parser.add_argument("--model","-m",default="hf",help="Name of model e.g. `hf`")
parser.add_argument(
"--tasks",
"-t",
default=None,
metavar="task1,task2",
help="To get full list of tasks, use the command lm-eval --tasks list",
)
parser.add_argument(
"--model_args",
"-a",
default="",
help="Comma separated string arguments for model, e.g. `pretrained=EleutherAI/pythia-160m,dtype=float32`",
)
parser.add_argument(
"--num_fewshot",
"-f",
type=int,
default=None,
metavar="N",
help="Number of examples in few-shot context",
)
parser.add_argument(
"--batch_size",
"-b",
type=str,
default=1,
metavar="auto|auto:N|N",
help="Acceptable values are 'auto', 'auto:N' or N, where N is an integer. Default 1.",
)
parser.add_argument(
"--max_batch_size",
type=int,
default=None,
metavar="N",
help="Maximal batch size to try with --batch_size auto.",
)
parser.add_argument(
"--device",
type=str,
default=None,
help="Device to use (e.g. cuda, cuda:0, cpu).",
)
parser.add_argument(
"--output_path",
"-o",
default=None,
type=str,
metavar="DIR|DIR/file.json",
help="The path to the output file where the result metrics will be saved. If the path is a directory and log_samples is true, the results will be saved in the directory. Else the parent directory will be used.",
)
parser.add_argument(
"--limit",
"-L",
type=float,
default=None,
metavar="N|0<N<1",
help="Limit the number of examples per task. "
"If <1, limit is a percentage of the total number of examples.",
)
parser.add_argument(
"--use_cache",
"-c",
type=str,
default=None,
metavar="DIR",
help="A path to a sqlite db file for caching model responses. `None` if not caching.",
)
parser.add_argument(
"--cache_requests",
type=str,
default=None,
choices=["true","refresh","delete"],
help="Speed up evaluation by caching the building of dataset requests. `None` if not caching.",
)
parser.add_argument(
"--check_integrity",
action="store_true",
help="Whether to run the relevant part of the test suite for the tasks.",
)
parser.add_argument(
"--write_out",
"-w",
action="store_true",
default=False,
help="Prints the prompt for the first few documents.",
)
parser.add_argument(
"--log_samples",
"-s",
action="store_true",
default=False,
help="If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis. Use with --output_path.",
)
parser.add_argument(
"--show_config",
action="store_true",
default=False,
help="If True, shows the the full config of all tasks at the end of the evaluation.",
)
parser.add_argument(
"--include_path",
type=str,
default=None,
metavar="DIR",
help="Additional path to include if there are external tasks to include.",
)
parser.add_argument(
"--gen_kwargs",
default=None,
help=(
"String arguments for model generation on greedy_until tasks,"
" e.g. `temperature=0,top_k=0,top_p=0`."
),
)
parser.add_argument(
"--verbosity",
"-v",
type=str.upper,
default="INFO",
metavar="CRITICAL|ERROR|WARNING|INFO|DEBUG",
help="Controls the reported logging error level. Set to DEBUG when testing + adding new task configurations for comprehensive log output.",
)
parser.add_argument(
"--wandb_args",
default="",
help="Comma separated string arguments passed to wandb.init, e.g. `project=lm-eval,job_type=eval",
)
parser.add_argument(
"--predict_only",
"-x",
action="store_true",
default=False,
help="Use with --log_samples. Only model outputs will be saved and metrics will not be evaluated.",
)
parser.add_argument(
"--seed",
type=partial(_int_or_none_list_arg_type,3),
default="0,1234,1234",# for backward compatibility
help=(
"Set seed for python's random, numpy and torch.\n"
"Accepts a comma-separated list of 3 values for python's random, numpy, and torch seeds, respectively, "
"or a single integer to set the same seed for all three.\n"
"The values are either an integer or 'None' to not set the seed. Default is `0,1234,1234` (for backward compatibility).\n"
"E.g. `--seed 0,None,8` sets `random.seed(0)` and `torch.manual_seed(8)`. Here numpy's seed is not set since the second value is `None`.\n"
"E.g, `--seed 42` sets all three seeds to 42."
),
)
parser.add_argument(
"--trust_remote_code",
action="store_true",
help="Sets trust_remote_code to True to execute code to create HF Datasets from the Hub",
]# we don't want errors if a wildcard ("*") task name was used
iftask_missing:
missing=", ".join(task_missing)
eval_logger.error(
f"Tasks were not found: {missing}\n"
f"{utils.SPACING}Try `lm-eval --tasks list` for list of available tasks",
)
raiseValueError(
f"Tasks not found: {missing}. Try `lm-eval --tasks list` for list of available tasks, or '--verbosity DEBUG' to troubleshoot task registration issues."
)
ifargs.output_path:
path=Path(args.output_path)
# check if file or 'dir/results.json' exists
ifpath.is_file():
raiseFileExistsError(f"File already exists at {path}")
f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
# returns task_hierarchy tracking which groups contain which subtasks,
# and a list of TaskOutput classes for each non-group subtask
returntask_hierarchy,[xforxinoutputsifx.task]
defprint_writeout(task)->None:
forinstintask.instances:
# print the prompt for the first few documents
ifinst.doc_id<1:
eval_logger.info(
f"Task: {task}; document {inst.doc_id}; context prompt (starting on next line):\
\n{inst.args[0]}\n(end of prompt on previous line)\ntarget string or answer choice index (starting on next line):\n{task.doc_to_target(inst.doc)}\n(end of target on previous line)"