dataset: target: dataset.realesrgan.RealESRGANDataset params: # Path to the file list. file_list: train_data_path/train.list out_size: 512 crop_type: center use_hflip: false use_rot: false blur_kernel_size: 21 kernel_list: ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso'] kernel_prob: [0.45, 0.25, 0.12, 0.03, 0.12, 0.03] sinc_prob: 0.1 blur_sigma: [0.2, 3] betag_range: [0.5, 4] betap_range: [1, 2] blur_kernel_size2: 21 kernel_list2: ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso'] kernel_prob2: [0.45, 0.25, 0.12, 0.03, 0.12, 0.03] sinc_prob2: 0.1 blur_sigma2: [0.2, 1.5] betag_range2: [0.5, 4] betap_range2: [1, 2] final_sinc_prob: 0.8 data_loader: batch_size: 1 shuffle: true num_workers: 2 prefetch_factor: 2 drop_last: true batch_transform: target: dataset.batch_transform.RealESRGANBatchTransform params: use_sharpener: false resize_hq: false # Queue size of training pool, this should be multiples of batch_size. queue_size: 128 # the first degradation process resize_prob: [0.2, 0.7, 0.1] # up, down, keep resize_range: [0.15, 1.5] gaussian_noise_prob: 0.5 noise_range: [1, 30] poisson_scale_range: [0.05, 3] gray_noise_prob: 0.4 jpeg_range: [30, 95] # the second degradation process stage2_scale: 4 second_blur_prob: 0.8 resize_prob2: [0.3, 0.4, 0.3] # up, down, keep resize_range2: [0.3, 1.2] gaussian_noise_prob2: 0.5 noise_range2: [1, 25] poisson_scale_range2: [0.05, 2.5] gray_noise_prob2: 0.4 jpeg_range2: [30, 95]