path).exists():
os.makedirs(path)
save_path = Path(path) / "config.yaml"
print(config.dumps())
with open(save_path, "w") as f:
f.write(config.dumps(modified_color=None, quote_str=True))
print(f"Config is saved at {save_path}")
def train(config):
pl.utilities.seed.seed_everything(config.get("seed", 42), workers=True)
model_module = DonutModelPLModule(config)
data_module = DonutDataPLModule(config)
# add datasets to data_module
datasets = {"train": [], "validation": []}
for i, dataset_name_or_path in enumerate(config.dataset_name_or_paths):
task_name = os.path.basename(dataset_name_or_path) # e.g., cord-v2, docvqa, rvlcdip, ...
for split in ["train", "validation"]:
datasets[split].append(
DonutDataset(
dataset_name_or_path=dataset_name_or_path,
donut_model=model_module.model,
max_length=config.max_length,
split=split,
task_start_token=config.task_start_tokens[i]
if config.get("task_start_tokens", None)
else f"<s_{task_name}>",
prompt_end_token="<s_answer>" if "docvqa" in dataset_name_or_path else f"<s_{task_name}>",
sort_json_key=config.sort_json_key,
)
)
# prompt_end_token is used for ignoring a given prompt in a loss function
# for docvqa task, i.e., {"question": {used as a prompt}, "answer": {prediction target}},
# set prompt_end_token to "<s_answer>"
data_module.train_datasets = datasets["train"]
data_module.val_datasets = datasets["validation"]
logger = TensorBoardLogger(
save_dir=config.result_path,
name=config.exp_name,
version=config.exp_version,
default_hp_metric=False,
)
lr_callback = LearningRateMonitor(logging_interval="step")
checkpoint_callback = ModelCheckpoint(
monitor="val_metric",
dirpath=Path(config.result_path) / config.exp_name / config.exp_version,
filename="artifacts",
save_top_k=1,
save_last=False,
mode="min",
)
custom_ckpt = CustomCheckpointIO()
trainer = pl.Trainer(
resume_from_checkpoint=config.get("resume_from_checkpoint_path", None),
num_nodes=config.get("num_nodes", 1),
gpus=torch.cuda.device_count(),
strategy="ddp",
accelerator="gpu",
plugins=custom_ckpt,
max_epochs=config.max_epochs,
max_steps=config.max_steps,
val_check_interval=config.val_check_interval,
check_val_every_n_epoch=config.check_val_every_n_epoch,
gradient_clip_val=config.gradient_clip_val,
precision=16,
num_sanity_val_steps=0,
logger=logger,
callbacks=[lr_callback, checkpoint_callback],
)
trainer.fit(model_module, data_module)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, required=True)
parser.add_argument("--exp_version", type=str, required=False)
args, left_argv = parser.parse_known_args()
config = Config(args.config)
config.argv_update(left_argv)
config.exp_name = basename(args.config).split(".")[0]
config.exp_version = datetime.datetime.now().strftime("%Y%m%d_%H%M%S") if not args.exp_version else args.exp_version
save_config_file(config, Path(config.result_path) / config.exp_name / config.exp_version)
train(config)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment