import torch from peft import PeftModel from transformers import AutoTokenizer, AutoModel base_model_path = '../Finllm/Finllm_computing' lora_model_path = '../saves/Finllm_computing_train/lora/sft/checkpoint-4000' new_model_path = '../Finllm/Finllm_computing-merged' # Loading the base model and tokenzier model = AutoModel.from_pretrained( base_model_path, torch_dtype=torch.float16, trust_remote_code=True ) tokenzier = AutoTokenizer.from_pretrained( base_model_path, trust_remote_code=True ) # Loading the LoRA adapter lora_model = PeftModel.from_pretrained(model, lora_model_path, torch_dtype=torch.float16,) # Applying the LoRA new_model = lora_model.merge_and_unload() # Saving the target model to new model paths new_model.save_pretrained(new_model_path) tokenzier.save_pretrained(new_model_path)