Commit cce6e1bf authored by chenych's avatar chenych
Browse files

First commit.

parents
Pipeline #640 failed with stages
in 0 seconds
_BASE_: "../Base_det.yaml"
MODEL:
WEIGHTS: "output/R50/150k_tt_mlt_13_15_textocr/pretrain/model_final.pth"
DATASETS:
TRAIN: ("totaltext_train",)
TEST: ("totaltext_test",)
SOLVER:
IMS_PER_BATCH: 8
BASE_LR: 1e-5
LR_BACKBONE: 1e-6
WARMUP_ITERS: 0
STEPS: (100000,) # no step
MAX_ITER: 2000
CHECKPOINT_PERIOD: 2000
TEST:
EVAL_PERIOD: 1000
OUTPUT_DIR: "output/R50/150k_tt_mlt_13_15_textocr/finetune/totaltext"
\ No newline at end of file
_BASE_: "../Base_det.yaml"
MODEL:
WEIGHTS: "detectron2://ImageNetPretrained/torchvision/R-50.pkl"
DATASETS:
TRAIN: ("syntext1","syntext2","totaltext_train",)
TEST: ("totaltext_test",)
SOLVER:
IMS_PER_BATCH: 8
BASE_LR: 1e-4
LR_BACKBONE: 1e-5
WARMUP_ITERS: 0
STEPS: (300000,)
MAX_ITER: 350000
CHECKPOINT_PERIOD: 100000
TEST:
EVAL_PERIOD: 10000
OUTPUT_DIR: "output/R50/150k_tt/pretrain"
\ No newline at end of file
_BASE_: "../Base_det.yaml"
MODEL:
WEIGHTS: "detectron2://ImageNetPretrained/torchvision/R-50.pkl"
DATASETS:
TRAIN: ("syntext1","syntext2","totaltext_train","mlt","ic13_train","ic15_train",)
TEST: ("totaltext_test",)
SOLVER:
IMS_PER_BATCH: 8
BASE_LR: 1e-4
LR_BACKBONE: 1e-5
WARMUP_ITERS: 0
STEPS: (320000,)
MAX_ITER: 375000
CHECKPOINT_PERIOD: 100000
TEST:
EVAL_PERIOD: 10000
OUTPUT_DIR: "output/R50/150k_tt_mlt_13_15/pretrain"
\ No newline at end of file
_BASE_: "../Base_det.yaml"
MODEL:
WEIGHTS: "detectron2://ImageNetPretrained/torchvision/R-50.pkl"
DATASETS:
TRAIN: ("syntext1","syntext2","totaltext_train","mlt","ic13_train","ic15_train","textocr1","textocr2",)
TEST: ("totaltext_test",)
SOLVER:
IMS_PER_BATCH: 8
BASE_LR: 1e-4
LR_BACKBONE: 1e-5
WARMUP_ITERS: 0
STEPS: (375000,)
MAX_ITER: 435000
CHECKPOINT_PERIOD: 100000
TEST:
EVAL_PERIOD: 10000
OUTPUT_DIR: "output/R50/150k_tt_mlt_13_15_textocr/pretrain"
\ No newline at end of file
MODEL:
META_ARCHITECTURE: "TransformerPureDetector"
MASK_ON: False
PIXEL_MEAN: [123.675, 116.280, 103.530]
PIXEL_STD: [58.395, 57.120, 57.375]
BACKBONE:
NAME: "build_swin_backbone"
FREEZE_AT: -1
SWIN:
TYPE: 'small'
DROP_PATH_RATE: 0.3
TRANSFORMER:
ENABLED: True
NUM_FEATURE_LEVELS: 4
TEMPERATURE: 10000
ENC_LAYERS: 6
DEC_LAYERS: 6
DIM_FEEDFORWARD: 1024
HIDDEN_DIM: 256
DROPOUT: 0.0
NHEADS: 8
NUM_QUERIES: 100
ENC_N_POINTS: 4
DEC_N_POINTS: 4
NUM_POINTS: 25
INFERENCE_TH_TEST: 0.4
LOSS:
BEZIER_SAMPLE_POINTS: 25
BEZIER_CLASS_WEIGHT: 1.0
BEZIER_COORD_WEIGHT: 1.0
POINT_CLASS_WEIGHT: 1.0
POINT_COORD_WEIGHT: 1.0
POINT_TEXT_WEIGHT: 0.5
BOUNDARY_WEIGHT: 0.5
SOLVER:
WEIGHT_DECAY: 1e-4
OPTIMIZER: "ADAMW"
LR_BACKBONE_NAMES: ['backbone.0']
LR_LINEAR_PROJ_NAMES: ['reference_points', 'sampling_offsets']
LR_LINEAR_PROJ_MULT: 1.
CLIP_GRADIENTS:
ENABLED: True
CLIP_TYPE: "full_model"
CLIP_VALUE: 0.1
NORM_TYPE: 2.0
INPUT:
HFLIP_TRAIN: False
MIN_SIZE_TRAIN: (480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800, 832, 864, 896)
MAX_SIZE_TRAIN: 1600
MIN_SIZE_TEST: 1000
MAX_SIZE_TEST: 1892
CROP:
ENABLED: True
CROP_INSTANCE: False
SIZE: [0.1, 0.1]
FORMAT: "RGB"
DATALOADER:
NUM_WORKERS: 8
VERSION: 2
SEED: 42
\ No newline at end of file
_BASE_: "../Base_det.yaml"
MODEL:
WEIGHTS: "output/SwinS/150k_tt_mlt_13_15/pretrain/model_final.pth"
DATASETS:
TRAIN: ("totaltext_train",)
TEST: ("totaltext_test",)
SOLVER:
IMS_PER_BATCH: 8
BASE_LR: 1e-5
LR_BACKBONE: 1e-5
WARMUP_ITERS: 0
STEPS: (100000,) # no step
MAX_ITER: 10000
CHECKPOINT_PERIOD: 10000
TEST:
EVAL_PERIOD: 1000
OUTPUT_DIR: "output/SwinS/150k_tt_mlt_13_15/finetune/totaltext"
\ No newline at end of file
_BASE_: "../Base_det.yaml"
MODEL:
WEIGHTS: "./pretrained_backbone/swin_small_patch4_window7_224_convert.pth"
DATASETS:
TRAIN: ("syntext1","syntext2","totaltext_train","mlt","ic13_train","ic15_train",)
TEST: ("totaltext_test",)
SOLVER:
IMS_PER_BATCH: 8
BASE_LR: 1e-4
LR_BACKBONE: 1e-4
WARMUP_ITERS: 0
STEPS: (320000,)
MAX_ITER: 375000
CHECKPOINT_PERIOD: 100000
TEST:
EVAL_PERIOD: 10000
OUTPUT_DIR: "output/SwinS/150k_tt_mlt_13_15/pretrain"
\ No newline at end of file
MODEL:
META_ARCHITECTURE: "TransformerPureDetector"
MASK_ON: False
PIXEL_MEAN: [123.675, 116.280, 103.530]
PIXEL_STD: [58.395, 57.120, 57.375]
BACKBONE:
NAME: "build_swin_backbone"
FREEZE_AT: -1
SWIN:
TYPE: 'tiny'
DROP_PATH_RATE: 0.2
TRANSFORMER:
ENABLED: True
NUM_FEATURE_LEVELS: 4
TEMPERATURE: 10000
ENC_LAYERS: 6
DEC_LAYERS: 6
DIM_FEEDFORWARD: 1024
HIDDEN_DIM: 256
DROPOUT: 0.0
NHEADS: 8
NUM_QUERIES: 100
ENC_N_POINTS: 4
DEC_N_POINTS: 4
NUM_POINTS: 25
INFERENCE_TH_TEST: 0.4
LOSS:
BEZIER_SAMPLE_POINTS: 25
BEZIER_CLASS_WEIGHT: 1.0
BEZIER_COORD_WEIGHT: 1.0
POINT_CLASS_WEIGHT: 1.0
POINT_COORD_WEIGHT: 1.0
POINT_TEXT_WEIGHT: 0.5
BOUNDARY_WEIGHT: 0.5
SOLVER:
WEIGHT_DECAY: 1e-4
OPTIMIZER: "ADAMW"
LR_BACKBONE_NAMES: ['backbone.0']
LR_LINEAR_PROJ_NAMES: ['reference_points', 'sampling_offsets']
LR_LINEAR_PROJ_MULT: 1.
CLIP_GRADIENTS:
ENABLED: True
CLIP_TYPE: "full_model"
CLIP_VALUE: 0.1
NORM_TYPE: 2.0
INPUT:
HFLIP_TRAIN: False
MIN_SIZE_TRAIN: (480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800, 832, 864, 896)
MAX_SIZE_TRAIN: 1600
MIN_SIZE_TEST: 1000
MAX_SIZE_TEST: 1892
CROP:
ENABLED: True
CROP_INSTANCE: False
SIZE: [0.1, 0.1]
FORMAT: "RGB"
DATALOADER:
NUM_WORKERS: 8
VERSION: 2
SEED: 42
\ No newline at end of file
_BASE_: "../Base_det.yaml"
MODEL:
WEIGHTS: "output/SwinT/150k_tt_mlt_13_15/pretrain/model_final.pth"
DATASETS:
TRAIN: ("totaltext_train",)
TEST: ("totaltext_test",)
SOLVER:
IMS_PER_BATCH: 8
BASE_LR: 1e-5
LR_BACKBONE: 1e-5
WARMUP_ITERS: 0
STEPS: (100000,) # no step
MAX_ITER: 10000
CHECKPOINT_PERIOD: 2000
TEST:
EVAL_PERIOD: 1000
OUTPUT_DIR: "output/SwinT/150k_tt_mlt_13_15/finetune/totaltext"
\ No newline at end of file
_BASE_: "../Base_det.yaml"
MODEL:
WEIGHTS: "./pretrained_backbone/swin_tiny_patch4_window7_224_convert.pth"
DATASETS:
TRAIN: ("syntext1","syntext2","totaltext_train","mlt","ic13_train","ic15_train",)
TEST: ("totaltext_test",)
SOLVER:
IMS_PER_BATCH: 8
BASE_LR: 1e-4
LR_BACKBONE: 1e-4
WARMUP_ITERS: 0
STEPS: (320000,)
MAX_ITER: 375000
CHECKPOINT_PERIOD: 100000
TEST:
EVAL_PERIOD: 10000
OUTPUT_DIR: "output/SwinT/150k_tt_mlt_13_15/pretrain"
\ No newline at end of file
MODEL:
META_ARCHITECTURE: "TransformerPureDetector"
MASK_ON: False
PIXEL_MEAN: [123.675, 116.280, 103.530]
PIXEL_STD: [58.395, 57.120, 57.375]
BACKBONE:
NAME: "build_vitaev2_backbone"
ViTAEv2:
TYPE: 'vitaev2_s'
DROP_PATH_RATE: 0.3
TRANSFORMER:
ENABLED: True
NUM_FEATURE_LEVELS: 4
TEMPERATURE: 10000
ENC_LAYERS: 6
DEC_LAYERS: 6
DIM_FEEDFORWARD: 1024
HIDDEN_DIM: 256
DROPOUT: 0.0
NHEADS: 8
NUM_QUERIES: 100
ENC_N_POINTS: 4
DEC_N_POINTS: 4
NUM_POINTS: 25
INFERENCE_TH_TEST: 0.4
LOSS:
BEZIER_SAMPLE_POINTS: 25
BEZIER_CLASS_WEIGHT: 1.0
BEZIER_COORD_WEIGHT: 1.0
POINT_CLASS_WEIGHT: 1.0
POINT_COORD_WEIGHT: 1.0
POINT_TEXT_WEIGHT: 0.5
BOUNDARY_WEIGHT: 0.5
SOLVER:
WEIGHT_DECAY: 1e-4
OPTIMIZER: "ADAMW"
LR_BACKBONE_NAMES: ['backbone.0']
LR_LINEAR_PROJ_NAMES: ['reference_points', 'sampling_offsets']
LR_LINEAR_PROJ_MULT: 1.
CLIP_GRADIENTS:
ENABLED: True
CLIP_TYPE: "full_model"
CLIP_VALUE: 0.1
NORM_TYPE: 2.0
INPUT:
HFLIP_TRAIN: False
MIN_SIZE_TRAIN: (480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800, 832, 864, 896)
MAX_SIZE_TRAIN: 1600
MIN_SIZE_TEST: 1024
MAX_SIZE_TEST: 1892
CROP:
ENABLED: True
CROP_INSTANCE: False
SIZE: [0.1, 0.1]
FORMAT: "RGB"
DATALOADER:
NUM_WORKERS: 8
VERSION: 2
SEED: 42
\ No newline at end of file
_BASE_: "../Base_det.yaml"
MODEL:
WEIGHTS: "output/vitaev2_s/150k_tt_mlt_13_15/pretrain/model_final.pth"
ViTAEv2:
DROP_PATH_RATE: 0.2
TRANSFORMER:
INFERENCE_TH_TEST: 0.3
DATASETS:
TRAIN: ("ic15_train",)
TEST: ("ic15_test",)
INPUT:
MIN_SIZE_TRAIN: (800,900,1000,1100,1200,1300,1400)
MAX_SIZE_TRAIN: 3000
MIN_SIZE_TEST: 1440
MAX_SIZE_TEST: 4000
CROP:
ENABLED: False
ROTATE: False
SOLVER:
IMS_PER_BATCH: 8
BASE_LR: 1e-5
LR_BACKBONE: 1e-5
WARMUP_ITERS: 0
STEPS: (100000,)
MAX_ITER: 3000
CHECKPOINT_PERIOD: 3000
TEST:
EVAL_PERIOD: 1000
# 1 - Generic, 2 - Weak, 3 - Strong (for icdar2015)
LEXICON_TYPE: 3
OUTPUT_DIR: "output/vitaev2_s/150k_tt_mlt_13_15/finetune/ic15"
\ No newline at end of file
_BASE_: "../Base_det.yaml"
MODEL:
WEIGHTS: "output/vitaev2_s/150k_tt_mlt_13_15_textocr/pretrain/model_final.pth"
ViTAEv2:
DROP_PATH_RATE: 0.2
TRANSFORMER:
INFERENCE_TH_TEST: 0.3
DATASETS:
TRAIN: ("ic15_train",)
TEST: ("ic15_test",)
INPUT:
MIN_SIZE_TRAIN: (800,900,1000,1100,1200,1300,1400)
MAX_SIZE_TRAIN: 3000
MIN_SIZE_TEST: 1440
MAX_SIZE_TEST: 4000
CROP:
ENABLED: False
ROTATE: False
SOLVER:
IMS_PER_BATCH: 8
BASE_LR: 1e-5
LR_BACKBONE: 1e-5
WARMUP_ITERS: 0
STEPS: (100000,)
MAX_ITER: 1000
CHECKPOINT_PERIOD: 1000
TEST:
EVAL_PERIOD: 500
# 1 - Generic, 2 - Weak, 3 - Strong (for icdar2015)
LEXICON_TYPE: 3
OUTPUT_DIR: "output/vitaev2_s/150k_tt_mlt_13_15_textocr/finetune/ic15"
\ No newline at end of file
_BASE_: "../Base_det.yaml"
MODEL:
WEIGHTS: "./output/vitaev2_s/rects/pretrain/model_final.pth"
ViTAEv2:
DROP_PATH_RATE: 0.2
TRANSFORMER:
VOC_SIZE: 5462
CUSTOM_DICT: "chn_cls_list"
INFERENCE_TH_TEST: 0.35
LOSS:
POINT_TEXT_WEIGHT: 1.0
DATASETS:
TRAIN: ("rects_train", "rects_val",)
TEST: ("rects_test",)
INPUT:
ROTATE: False
SOLVER:
IMS_PER_BATCH: 8
BASE_LR: 1e-5
LR_BACKBONE: 1e-5
WARMUP_ITERS: 0
STEPS: (20000,)
MAX_ITER: 30000
CHECKPOINT_PERIOD: 30000
TEST:
EVAL_PERIOD: 100000000
OUTPUT_DIR: "output/vitaev2_s/rects/finetune"
\ No newline at end of file
_BASE_: "../Base_det.yaml"
MODEL:
WEIGHTS: "./pretrained_backbone/vitaev2_s_convert.pth"
TRANSFORMER:
VOC_SIZE: 5462
DATASETS:
TRAIN: ("chnsyn_train", "rects_train", "rects_val", "lsvt_train", "art_train",)
TEST: ("totaltext_test",)
SOLVER:
IMS_PER_BATCH: 8
BASE_LR: 1e-4
LR_BACKBONE: 1e-4
WARMUP_ITERS: 0
STEPS: (300000,)
MAX_ITER: 400000
CHECKPOINT_PERIOD: 300000
TEST:
EVAL_PERIOD: 100000000
OUTPUT_DIR: "output/vitaev2_s/rects/pretrain"
_BASE_: "../Base_det.yaml"
MODEL:
WEIGHTS: "output/vitaev2_s/150k_tt_mlt_13_15/pretrain/model_final.pth"
ViTAEv2:
DROP_PATH_RATE: 0.2
DATASETS:
TRAIN: ("totaltext_train",)
TEST: ("totaltext_test",)
SOLVER:
IMS_PER_BATCH: 8
BASE_LR: 1e-5
LR_BACKBONE: 1e-5
WARMUP_ITERS: 0
STEPS: (100000,)
MAX_ITER: 10000
CHECKPOINT_PERIOD: 10000
TEST:
EVAL_PERIOD: 1000
OUTPUT_DIR: "output/vitaev2_s/150k_tt_mlt_13_15/finetune/totaltext"
\ No newline at end of file
_BASE_: "../Base_det.yaml"
MODEL:
WEIGHTS: "output/vitaev2_s/150k_tt_mlt_13_15_textocr/pretrain/model_final.pth"
ViTAEv2:
DROP_PATH_RATE: 0.2
DATASETS:
TRAIN: ("totaltext_train",)
TEST: ("totaltext_test",)
SOLVER:
IMS_PER_BATCH: 8
BASE_LR: 1e-5
LR_BACKBONE: 1e-5
WARMUP_ITERS: 0
STEPS: (100000,)
MAX_ITER: 2000
CHECKPOINT_PERIOD: 2000
TEST:
EVAL_PERIOD: 1000
OUTPUT_DIR: "output/vitaev2_s/150k_tt_mlt_13_15_textocr/finetune/totaltext"
\ No newline at end of file
_BASE_: "../Base_det.yaml"
MODEL:
WEIGHTS: "pretrained_backbone/vitaev2_s_convert.pth"
DATASETS:
TRAIN: ("syntext1","syntext2","totaltext_train","mlt","ic13_train","ic15_train",)
TEST: ("totaltext_test",)
SOLVER:
IMS_PER_BATCH: 8
BASE_LR: 1e-4
LR_BACKBONE: 1e-4
WARMUP_ITERS: 0
STEPS: (320000,)
MAX_ITER: 375000
CHECKPOINT_PERIOD: 100000
TEST:
EVAL_PERIOD: 10000
OUTPUT_DIR: "output/vitaev2_s/150k_tt_mlt_13_15/pretrain"
\ No newline at end of file
_BASE_: "../Base_det.yaml"
MODEL:
WEIGHTS: "pretrained_backbone/vitaev2_s_convert.pth"
DATASETS:
TRAIN: ("syntext1","syntext2","totaltext_train","mlt","ic13_train","ic15_train","textocr1","textocr2")
TEST: ("totaltext_test",)
SOLVER:
IMS_PER_BATCH: 8
BASE_LR: 1e-4
LR_BACKBONE: 1e-4
WARMUP_ITERS: 0
STEPS: (375000,)
MAX_ITER: 435000
CHECKPOINT_PERIOD: 100000
TEST:
EVAL_PERIOD: 10000
OUTPUT_DIR: "output/vitaev2_s/150k_tt_mlt_13_15_textocr/pretrain"
\ No newline at end of file
_BASE_: "../R_50/Base_det.yaml"
MODEL:
WEIGHTS: "pretrained_models/CTW1500/finetune_ctw_96voc.pth" # 可替换为自己的预训练模型地址
TRANSFORMER:
VOC_SIZE: 96
NUM_POINTS: 50
LOSS:
BEZIER_SAMPLE_POINTS: 50 # the same as NUM_POINTS
BEZIER_CLASS_WEIGHT: 1.0
BEZIER_COORD_WEIGHT: 0.5
POINT_CLASS_WEIGHT: 1.0
POINT_COORD_WEIGHT: 0.5
POINT_TEXT_WEIGHT: 1.0
BOUNDARY_WEIGHT: 0.25
DATASETS:
TRAIN: ("simple_train",)
TEST: ("simple_test",)
INPUT:
MIN_SIZE_TEST: 1000
MAX_SIZE_TEST: 1200
SOLVER:
IMS_PER_BATCH: 8
BASE_LR: 5e-5
LR_BACKBONE: 5e-6
WARMUP_ITERS: 0
STEPS: (8000,)
MAX_ITER: 12000
CHECKPOINT_PERIOD: 4000
TEST:
EVAL_PERIOD: 1000
OUTPUT_DIR: "output/R50/simple/pretrain_maxlen50_96voc"
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment