Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
DeepSolo_pytorch
Commits
cce6e1bf
Commit
cce6e1bf
authored
Nov 21, 2023
by
chenych
Browse files
First commit.
parents
Pipeline
#640
failed with stages
in 0 seconds
Changes
160
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
643 additions
and
0 deletions
+643
-0
configs/R_50/TotalText/finetune_150k_tt_mlt_13_15_textocr.yaml
...gs/R_50/TotalText/finetune_150k_tt_mlt_13_15_textocr.yaml
+23
-0
configs/R_50/pretrain/150k_tt.yaml
configs/R_50/pretrain/150k_tt.yaml
+23
-0
configs/R_50/pretrain/150k_tt_mlt_13_15.yaml
configs/R_50/pretrain/150k_tt_mlt_13_15.yaml
+23
-0
configs/R_50/pretrain/150k_tt_mlt_13_15_textocr.yaml
configs/R_50/pretrain/150k_tt_mlt_13_15_textocr.yaml
+23
-0
configs/Swin_S/Base_det.yaml
configs/Swin_S/Base_det.yaml
+65
-0
configs/Swin_S/TotalText/finetune_150k_tt_mlt_13_15.yaml
configs/Swin_S/TotalText/finetune_150k_tt_mlt_13_15.yaml
+23
-0
configs/Swin_S/pretrain/150k_tt_mlt_13_15.yaml
configs/Swin_S/pretrain/150k_tt_mlt_13_15.yaml
+23
-0
configs/Swin_T/Base_det.yaml
configs/Swin_T/Base_det.yaml
+65
-0
configs/Swin_T/TotalText/finetune_150k_tt_mlt_13_15.yaml
configs/Swin_T/TotalText/finetune_150k_tt_mlt_13_15.yaml
+23
-0
configs/Swin_T/pretrain/150k_tt_mlt_13_15.yaml
configs/Swin_T/pretrain/150k_tt_mlt_13_15.yaml
+23
-0
configs/ViTAEv2_S/Base_det.yaml
configs/ViTAEv2_S/Base_det.yaml
+64
-0
configs/ViTAEv2_S/IC15/finetune_150k_tt_mlt_13_15.yaml
configs/ViTAEv2_S/IC15/finetune_150k_tt_mlt_13_15.yaml
+38
-0
configs/ViTAEv2_S/IC15/finetune_150k_tt_mlt_13_15_textocr.yaml
...gs/ViTAEv2_S/IC15/finetune_150k_tt_mlt_13_15_textocr.yaml
+38
-0
configs/ViTAEv2_S/ReCTS/finetune.yaml
configs/ViTAEv2_S/ReCTS/finetune.yaml
+32
-0
configs/ViTAEv2_S/ReCTS/pretrain.yaml
configs/ViTAEv2_S/ReCTS/pretrain.yaml
+24
-0
configs/ViTAEv2_S/TotalText/finetune_150k_tt_mlt_13_15.yaml
configs/ViTAEv2_S/TotalText/finetune_150k_tt_mlt_13_15.yaml
+25
-0
configs/ViTAEv2_S/TotalText/finetune_150k_tt_mlt_13_15_textocr.yaml
...TAEv2_S/TotalText/finetune_150k_tt_mlt_13_15_textocr.yaml
+25
-0
configs/ViTAEv2_S/pretrain/150k_tt_mlt_13_15.yaml
configs/ViTAEv2_S/pretrain/150k_tt_mlt_13_15.yaml
+23
-0
configs/ViTAEv2_S/pretrain/150k_tt_mlt_13_15_textocr.yaml
configs/ViTAEv2_S/pretrain/150k_tt_mlt_13_15_textocr.yaml
+23
-0
configs/simple/test_simple.yaml
configs/simple/test_simple.yaml
+37
-0
No files found.
configs/R_50/TotalText/finetune_150k_tt_mlt_13_15_textocr.yaml
0 → 100644
View file @
cce6e1bf
_BASE_
:
"
../Base_det.yaml"
MODEL
:
WEIGHTS
:
"
output/R50/150k_tt_mlt_13_15_textocr/pretrain/model_final.pth"
DATASETS
:
TRAIN
:
("totaltext_train",)
TEST
:
("totaltext_test",)
SOLVER
:
IMS_PER_BATCH
:
8
BASE_LR
:
1e-5
LR_BACKBONE
:
1e-6
WARMUP_ITERS
:
0
STEPS
:
(100000,)
# no step
MAX_ITER
:
2000
CHECKPOINT_PERIOD
:
2000
TEST
:
EVAL_PERIOD
:
1000
OUTPUT_DIR
:
"
output/R50/150k_tt_mlt_13_15_textocr/finetune/totaltext"
\ No newline at end of file
configs/R_50/pretrain/150k_tt.yaml
0 → 100644
View file @
cce6e1bf
_BASE_
:
"
../Base_det.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/torchvision/R-50.pkl"
DATASETS
:
TRAIN
:
("syntext1","syntext2","totaltext_train",)
TEST
:
("totaltext_test",)
SOLVER
:
IMS_PER_BATCH
:
8
BASE_LR
:
1e-4
LR_BACKBONE
:
1e-5
WARMUP_ITERS
:
0
STEPS
:
(300000,)
MAX_ITER
:
350000
CHECKPOINT_PERIOD
:
100000
TEST
:
EVAL_PERIOD
:
10000
OUTPUT_DIR
:
"
output/R50/150k_tt/pretrain"
\ No newline at end of file
configs/R_50/pretrain/150k_tt_mlt_13_15.yaml
0 → 100644
View file @
cce6e1bf
_BASE_
:
"
../Base_det.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/torchvision/R-50.pkl"
DATASETS
:
TRAIN
:
("syntext1","syntext2","totaltext_train","mlt","ic13_train","ic15_train",)
TEST
:
("totaltext_test",)
SOLVER
:
IMS_PER_BATCH
:
8
BASE_LR
:
1e-4
LR_BACKBONE
:
1e-5
WARMUP_ITERS
:
0
STEPS
:
(320000,)
MAX_ITER
:
375000
CHECKPOINT_PERIOD
:
100000
TEST
:
EVAL_PERIOD
:
10000
OUTPUT_DIR
:
"
output/R50/150k_tt_mlt_13_15/pretrain"
\ No newline at end of file
configs/R_50/pretrain/150k_tt_mlt_13_15_textocr.yaml
0 → 100644
View file @
cce6e1bf
_BASE_
:
"
../Base_det.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/torchvision/R-50.pkl"
DATASETS
:
TRAIN
:
("syntext1","syntext2","totaltext_train","mlt","ic13_train","ic15_train","textocr1","textocr2",)
TEST
:
("totaltext_test",)
SOLVER
:
IMS_PER_BATCH
:
8
BASE_LR
:
1e-4
LR_BACKBONE
:
1e-5
WARMUP_ITERS
:
0
STEPS
:
(375000,)
MAX_ITER
:
435000
CHECKPOINT_PERIOD
:
100000
TEST
:
EVAL_PERIOD
:
10000
OUTPUT_DIR
:
"
output/R50/150k_tt_mlt_13_15_textocr/pretrain"
\ No newline at end of file
configs/Swin_S/Base_det.yaml
0 → 100644
View file @
cce6e1bf
MODEL
:
META_ARCHITECTURE
:
"
TransformerPureDetector"
MASK_ON
:
False
PIXEL_MEAN
:
[
123.675
,
116.280
,
103.530
]
PIXEL_STD
:
[
58.395
,
57.120
,
57.375
]
BACKBONE
:
NAME
:
"
build_swin_backbone"
FREEZE_AT
:
-1
SWIN
:
TYPE
:
'
small'
DROP_PATH_RATE
:
0.3
TRANSFORMER
:
ENABLED
:
True
NUM_FEATURE_LEVELS
:
4
TEMPERATURE
:
10000
ENC_LAYERS
:
6
DEC_LAYERS
:
6
DIM_FEEDFORWARD
:
1024
HIDDEN_DIM
:
256
DROPOUT
:
0.0
NHEADS
:
8
NUM_QUERIES
:
100
ENC_N_POINTS
:
4
DEC_N_POINTS
:
4
NUM_POINTS
:
25
INFERENCE_TH_TEST
:
0.4
LOSS
:
BEZIER_SAMPLE_POINTS
:
25
BEZIER_CLASS_WEIGHT
:
1.0
BEZIER_COORD_WEIGHT
:
1.0
POINT_CLASS_WEIGHT
:
1.0
POINT_COORD_WEIGHT
:
1.0
POINT_TEXT_WEIGHT
:
0.5
BOUNDARY_WEIGHT
:
0.5
SOLVER
:
WEIGHT_DECAY
:
1e-4
OPTIMIZER
:
"
ADAMW"
LR_BACKBONE_NAMES
:
[
'
backbone.0'
]
LR_LINEAR_PROJ_NAMES
:
[
'
reference_points'
,
'
sampling_offsets'
]
LR_LINEAR_PROJ_MULT
:
1.
CLIP_GRADIENTS
:
ENABLED
:
True
CLIP_TYPE
:
"
full_model"
CLIP_VALUE
:
0.1
NORM_TYPE
:
2.0
INPUT
:
HFLIP_TRAIN
:
False
MIN_SIZE_TRAIN
:
(480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800, 832, 864, 896)
MAX_SIZE_TRAIN
:
1600
MIN_SIZE_TEST
:
1000
MAX_SIZE_TEST
:
1892
CROP
:
ENABLED
:
True
CROP_INSTANCE
:
False
SIZE
:
[
0.1
,
0.1
]
FORMAT
:
"
RGB"
DATALOADER
:
NUM_WORKERS
:
8
VERSION
:
2
SEED
:
42
\ No newline at end of file
configs/Swin_S/TotalText/finetune_150k_tt_mlt_13_15.yaml
0 → 100644
View file @
cce6e1bf
_BASE_
:
"
../Base_det.yaml"
MODEL
:
WEIGHTS
:
"
output/SwinS/150k_tt_mlt_13_15/pretrain/model_final.pth"
DATASETS
:
TRAIN
:
("totaltext_train",)
TEST
:
("totaltext_test",)
SOLVER
:
IMS_PER_BATCH
:
8
BASE_LR
:
1e-5
LR_BACKBONE
:
1e-5
WARMUP_ITERS
:
0
STEPS
:
(100000,)
# no step
MAX_ITER
:
10000
CHECKPOINT_PERIOD
:
10000
TEST
:
EVAL_PERIOD
:
1000
OUTPUT_DIR
:
"
output/SwinS/150k_tt_mlt_13_15/finetune/totaltext"
\ No newline at end of file
configs/Swin_S/pretrain/150k_tt_mlt_13_15.yaml
0 → 100644
View file @
cce6e1bf
_BASE_
:
"
../Base_det.yaml"
MODEL
:
WEIGHTS
:
"
./pretrained_backbone/swin_small_patch4_window7_224_convert.pth"
DATASETS
:
TRAIN
:
("syntext1","syntext2","totaltext_train","mlt","ic13_train","ic15_train",)
TEST
:
("totaltext_test",)
SOLVER
:
IMS_PER_BATCH
:
8
BASE_LR
:
1e-4
LR_BACKBONE
:
1e-4
WARMUP_ITERS
:
0
STEPS
:
(320000,)
MAX_ITER
:
375000
CHECKPOINT_PERIOD
:
100000
TEST
:
EVAL_PERIOD
:
10000
OUTPUT_DIR
:
"
output/SwinS/150k_tt_mlt_13_15/pretrain"
\ No newline at end of file
configs/Swin_T/Base_det.yaml
0 → 100644
View file @
cce6e1bf
MODEL
:
META_ARCHITECTURE
:
"
TransformerPureDetector"
MASK_ON
:
False
PIXEL_MEAN
:
[
123.675
,
116.280
,
103.530
]
PIXEL_STD
:
[
58.395
,
57.120
,
57.375
]
BACKBONE
:
NAME
:
"
build_swin_backbone"
FREEZE_AT
:
-1
SWIN
:
TYPE
:
'
tiny'
DROP_PATH_RATE
:
0.2
TRANSFORMER
:
ENABLED
:
True
NUM_FEATURE_LEVELS
:
4
TEMPERATURE
:
10000
ENC_LAYERS
:
6
DEC_LAYERS
:
6
DIM_FEEDFORWARD
:
1024
HIDDEN_DIM
:
256
DROPOUT
:
0.0
NHEADS
:
8
NUM_QUERIES
:
100
ENC_N_POINTS
:
4
DEC_N_POINTS
:
4
NUM_POINTS
:
25
INFERENCE_TH_TEST
:
0.4
LOSS
:
BEZIER_SAMPLE_POINTS
:
25
BEZIER_CLASS_WEIGHT
:
1.0
BEZIER_COORD_WEIGHT
:
1.0
POINT_CLASS_WEIGHT
:
1.0
POINT_COORD_WEIGHT
:
1.0
POINT_TEXT_WEIGHT
:
0.5
BOUNDARY_WEIGHT
:
0.5
SOLVER
:
WEIGHT_DECAY
:
1e-4
OPTIMIZER
:
"
ADAMW"
LR_BACKBONE_NAMES
:
[
'
backbone.0'
]
LR_LINEAR_PROJ_NAMES
:
[
'
reference_points'
,
'
sampling_offsets'
]
LR_LINEAR_PROJ_MULT
:
1.
CLIP_GRADIENTS
:
ENABLED
:
True
CLIP_TYPE
:
"
full_model"
CLIP_VALUE
:
0.1
NORM_TYPE
:
2.0
INPUT
:
HFLIP_TRAIN
:
False
MIN_SIZE_TRAIN
:
(480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800, 832, 864, 896)
MAX_SIZE_TRAIN
:
1600
MIN_SIZE_TEST
:
1000
MAX_SIZE_TEST
:
1892
CROP
:
ENABLED
:
True
CROP_INSTANCE
:
False
SIZE
:
[
0.1
,
0.1
]
FORMAT
:
"
RGB"
DATALOADER
:
NUM_WORKERS
:
8
VERSION
:
2
SEED
:
42
\ No newline at end of file
configs/Swin_T/TotalText/finetune_150k_tt_mlt_13_15.yaml
0 → 100644
View file @
cce6e1bf
_BASE_
:
"
../Base_det.yaml"
MODEL
:
WEIGHTS
:
"
output/SwinT/150k_tt_mlt_13_15/pretrain/model_final.pth"
DATASETS
:
TRAIN
:
("totaltext_train",)
TEST
:
("totaltext_test",)
SOLVER
:
IMS_PER_BATCH
:
8
BASE_LR
:
1e-5
LR_BACKBONE
:
1e-5
WARMUP_ITERS
:
0
STEPS
:
(100000,)
# no step
MAX_ITER
:
10000
CHECKPOINT_PERIOD
:
2000
TEST
:
EVAL_PERIOD
:
1000
OUTPUT_DIR
:
"
output/SwinT/150k_tt_mlt_13_15/finetune/totaltext"
\ No newline at end of file
configs/Swin_T/pretrain/150k_tt_mlt_13_15.yaml
0 → 100644
View file @
cce6e1bf
_BASE_
:
"
../Base_det.yaml"
MODEL
:
WEIGHTS
:
"
./pretrained_backbone/swin_tiny_patch4_window7_224_convert.pth"
DATASETS
:
TRAIN
:
("syntext1","syntext2","totaltext_train","mlt","ic13_train","ic15_train",)
TEST
:
("totaltext_test",)
SOLVER
:
IMS_PER_BATCH
:
8
BASE_LR
:
1e-4
LR_BACKBONE
:
1e-4
WARMUP_ITERS
:
0
STEPS
:
(320000,)
MAX_ITER
:
375000
CHECKPOINT_PERIOD
:
100000
TEST
:
EVAL_PERIOD
:
10000
OUTPUT_DIR
:
"
output/SwinT/150k_tt_mlt_13_15/pretrain"
\ No newline at end of file
configs/ViTAEv2_S/Base_det.yaml
0 → 100644
View file @
cce6e1bf
MODEL
:
META_ARCHITECTURE
:
"
TransformerPureDetector"
MASK_ON
:
False
PIXEL_MEAN
:
[
123.675
,
116.280
,
103.530
]
PIXEL_STD
:
[
58.395
,
57.120
,
57.375
]
BACKBONE
:
NAME
:
"
build_vitaev2_backbone"
ViTAEv2
:
TYPE
:
'
vitaev2_s'
DROP_PATH_RATE
:
0.3
TRANSFORMER
:
ENABLED
:
True
NUM_FEATURE_LEVELS
:
4
TEMPERATURE
:
10000
ENC_LAYERS
:
6
DEC_LAYERS
:
6
DIM_FEEDFORWARD
:
1024
HIDDEN_DIM
:
256
DROPOUT
:
0.0
NHEADS
:
8
NUM_QUERIES
:
100
ENC_N_POINTS
:
4
DEC_N_POINTS
:
4
NUM_POINTS
:
25
INFERENCE_TH_TEST
:
0.4
LOSS
:
BEZIER_SAMPLE_POINTS
:
25
BEZIER_CLASS_WEIGHT
:
1.0
BEZIER_COORD_WEIGHT
:
1.0
POINT_CLASS_WEIGHT
:
1.0
POINT_COORD_WEIGHT
:
1.0
POINT_TEXT_WEIGHT
:
0.5
BOUNDARY_WEIGHT
:
0.5
SOLVER
:
WEIGHT_DECAY
:
1e-4
OPTIMIZER
:
"
ADAMW"
LR_BACKBONE_NAMES
:
[
'
backbone.0'
]
LR_LINEAR_PROJ_NAMES
:
[
'
reference_points'
,
'
sampling_offsets'
]
LR_LINEAR_PROJ_MULT
:
1.
CLIP_GRADIENTS
:
ENABLED
:
True
CLIP_TYPE
:
"
full_model"
CLIP_VALUE
:
0.1
NORM_TYPE
:
2.0
INPUT
:
HFLIP_TRAIN
:
False
MIN_SIZE_TRAIN
:
(480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800, 832, 864, 896)
MAX_SIZE_TRAIN
:
1600
MIN_SIZE_TEST
:
1024
MAX_SIZE_TEST
:
1892
CROP
:
ENABLED
:
True
CROP_INSTANCE
:
False
SIZE
:
[
0.1
,
0.1
]
FORMAT
:
"
RGB"
DATALOADER
:
NUM_WORKERS
:
8
VERSION
:
2
SEED
:
42
\ No newline at end of file
configs/ViTAEv2_S/IC15/finetune_150k_tt_mlt_13_15.yaml
0 → 100644
View file @
cce6e1bf
_BASE_
:
"
../Base_det.yaml"
MODEL
:
WEIGHTS
:
"
output/vitaev2_s/150k_tt_mlt_13_15/pretrain/model_final.pth"
ViTAEv2
:
DROP_PATH_RATE
:
0.2
TRANSFORMER
:
INFERENCE_TH_TEST
:
0.3
DATASETS
:
TRAIN
:
("ic15_train",)
TEST
:
("ic15_test",)
INPUT
:
MIN_SIZE_TRAIN
:
(800,900,1000,1100,1200,1300,1400)
MAX_SIZE_TRAIN
:
3000
MIN_SIZE_TEST
:
1440
MAX_SIZE_TEST
:
4000
CROP
:
ENABLED
:
False
ROTATE
:
False
SOLVER
:
IMS_PER_BATCH
:
8
BASE_LR
:
1e-5
LR_BACKBONE
:
1e-5
WARMUP_ITERS
:
0
STEPS
:
(100000,)
MAX_ITER
:
3000
CHECKPOINT_PERIOD
:
3000
TEST
:
EVAL_PERIOD
:
1000
# 1 - Generic, 2 - Weak, 3 - Strong (for icdar2015)
LEXICON_TYPE
:
3
OUTPUT_DIR
:
"
output/vitaev2_s/150k_tt_mlt_13_15/finetune/ic15"
\ No newline at end of file
configs/ViTAEv2_S/IC15/finetune_150k_tt_mlt_13_15_textocr.yaml
0 → 100644
View file @
cce6e1bf
_BASE_
:
"
../Base_det.yaml"
MODEL
:
WEIGHTS
:
"
output/vitaev2_s/150k_tt_mlt_13_15_textocr/pretrain/model_final.pth"
ViTAEv2
:
DROP_PATH_RATE
:
0.2
TRANSFORMER
:
INFERENCE_TH_TEST
:
0.3
DATASETS
:
TRAIN
:
("ic15_train",)
TEST
:
("ic15_test",)
INPUT
:
MIN_SIZE_TRAIN
:
(800,900,1000,1100,1200,1300,1400)
MAX_SIZE_TRAIN
:
3000
MIN_SIZE_TEST
:
1440
MAX_SIZE_TEST
:
4000
CROP
:
ENABLED
:
False
ROTATE
:
False
SOLVER
:
IMS_PER_BATCH
:
8
BASE_LR
:
1e-5
LR_BACKBONE
:
1e-5
WARMUP_ITERS
:
0
STEPS
:
(100000,)
MAX_ITER
:
1000
CHECKPOINT_PERIOD
:
1000
TEST
:
EVAL_PERIOD
:
500
# 1 - Generic, 2 - Weak, 3 - Strong (for icdar2015)
LEXICON_TYPE
:
3
OUTPUT_DIR
:
"
output/vitaev2_s/150k_tt_mlt_13_15_textocr/finetune/ic15"
\ No newline at end of file
configs/ViTAEv2_S/ReCTS/finetune.yaml
0 → 100644
View file @
cce6e1bf
_BASE_
:
"
../Base_det.yaml"
MODEL
:
WEIGHTS
:
"
./output/vitaev2_s/rects/pretrain/model_final.pth"
ViTAEv2
:
DROP_PATH_RATE
:
0.2
TRANSFORMER
:
VOC_SIZE
:
5462
CUSTOM_DICT
:
"
chn_cls_list"
INFERENCE_TH_TEST
:
0.35
LOSS
:
POINT_TEXT_WEIGHT
:
1.0
DATASETS
:
TRAIN
:
("rects_train", "rects_val",)
TEST
:
("rects_test",)
INPUT
:
ROTATE
:
False
SOLVER
:
IMS_PER_BATCH
:
8
BASE_LR
:
1e-5
LR_BACKBONE
:
1e-5
WARMUP_ITERS
:
0
STEPS
:
(20000,)
MAX_ITER
:
30000
CHECKPOINT_PERIOD
:
30000
TEST
:
EVAL_PERIOD
:
100000000
OUTPUT_DIR
:
"
output/vitaev2_s/rects/finetune"
\ No newline at end of file
configs/ViTAEv2_S/ReCTS/pretrain.yaml
0 → 100644
View file @
cce6e1bf
_BASE_
:
"
../Base_det.yaml"
MODEL
:
WEIGHTS
:
"
./pretrained_backbone/vitaev2_s_convert.pth"
TRANSFORMER
:
VOC_SIZE
:
5462
DATASETS
:
TRAIN
:
("chnsyn_train", "rects_train", "rects_val", "lsvt_train", "art_train",)
TEST
:
("totaltext_test",)
SOLVER
:
IMS_PER_BATCH
:
8
BASE_LR
:
1e-4
LR_BACKBONE
:
1e-4
WARMUP_ITERS
:
0
STEPS
:
(300000,)
MAX_ITER
:
400000
CHECKPOINT_PERIOD
:
300000
TEST
:
EVAL_PERIOD
:
100000000
OUTPUT_DIR
:
"
output/vitaev2_s/rects/pretrain"
configs/ViTAEv2_S/TotalText/finetune_150k_tt_mlt_13_15.yaml
0 → 100644
View file @
cce6e1bf
_BASE_
:
"
../Base_det.yaml"
MODEL
:
WEIGHTS
:
"
output/vitaev2_s/150k_tt_mlt_13_15/pretrain/model_final.pth"
ViTAEv2
:
DROP_PATH_RATE
:
0.2
DATASETS
:
TRAIN
:
("totaltext_train",)
TEST
:
("totaltext_test",)
SOLVER
:
IMS_PER_BATCH
:
8
BASE_LR
:
1e-5
LR_BACKBONE
:
1e-5
WARMUP_ITERS
:
0
STEPS
:
(100000,)
MAX_ITER
:
10000
CHECKPOINT_PERIOD
:
10000
TEST
:
EVAL_PERIOD
:
1000
OUTPUT_DIR
:
"
output/vitaev2_s/150k_tt_mlt_13_15/finetune/totaltext"
\ No newline at end of file
configs/ViTAEv2_S/TotalText/finetune_150k_tt_mlt_13_15_textocr.yaml
0 → 100644
View file @
cce6e1bf
_BASE_
:
"
../Base_det.yaml"
MODEL
:
WEIGHTS
:
"
output/vitaev2_s/150k_tt_mlt_13_15_textocr/pretrain/model_final.pth"
ViTAEv2
:
DROP_PATH_RATE
:
0.2
DATASETS
:
TRAIN
:
("totaltext_train",)
TEST
:
("totaltext_test",)
SOLVER
:
IMS_PER_BATCH
:
8
BASE_LR
:
1e-5
LR_BACKBONE
:
1e-5
WARMUP_ITERS
:
0
STEPS
:
(100000,)
MAX_ITER
:
2000
CHECKPOINT_PERIOD
:
2000
TEST
:
EVAL_PERIOD
:
1000
OUTPUT_DIR
:
"
output/vitaev2_s/150k_tt_mlt_13_15_textocr/finetune/totaltext"
\ No newline at end of file
configs/ViTAEv2_S/pretrain/150k_tt_mlt_13_15.yaml
0 → 100644
View file @
cce6e1bf
_BASE_
:
"
../Base_det.yaml"
MODEL
:
WEIGHTS
:
"
pretrained_backbone/vitaev2_s_convert.pth"
DATASETS
:
TRAIN
:
("syntext1","syntext2","totaltext_train","mlt","ic13_train","ic15_train",)
TEST
:
("totaltext_test",)
SOLVER
:
IMS_PER_BATCH
:
8
BASE_LR
:
1e-4
LR_BACKBONE
:
1e-4
WARMUP_ITERS
:
0
STEPS
:
(320000,)
MAX_ITER
:
375000
CHECKPOINT_PERIOD
:
100000
TEST
:
EVAL_PERIOD
:
10000
OUTPUT_DIR
:
"
output/vitaev2_s/150k_tt_mlt_13_15/pretrain"
\ No newline at end of file
configs/ViTAEv2_S/pretrain/150k_tt_mlt_13_15_textocr.yaml
0 → 100644
View file @
cce6e1bf
_BASE_
:
"
../Base_det.yaml"
MODEL
:
WEIGHTS
:
"
pretrained_backbone/vitaev2_s_convert.pth"
DATASETS
:
TRAIN
:
("syntext1","syntext2","totaltext_train","mlt","ic13_train","ic15_train","textocr1","textocr2")
TEST
:
("totaltext_test",)
SOLVER
:
IMS_PER_BATCH
:
8
BASE_LR
:
1e-4
LR_BACKBONE
:
1e-4
WARMUP_ITERS
:
0
STEPS
:
(375000,)
MAX_ITER
:
435000
CHECKPOINT_PERIOD
:
100000
TEST
:
EVAL_PERIOD
:
10000
OUTPUT_DIR
:
"
output/vitaev2_s/150k_tt_mlt_13_15_textocr/pretrain"
\ No newline at end of file
configs/simple/test_simple.yaml
0 → 100644
View file @
cce6e1bf
_BASE_
:
"
../R_50/Base_det.yaml"
MODEL
:
WEIGHTS
:
"
pretrained_models/CTW1500/finetune_ctw_96voc.pth"
# 可替换为自己的预训练模型地址
TRANSFORMER
:
VOC_SIZE
:
96
NUM_POINTS
:
50
LOSS
:
BEZIER_SAMPLE_POINTS
:
50
# the same as NUM_POINTS
BEZIER_CLASS_WEIGHT
:
1.0
BEZIER_COORD_WEIGHT
:
0.5
POINT_CLASS_WEIGHT
:
1.0
POINT_COORD_WEIGHT
:
0.5
POINT_TEXT_WEIGHT
:
1.0
BOUNDARY_WEIGHT
:
0.25
DATASETS
:
TRAIN
:
("simple_train",)
TEST
:
("simple_test",)
INPUT
:
MIN_SIZE_TEST
:
1000
MAX_SIZE_TEST
:
1200
SOLVER
:
IMS_PER_BATCH
:
8
BASE_LR
:
5e-5
LR_BACKBONE
:
5e-6
WARMUP_ITERS
:
0
STEPS
:
(8000,)
MAX_ITER
:
12000
CHECKPOINT_PERIOD
:
4000
TEST
:
EVAL_PERIOD
:
1000
OUTPUT_DIR
:
"
output/R50/simple/pretrain_maxlen50_96voc"
Prev
1
2
3
4
5
6
7
8
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment