Commit 1e5cf81d authored by chenych's avatar chenych
Browse files

Add deepseek-v3.2-exp

parents
# Contributors
None
\ No newline at end of file
MIT License
Copyright (c) 2025 DeepSeek
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
# DeepSeek-V3.2-Exp
## 论文
[DeepSeek_V3.2](./DeepSeek_V3_2.pdf)
## 模型结构
<div align=center>
<img src="./doc/arch.png"/>
</div>
## 算法原理
## 环境配置
### 硬件需求
DCU型号:K100AI,节点数量:4台,卡数:32 张。
`-v 路径``docker_name``imageID`根据实际情况修改
### Docker(方法一)
```bash
dcoker pull image.sourcefind.cn:5000/dcu/admin/base/vllm:0.9.2-ubuntu22.04-dtk25.04.1-rc5-rocblas104381-0915-das1.6-py3.10-20250916-rc2
docker run -it --shm-size 200g --network=host --name {docker_name} --privileged --device=/dev/kfd --device=/dev/dri --device=/dev/mkfd --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -u root -v /path/your_code_data/:/path/your_code_data/ -v /opt/hyhal/:/opt/hyhal/:ro {imageID} bash
cd /your_code_path/deepseek-v3.2-exp_pytorch
pip install tilelang==0.1.6
```
### Dockerfile(方法二)
```bash
cd docker
docker build --no-cache -t deepseek-v3.2-exp:latest .
docker run -it --shm-size 200g --network=host --name {docker_name} --privileged --device=/dev/kfd --device=/dev/dri --device=/dev/mkfd --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -u root -v /path/your_code_data/:/path/your_code_data/ -v /opt/hyhal/:/opt/hyhal/:ro {imageID} bash
cd /your_code_path/deepseek-v3.2-exp_pytorch
pip install tilelang==0.1.6
```
### Anaconda(方法三)
关于本项目DCU显卡所需的特殊深度学习库可从[光合](https://developer.sourcefind.cn/tool/)开发者社区下载安装。
```bash
DTK: 25.04.1
python: 3.10.12
torch: 2.5.1+das.opt1.dtk25041
vllm: 0.9.2+das.opt1.rc2.dtk25041
transformers: 4.55.0
```
`Tips:以上dtk驱动、pytorch等DCU相关工具版本需要严格一一对应`, 其它库安装方式如下:
```bash
pip install tilelang==0.1.6
```
## 数据集
## 训练
暂无
## 推理
1. 首先将模型转换成bf16格式
```bash
cd inference
# fp8转bf16
python fp8_cast_bf16.py --input-fp8-hf-path /path/to/DeepSeek-V3.2-Exp --output-bf16-hf-path /path/to/DeepSeek-V3.2-Exp-bf16
```
2. 进行模型划分
```bash
python convert.py --hf-ckpt-path /path/to/DeepSeek-V3.2-Exp-bf16 --save-path /path/to/DeepSeek-V3.2-Demo --n-experts 256 --model-parallel 32
```
> 注意:需要将/path/to/fp8_weights中的json文件复制到/path/to/DeepSeek-V3.2-Demo中。
3. 启动推理
```bash
export NCCL_ALGO=Ring
export NCCL_PROTO=Simple
# chat
torchrun --nnodes 4 --nproc-per-node 8 --node-rank $RANK --master-addr $ADDR generate.py --ckpt-path /path/to/DeepSeek-V3-Demo --config config_671B_v3.2.json --interactive --temperature 0.7 --max-new-tokens 200
```
## result
<div align=center>
<img src="./doc/results-dcu.jpg"/>
</div>
### 精度
DCU与GPU精度一致,推理框架:vllm。
## 应用场景
### 算法类别
`对话问答`
### 热点应用行业
`制造,金融,教育,广媒`
## 预训练权重
- [DeepSeek-V3.2-Exp](https://huggingface.co/deepseek-ai/DeepSeek-V3.2-Exp)
## 源码仓库及问题反馈
- https://developer.sourcefind.cn/codes/modelzoo/deepseek-v3.2-exp_pytorch
## 参考资料
- https://huggingface.co/deepseek-ai/DeepSeek-V3.2-Exp
- https://github.com/deepseek-ai/DeepSeek-V3.2-Exp
FROM image.sourcefind.cn:5000/dcu/admin/base/vllm:0.9.2-ubuntu22.04-dtk25.04.1-rc5-rocblas104381-0915-das1.6-py3.10-20250916-rc2
\ No newline at end of file
icon.png

53.8 KB

# DeepSeek V3.2
First convert huggingface model weights to the the format required by our inference demo. Set `MP` to match your available GPU count:
```bash
cd inference
export EXPERTS=256
python convert.py --hf-ckpt-path ${HF_CKPT_PATH} --save-path ${SAVE_PATH} --n-experts ${EXPERTS} --model-parallel ${MP}
```
Launch the interactive chat interface and start exploring DeepSeek's capabilities:
```bash
export CONFIG=config_671B_v3.2.json
torchrun --nproc-per-node ${MP} generate.py --ckpt-path ${SAVE_PATH} --config ${CONFIG} --interactive
```
\ No newline at end of file
{
"vocab_size": 129280,
"dim": 7168,
"inter_dim": 18432,
"moe_inter_dim": 2048,
"n_layers": 61,
"n_dense_layers": 3,
"n_heads": 128,
"n_routed_experts": 256,
"n_shared_experts": 1,
"n_activated_experts": 8,
"n_expert_groups": 8,
"n_limited_groups": 4,
"route_scale": 2.5,
"score_func": "sigmoid",
"q_lora_rank": 1536,
"kv_lora_rank": 512,
"qk_nope_head_dim": 128,
"qk_rope_head_dim": 64,
"v_head_dim": 128,
"dtype": "fp8",
"scale_fmt": "ue8m0",
"index_n_heads": 64,
"index_head_dim": 128,
"index_topk": 2048
}
\ No newline at end of file
import os
import shutil
from argparse import ArgumentParser
from glob import glob
from tqdm import tqdm, trange
import torch
from safetensors.torch import safe_open, save_file
mapping = {
"embed_tokens": ("embed", 0),
"input_layernorm": ("attn_norm", None),
"post_attention_layernorm": ("ffn_norm", None),
"q_proj": ("wq", 0),
"q_a_proj": ("wq_a", None),
"q_a_layernorm": ("q_norm", None),
"q_b_proj": ("wq_b", 0),
"kv_a_proj_with_mqa": ("wkv_a", None),
"kv_a_layernorm": ("kv_norm", None),
"kv_b_proj": ("wkv_b", 0),
"o_proj": ("wo", 1),
"gate": ("gate", None),
"gate_proj": ("w1", 0),
"down_proj": ("w2", 1),
"up_proj": ("w3", 0),
"norm": ("norm", None),
"lm_head": ("head", 0),
"scale": ("scale", None),
"wq_b": ("wq_b", None),
"wk": ("wk", None),
"k_norm": ("k_norm", None),
"weights_proj": ("weights_proj", None),
}
def main(hf_ckpt_path, save_path, n_experts, mp):
"""
Converts and saves model checkpoint files into a specified format.
Args:
hf_ckpt_path (str): Path to the directory containing the input checkpoint files.
save_path (str): Path to the directory where the converted checkpoint files will be saved.
n_experts (int): Total number of experts in the model.
mp (int): Model parallelism factor.
Returns:
None
"""
torch.set_num_threads(8)
n_local_experts = n_experts // mp
state_dicts = [{} for _ in range(mp)]
for file_path in tqdm(glob(os.path.join(hf_ckpt_path, "*.safetensors"))):
with safe_open(file_path, framework="pt", device="cpu") as f:
for name in f.keys():
if "model.layers.61" in name:
continue
param: torch.Tensor = f.get_tensor(name)
if name.startswith("model."):
name = name[len("model."):]
name = name.replace("self_attn", "attn")
name = name.replace("mlp", "ffn")
name = name.replace("weight_scale_inv", "scale")
name = name.replace("e_score_correction_bias", "bias")
key = name.split(".")[-2]
assert key in mapping, f"Key {key} not found in mapping"
new_key, dim = mapping[key]
name = name.replace(key, new_key)
for i in range(mp):
new_param = param
if "experts" in name and "shared_experts" not in name:
idx = int(name.split(".")[-3])
if idx < i * n_local_experts or idx >= (i + 1) * n_local_experts:
continue
elif dim is not None:
assert param.size(dim) % mp == 0, f"Dimension {dim} must be divisible by {mp}"
shard_size = param.size(dim) // mp
new_param = param.narrow(dim, i * shard_size, shard_size).contiguous()
state_dicts[i][name] = new_param
os.makedirs(save_path, exist_ok=True)
for i in trange(mp):
save_file(state_dicts[i], os.path.join(save_path, f"model{i}-mp{mp}.safetensors"))
for file_path in glob(os.path.join(hf_ckpt_path, "*token*")):
new_file_path = os.path.join(save_path, os.path.basename(file_path))
shutil.copyfile(file_path, new_file_path)
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--hf-ckpt-path", type=str, required=True)
parser.add_argument("--save-path", type=str, required=True)
parser.add_argument("--n-experts", type=int, required=True)
parser.add_argument("--model-parallel", type=int, required=True)
args = parser.parse_args()
assert args.n_experts % args.model_parallel == 0, "Number of experts must be divisible by model parallelism"
main(args.hf_ckpt_path, args.save_path, args.n_experts, args.model_parallel)
import os
import json
from argparse import ArgumentParser
from glob import glob
from tqdm import tqdm
import torch
from safetensors.torch import load_file, save_file
from kernel import weight_dequant
def main(fp8_path, bf16_path):
torch.set_default_dtype(torch.bfloat16)
os.makedirs(bf16_path, exist_ok=True)
model_index_file = os.path.join(fp8_path, "model.safetensors.index.json")
with open(model_index_file, "r") as f:
model_index = json.load(f)
weight_map = model_index["weight_map"]
# Cache for loaded safetensor files
loaded_files = {}
fp8_weight_names = []
# Helper function to get tensor from the correct file
def get_tensor(tensor_name):
file_name = weight_map[tensor_name]
if file_name not in loaded_files:
file_path = os.path.join(fp8_path, file_name)
loaded_files[file_name] = load_file(file_path, device="cuda")
return loaded_files[file_name][tensor_name]
safetensor_files = list(glob(os.path.join(fp8_path, "*.safetensors")))
safetensor_files.sort()
for safetensor_file in tqdm(safetensor_files):
file_name = os.path.basename(safetensor_file)
current_state_dict = load_file(safetensor_file, device="cuda")
loaded_files[file_name] = current_state_dict
new_state_dict = {}
for weight_name, weight in current_state_dict.items():
if weight_name.endswith("_scale_inv"):
continue
elif weight.element_size() == 1: # FP8 weight
scale_inv_name = f"{weight_name}_scale_inv"
try:
# Get scale_inv from the correct file
scale_inv = get_tensor(scale_inv_name)
fp8_weight_names.append(weight_name)
new_state_dict[weight_name] = weight_dequant(weight, scale_inv)
except KeyError:
print(f"Warning: Missing scale_inv tensor for {weight_name}, skipping conversion")
new_state_dict[weight_name] = weight
else:
new_state_dict[weight_name] = weight
new_safetensor_file = os.path.join(bf16_path, file_name)
save_file(new_state_dict, new_safetensor_file)
# Memory management: keep only the 2 most recently used files
if len(loaded_files) > 2:
oldest_file = next(iter(loaded_files))
del loaded_files[oldest_file]
torch.cuda.empty_cache()
# Update model index
new_model_index_file = os.path.join(bf16_path, "model.safetensors.index.json")
for weight_name in fp8_weight_names:
scale_inv_name = f"{weight_name}_scale_inv"
if scale_inv_name in weight_map:
weight_map.pop(scale_inv_name)
with open(new_model_index_file, "w") as f:
json.dump({"metadata": {}, "weight_map": weight_map}, f, indent=2)
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--input-fp8-hf-path", type=str, required=True)
parser.add_argument("--output-bf16-hf-path", type=str, required=True)
args = parser.parse_args()
main(args.input_fp8_hf_path, args.output_bf16_hf_path)
import os
import json
from argparse import ArgumentParser
from typing import List
import torch
import torch.distributed as dist
from transformers import AutoTokenizer
from safetensors.torch import load_model
from model import Transformer, ModelArgs
def sample(logits, temperature: float = 1.0):
"""
Samples a token from the logits using temperature scaling.
Args:
logits (torch.Tensor): The logits tensor for token predictions.
temperature (float, optional): Temperature for scaling logits. Defaults to 1.0.
Returns:
torch.Tensor: The sampled token.
"""
logits = logits / max(temperature, 1e-5)
probs = torch.softmax(logits, dim=-1, dtype=torch.float32)
return probs.div_(torch.empty_like(probs).exponential_(1)).argmax(dim=-1)
@torch.inference_mode()
def generate(
model: Transformer,
prompt_tokens: List[List[int]],
max_new_tokens: int,
eos_id: int,
temperature: float = 1.0
) -> List[List[int]]:
"""
Generates new tokens based on the given prompt tokens using the specified model.
Args:
model (Transformer): The transformer model used for token generation.
prompt_tokens (List[List[int]]): A list of lists containing the prompt tokens for each sequence.
max_new_tokens (int): The maximum number of new tokens to generate.
eos_id (int): The end-of-sequence token ID.
temperature (float, optional): The temperature value for sampling. Defaults to 1.0.
Returns:
List[List[int]]: A list of lists containing the generated tokens for each sequence.
"""
prompt_lens = [len(t) for t in prompt_tokens]
assert max(prompt_lens) <= model.max_seq_len, f"Prompt length exceeds model maximum sequence length (max_seq_len={model.max_seq_len})"
total_len = min(model.max_seq_len, max_new_tokens + max(prompt_lens))
tokens = torch.full((len(prompt_tokens), total_len), -1, dtype=torch.long, device="cuda")
for i, t in enumerate(prompt_tokens):
tokens[i, :len(t)] = torch.tensor(t, dtype=torch.long, device="cuda")
prev_pos = 0
finished = torch.tensor([False] * len(prompt_tokens), device="cuda")
prompt_mask = tokens != -1
for cur_pos in range(min(prompt_lens), total_len):
logits = model.forward(tokens[:, prev_pos:cur_pos], prev_pos)
if temperature > 0:
next_token = sample(logits, temperature)
else:
next_token = logits.argmax(dim=-1)
next_token = torch.where(prompt_mask[:, cur_pos], tokens[:, cur_pos], next_token)
tokens[:, cur_pos] = next_token
finished |= torch.logical_and(~prompt_mask[:, cur_pos], next_token == eos_id)
prev_pos = cur_pos
if finished.all():
break
completion_tokens = []
for i, toks in enumerate(tokens.tolist()):
toks = toks[prompt_lens[i]:prompt_lens[i]+max_new_tokens]
if eos_id in toks:
toks = toks[:toks.index(eos_id)]
completion_tokens.append(toks)
return completion_tokens
def main(
ckpt_path: str,
config: str,
input_file: str = "",
interactive: bool = True,
max_new_tokens: int = 100,
temperature: float = 1.0,
) -> None:
"""
Main function to load the model and perform interactive or batch text generation.
Args:
ckpt_path (str): Path to the model checkpoint directory.
config (str): Path to the model configuration file.
input_file (str, optional): Path to a file containing input prompts. Defaults to "".
interactive (bool, optional): Whether to run in interactive mode. Defaults to True.
max_new_tokens (int, optional): Maximum number of new tokens to generate. Defaults to 100.
temperature (float, optional): Temperature for sampling. Defaults to 1.0.
"""
world_size = int(os.getenv("WORLD_SIZE", "1"))
rank = int(os.getenv("RANK", "0"))
local_rank = int(os.getenv("LOCAL_RANK", "0"))
if world_size > 1:
dist.init_process_group("nccl")
global print
if rank != 0:
print = lambda *_, **__: None
torch.cuda.set_device(local_rank)
torch.set_default_dtype(torch.bfloat16)
torch.set_num_threads(8)
torch.manual_seed(33377335)
with open(config) as f:
args = ModelArgs(**json.load(f))
print(args)
with torch.device("cuda"):
model = Transformer(args)
tokenizer = AutoTokenizer.from_pretrained(ckpt_path)
print("load model")
load_model(model, os.path.join(ckpt_path, f"model{rank}-mp{world_size}.safetensors"))
print("I'm DeepSeek 👋")
if interactive:
messages = []
while True:
if world_size == 1:
prompt = input(">>> ")
elif rank == 0:
prompt = input(">>> ")
objects = [prompt]
dist.broadcast_object_list(objects, 0)
else:
objects = [None]
dist.broadcast_object_list(objects, 0)
prompt = objects[0]
if prompt == "/exit":
break
elif prompt == "/clear":
messages.clear()
continue
messages.append({"role": "user", "content": prompt})
prompt_tokens = tokenizer.apply_chat_template(messages, add_generation_prompt=True)
completion_tokens = generate(model, [prompt_tokens], max_new_tokens, tokenizer.eos_token_id, temperature)
completion = tokenizer.decode(completion_tokens[0], skip_special_tokens=True)
print(completion)
messages.append({"role": "assistant", "content": completion})
else:
with open(input_file) as f:
prompts = f.read().split("\n\n")
assert len(prompts) <= args.max_batch_size, f"Number of prompts exceeds maximum batch size ({args.max_batch_size})"
prompt_tokens = [tokenizer.apply_chat_template([{"role": "user", "content": prompt}], add_generation_prompt=True) for prompt in prompts]
completion_tokens = generate(model, prompt_tokens, max_new_tokens, tokenizer.eos_token_id, temperature)
completions = tokenizer.batch_decode(completion_tokens, skip_special_tokens=True)
for prompt, completion in zip(prompts, completions):
print("Prompt:", prompt)
print("Completion:", completion)
print()
if world_size > 1:
dist.destroy_process_group()
if __name__ == "__main__":
"""
Command-line interface for distributed text generation.
Arguments:
--ckpt-path (str): Path to the model checkpoint directory.
--config (str): Path to the model configuration file.
--input-file (str, optional): File containing prompts for batch processing.
--interactive (bool, optional): Enable interactive mode for generating text.
--max-new-tokens (int, optional): Maximum number of new tokens to generate. Defaults to 200.
--temperature (float, optional): Temperature for sampling. Defaults to 0.2.
Raises:
AssertionError: If neither input-file nor interactive mode is specified.
"""
parser = ArgumentParser()
parser.add_argument("--ckpt-path", type=str, required=True)
parser.add_argument("--config", type=str, required=True)
parser.add_argument("--input-file", type=str, default="")
parser.add_argument("--interactive", action="store_true")
parser.add_argument("--max-new-tokens", type=int, default=200)
parser.add_argument("--temperature", type=float, default=0.6)
args = parser.parse_args()
assert args.input_file or args.interactive, "Either input-file or interactive mode must be specified"
main(args.ckpt_path, args.config, args.input_file, args.interactive, args.max_new_tokens, args.temperature)
import torch
import tilelang
import tilelang.language as T
from typing import Tuple, Optional
tilelang.set_log_level("WARNING")
pass_configs = {
tilelang.PassConfigKey.TL_DISABLE_WARP_SPECIALIZED: True,
tilelang.PassConfigKey.TL_DISABLE_TMA_LOWER: True,
tilelang.PassConfigKey.TL_DISABLE_FAST_MATH: True,
}
FP8 = "float8_e4m3"
BF16 = "bfloat16"
FP32 = "float32"
def fast_log2_ceil(x):
bits_x = T.reinterpret("uint32", x)
exp_x = (bits_x >> 23) & 0xFF
man_bits = bits_x & ((1 << 23) - 1)
return T.Cast("int32", exp_x - 127 + T.if_then_else(man_bits != 0, 1, 0))
def fast_pow2(x):
bits_x = (x + 127) << 23
return T.reinterpret("float32", bits_x)
def fast_round_scale(amax, fp8_max_inv):
return fast_pow2(fast_log2_ceil(amax * fp8_max_inv))
@tilelang.jit(pass_configs=pass_configs)
def act_quant_kernel(
N, in_dtype=BF16, out_dtype=FP8, scale_dtype=FP32, round_scale=False
):
M = T.symbolic("M")
fp8_min = -448.0
fp8_max = 448.0
fp8_max_inv = 1 / fp8_max
num_stages = 0 if round_scale else 2
blk_m = 32
group_size = 128
@T.prim_func
def act_quant_kernel_(
X: T.Tensor[(M, N), in_dtype],
Y: T.Tensor[(M, N), out_dtype],
S: T.Tensor[(M, T.ceildiv(N, group_size)), scale_dtype],
):
with T.Kernel(T.ceildiv(M, blk_m), T.ceildiv(N, group_size), threads=128) as (
pid_m,
pid_n,
):
x_shared = T.alloc_shared((blk_m, group_size), in_dtype)
x_local = T.alloc_fragment((blk_m, group_size), in_dtype)
amax_local = T.alloc_fragment((blk_m,), scale_dtype)
s_local = T.alloc_fragment((blk_m,), scale_dtype)
y_local = T.alloc_fragment((blk_m, group_size), out_dtype)
y_shared = T.alloc_shared((blk_m, group_size), out_dtype)
for _ in T.Pipelined(1, num_stages=num_stages):
T.copy(X[pid_m * blk_m, pid_n * group_size], x_shared)
T.copy(x_shared, x_local)
T.reduce_absmax(x_local, amax_local, dim=1)
for i in T.Parallel(blk_m):
amax_local[i] = T.max(amax_local[i], 1e-4)
if round_scale:
s_local[i] = fast_round_scale(amax_local[i], fp8_max_inv)
else:
s_local[i] = amax_local[i] * fp8_max_inv
for i, j in T.Parallel(blk_m, group_size):
y_local[i, j] = T.clamp(
x_local[i, j] / s_local[i], fp8_min, fp8_max
)
for i in T.Parallel(blk_m):
S[pid_m * blk_m + i, pid_n] = s_local[i]
T.copy(y_local, y_shared)
T.copy(y_shared, Y[pid_m * blk_m, pid_n * group_size])
return act_quant_kernel_
def act_quant(
x: torch.Tensor, block_size: int = 128, scale_fmt: Optional[str] = None
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Quantizes the input tensor `x` using block-wise quantization.
Args:
x (torch.Tensor): The input tensor to be quantized. Must be contiguous and its last dimension size must be divisible by `block_size`.
block_size (int, optional): The size of the blocks to be used for quantization. Default is 128.
scale_fmt (Optional[str], optional): The format of the scale. Default is None.
Returns:
Tuple[torch.Tensor, torch.Tensor]: A tuple containing:
- The quantized tensor with dtype `torch.float8_e4m3fn`.
- A tensor of scaling factors with dtype `torch.float32`.
"""
assert x.is_contiguous(), "Input tensor must be contiguous"
assert x.size(-1) % block_size == 0, (
f"Last dimension size must be divisible by block_size (block_size={block_size})"
)
N = x.size(-1)
y = torch.empty_like(x, dtype=torch.float8_e4m3fn)
s = x.new_empty(*x.size()[:-1], N // block_size, dtype=torch.float32)
kernel = act_quant_kernel(N, round_scale=scale_fmt is not None)
kernel(x.view(-1, N), y.view(-1, N), s.view(-1, N // block_size))
return y, s
@tilelang.jit(pass_configs=pass_configs)
def fp8_gemm_kernel(N, K, out_dtype=BF16, accum_dtype="float32"):
assert out_dtype in [BF16, "float32"]
M = T.symbolic("M")
group_size = 128
block_M = 32
block_N = 128
block_K = 128
@T.prim_func
def fp8_gemm_kernel_(
A: T.Tensor[(M, K), FP8],
B: T.Tensor[(N, K), FP8],
C: T.Tensor[(M, N), out_dtype],
scales_a: T.Tensor[(M, T.ceildiv(K, group_size)), FP32],
scales_b: T.Tensor[(T.ceildiv(N, group_size), T.ceildiv(K, group_size)), FP32],
):
with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=128) as (
bx,
by,
):
A_shared = T.alloc_shared((block_M, block_K), FP8)
B_shared = T.alloc_shared((block_N, block_K), FP8)
C_shared = T.alloc_shared((block_M, block_N), out_dtype)
Scale_C_shared = T.alloc_shared((block_M), FP32)
C_local = T.alloc_fragment((block_M, block_N), accum_dtype)
C_local_accum = T.alloc_fragment((block_M, block_N), accum_dtype)
# Improve L2 Cache
T.use_swizzle(panel_size=10)
T.clear(C_local)
T.clear(C_local_accum)
K_iters = T.ceildiv(K, block_K)
for k in T.Pipelined(K_iters, num_stages=4):
# Load A into shared memory
T.copy(A[by * block_M, k * block_K], A_shared)
# Load B into shared memory
T.copy(B[bx * block_N, k * block_K], B_shared)
# Load scale into shared memory
Scale_B = scales_b[bx * block_N // group_size, k]
for i in T.Parallel(block_M):
Scale_C_shared[i] = scales_a[by * block_M + i, k] * Scale_B
T.gemm(A_shared, B_shared, C_local, transpose_B=True)
# Promote to enable 2xAcc
for i, j in T.Parallel(block_M, block_N):
C_local_accum[i, j] += C_local[i, j] * Scale_C_shared[i]
T.clear(C_local)
# TMA store
T.copy(C_local_accum, C_shared)
T.copy(C_shared, C[by * block_M, bx * block_N])
return fp8_gemm_kernel_
def fp8_gemm(
a: torch.Tensor, a_s: torch.Tensor, b: torch.Tensor, b_s: torch.Tensor
) -> torch.Tensor:
"""
Perform a matrix multiplication using FP8 precision.
Args:
a (torch.Tensor): The first input matrix, must be contiguous.
a_s (torch.Tensor): The scaling factor for the first input matrix, must be contiguous.
b (torch.Tensor): The second input matrix, must be contiguous.
b_s (torch.Tensor): The scaling factor for the second input matrix, must be contiguous.
Returns:
torch.Tensor: The result of the matrix multiplication.
"""
assert a.is_contiguous() and b.is_contiguous(), "Input tensors must be contiguous"
assert a_s.is_contiguous() and b_s.is_contiguous(), (
"Scaling factor tensors must be contiguous"
)
K = a.size(-1)
M = a.numel() // K
N = b.size(0)
c = a.new_empty(*a.size()[:-1], N, dtype=torch.get_default_dtype())
kernel = fp8_gemm_kernel(N, K)
kernel(a.view(M, K), b, c.view(M, N), a_s.view(M, -1), b_s)
return c
@tilelang.jit(out_idx=[4], pass_configs=pass_configs)
def fp8_index_kernel(h: int, d: int):
b = T.symbolic("b")
m = T.symbolic("m")
n = T.symbolic("n")
blk_n1 = 512
blk_n2 = 128
@T.prim_func
def fp8_index_kernel_(
q: T.Tensor[(b, m, h, d), FP8],
q_s: T.Tensor[(b, m, h), FP32],
k: T.Tensor[(b, n, d), FP8],
k_s: T.Tensor[(b, n), FP32],
o: T.Tensor[(b, m, n), FP32],
) -> None:
with T.Kernel(b, m, T.ceildiv(n, blk_n1)) as (i_b, i_m, i1_n):
q_smem = T.alloc_shared((h, d), FP8)
T.copy(q[i_b, i_m, 0, 0], q_smem)
q_s_frag = T.alloc_fragment(h, FP32)
T.copy(q_s[i_b, i_m, 0], q_s_frag)
for i2_n in T.Pipelined(blk_n1 // blk_n2, num_stages=2):
k_smem = T.alloc_shared((blk_n2, d), FP8)
T.copy(k[i_b, i1_n * blk_n1 + i2_n * blk_n2, 0], k_smem)
k_s_frag = T.alloc_fragment(blk_n2, FP32)
T.copy(k_s[i_b, i1_n * blk_n1 + i2_n * blk_n2], k_s_frag)
logits = T.alloc_fragment((blk_n2, h), FP32)
T.gemm(
k_smem,
q_smem,
logits,
transpose_A=False,
transpose_B=True,
clear_accum=True,
)
for i_h, i3_n in T.Parallel(h, blk_n2):
logits[i3_n, i_h] = T.max(logits[i3_n, i_h], 0) * q_s_frag[i_h]
logits_sum = T.alloc_fragment(blk_n2, FP32)
T.reduce_sum(logits, logits_sum, dim=1)
for i3_n in T.Parallel(blk_n2):
logits_sum[i3_n] *= k_s_frag[i3_n]
T.copy(logits_sum, o[i_b, i_m, i1_n * blk_n1 + i2_n * blk_n2])
return fp8_index_kernel_
def fp8_index(
q: torch.Tensor,
q_s: torch.Tensor,
k: torch.Tensor,
k_s: torch.Tensor,
) -> torch.Tensor:
"""
Perform index score using FP8 precision.
Args:
q (torch.Tensor): The Q tensor, must be contiguous.
q_s (torch.Tensor): The scaling factor for Q (float), must be contiguous.
k (torch.Tensor): The K tensor, must be contiguous.
k_s (torch.Tensor): The scaling factor for K (e8m0 here), must be contiguous.
fp8 q @ fp8 k -> fp32 logits
relu(fp32 logits) * q_s (weights) -> fp32 logits
fp32 logits -> fp32 logits_sum
fp32 logits_sum * k_s (e8m0) -> fp32 index_score
"""
return fp8_index_kernel(q.shape[2], q.shape[3])(q, q_s, k, k_s)
import math
from dataclasses import dataclass
from typing import Tuple, Optional, Literal
from einops import rearrange
import torch
from torch import nn
import torch.nn.functional as F
import torch.distributed as dist
from kernel import act_quant, fp8_gemm, fp8_index
world_size = 1
rank = 0
block_size = 128
@dataclass
class ModelArgs:
"""
Data class for defining model arguments and hyperparameters.
Attributes:
max_batch_size (int): Maximum batch size.
max_seq_len (int): Maximum sequence length.
dtype (Literal["bf16", "fp8"]): Data type for computations.
scale_fmt (Optional[str]): Format for quantization scale.
vocab_size (int): Vocabulary size.
dim (int): Model dimension.
inter_dim (int): Intermediate dimension for MLP layers.
moe_inter_dim (int): Intermediate dimension for MoE layers.
n_layers (int): Number of transformer layers.
n_dense_layers (int): Number of dense layers in the model.
n_heads (int): Number of attention heads.
n_routed_experts (int): Number of routed experts for MoE layers.
n_shared_experts (int): Number of shared experts for MoE layers.
n_activated_experts (int): Number of activated experts in MoE layers.
n_expert_groups (int): Number of expert groups.
n_limited_groups (int): Number of limited groups for MoE routing.
score_func (Literal["softmax", "sigmoid"]): Scoring function for MoE routing.
route_scale (float): Scaling factor for routing scores.
q_lora_rank (int): LoRA rank for query projections.
kv_lora_rank (int): LoRA rank for key-value projections.
qk_nope_head_dim (int): Dimension for query-key projections without positional embeddings.
qk_rope_head_dim (int): Dimension for query-key projections with rotary embeddings.
v_head_dim (int): Dimension for value projections.
original_seq_len (int): Original sequence length.
rope_theta (float): Base for rotary positional encoding.
rope_factor (float): Scaling factor for extended sequence lengths.
beta_fast (int): Fast beta correction factor.
beta_slow (int): Slow beta correction factor.
mscale (float): Scaling factor for extended attention.
index_head_dim (int): Dimension for index head.
index_topk (int): Top-k for index head.
"""
max_batch_size: int = 8
max_seq_len: int = 4096 * 4
dtype: Literal["bf16", "fp8"] = "bf16"
scale_fmt: Optional[str] = None
vocab_size: int = 102400
dim: int = 2048
inter_dim: int = 10944
moe_inter_dim: int = 1408
n_layers: int = 27
n_dense_layers: int = 1
n_heads: int = 16
# moe
n_routed_experts: int = 64
n_shared_experts: int = 2
n_activated_experts: int = 6
n_expert_groups: int = 1
n_limited_groups: int = 1
score_func: Literal["softmax", "sigmoid"] = "softmax"
route_scale: float = 1.
# mla
q_lora_rank: int = 0
kv_lora_rank: int = 512
qk_nope_head_dim: int = 128
qk_rope_head_dim: int = 64
v_head_dim: int = 128
# yarn
original_seq_len: int = 4096
rope_theta: float = 10000.0
rope_factor: float = 40
beta_fast: int = 32
beta_slow: int = 1
mscale: float = 1.
# index
index_n_heads: int = 64
index_head_dim: int = 128
index_topk: int = 2048
class ParallelEmbedding(nn.Module):
"""
Embedding layer with parallelism support across distributed processes.
Args:
vocab_size (int): Vocabulary size.
dim (int): Embedding dimension.
"""
def __init__(self, vocab_size: int, dim: int):
super().__init__()
self.vocab_size = vocab_size
self.dim = dim
assert vocab_size % world_size == 0, f"Vocabulary size must be divisible by world size (world_size={world_size})"
self.part_vocab_size = (vocab_size // world_size)
self.vocab_start_idx = rank * self.part_vocab_size
self.vocab_end_idx = self.vocab_start_idx + self.part_vocab_size
self.weight = nn.Parameter(torch.empty(self.part_vocab_size, self.dim))
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Forward pass for parallel embedding layer.
Args:
x (torch.Tensor): Input tensor containing token indices.
Returns:
torch.Tensor: Embedded representations.
Raises:
ValueError: If `world_size` is not defined.
"""
if world_size > 1:
mask = (x < self.vocab_start_idx) | (x >= self.vocab_end_idx)
x = x - self.vocab_start_idx
x[mask] = 0
y = F.embedding(x, self.weight)
if world_size > 1:
y[mask] = 0
dist.all_reduce(y)
return y
def linear(x: torch.Tensor, weight: torch.Tensor, bias: Optional[torch.Tensor] = None,
scale_fmt: Optional[str] = None) -> torch.Tensor:
"""
Applies a linear transformation to the incoming data: y = xA^T + b.
This function supports specialized implementations based on quantization
and tensor formats.
Args:
x (torch.Tensor): The input tensor.
weight (torch.Tensor): The weight tensor. It may be quantized and
requires dequantization for certain cases.
bias (Optional[torch.Tensor]): The bias tensor to be added. Default is None.
scale_fmt (Optional[str]): The format of scaling factors.
Returns:
torch.Tensor: The result of the linear transformation, which may involve
quantization-aware computations depending on the input parameters.
Notes:
- If `weight` is quantized (e.g., `element_size() == 1`), a dequantized version
is used for computation.
- For other cases, the function applies quantization to `x` and uses `fp8_gemm` for computation.
"""
assert bias is None
if weight.dtype != torch.float8_e4m3fn:
return F.linear(x, weight)
else:
x, scale = act_quant(x, block_size, scale_fmt)
return fp8_gemm(x, scale, weight, weight.scale)
class Linear(nn.Module):
"""
Custom linear layer with support for quantized weights and optional bias.
Args:
in_features (int): Number of input features.
out_features (int): Number of output features.
bias (bool): Whether to include a bias term. Defaults to False.
dtype (optional): Data type for the layer. Defaults to `torch.bfloat16`.
"""
dtype = torch.bfloat16
scale_fmt: Optional[str] = None
def __init__(self, in_features: int, out_features: int, bias: bool = False, dtype = None):
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = nn.Parameter(torch.empty(out_features, in_features, dtype=dtype or Linear.dtype))
if self.weight.element_size() == 1:
scale_out_features = (out_features + block_size - 1) // block_size
scale_in_features = (in_features + block_size - 1) // block_size
self.weight.scale = self.scale = nn.Parameter(torch.empty(scale_out_features, scale_in_features, dtype=torch.float32))
else:
self.register_parameter("scale", None)
if bias:
self.bias = nn.Parameter(torch.empty(out_features))
else:
self.register_parameter("bias", None)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Forward pass for the custom linear layer.
Args:
x (torch.Tensor): Input tensor.
Returns:
torch.Tensor: Transformed tensor after linear computation.
"""
return linear(x, self.weight, self.bias, self.scale_fmt)
class ColumnParallelLinear(Linear):
"""
Linear layer with column parallelism, splitting output features across distributed processes.
Args:
in_features (int): Number of input features.
out_features (int): Total number of output features.
bias (bool): Whether to include a bias term. Defaults to False.
dtype (optional): Data type for the layer. Defaults to `torch.bfloat16`.
"""
def __init__(self, in_features: int, out_features: int, bias: bool = False, dtype = None):
assert out_features % world_size == 0, f"Output features must be divisible by world size (world_size={world_size})"
self.part_out_features = out_features // world_size
super().__init__(in_features, self.part_out_features, bias, dtype)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Forward pass for column parallel linear layer.
Args:
x (torch.Tensor): Input tensor.
Returns:
torch.Tensor: Transformed tensor with column-parallel computation.
"""
y = linear(x, self.weight, self.bias, self.scale_fmt)
return y
class RowParallelLinear(Linear):
"""
Linear layer with row parallelism, splitting input features across distributed processes.
Args:
in_features (int): Total number of input features.
out_features (int): Number of output features.
bias (bool): Whether to include a bias term. Defaults to False.
dtype (optional): Data type for the layer. Defaults to `torch.bfloat16`.
"""
def __init__(self, in_features: int, out_features: int, bias: bool = False, reduce_output = True, dtype = None):
assert in_features % world_size == 0, f"Input features must be divisible by world size (world_size={world_size})"
self.part_in_features = in_features // world_size
self.reduce_output = reduce_output
super().__init__(self.part_in_features, out_features, bias, dtype)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Forward pass for row parallel linear layer.
Args:
x (torch.Tensor): Input tensor.
Returns:
torch.Tensor: Transformed tensor with row-parallel computation.
"""
y = linear(x, self.weight, None, self.scale_fmt)
if self.reduce_output and world_size > 1:
y = y.float()
dist.all_reduce(y)
if self.bias is not None:
y += self.bias
return y.type_as(x)
class RMSNorm(nn.Module):
"""
Root Mean Square Layer Normalization (RMSNorm).
Args:
dim (int): Dimension of the input tensor.
eps (float): Epsilon value for numerical stability. Defaults to 1e-6.
"""
def __init__(self, dim: int, eps: float = 1e-6):
super().__init__()
self.dim = dim
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim, dtype=torch.float32))
def forward(self, x: torch.Tensor, residual: Optional[torch.Tensor] = None):
"""
Forward pass for RMSNorm.
Args:
x (torch.Tensor): Input tensor.
Returns:
torch.Tensor: Normalized tensor with the same shape as input.
"""
dtype = x.dtype
if residual is None:
x = x.float()
var = x.pow(2).mean(-1, keepdim=True)
x = x * torch.rsqrt(var + self.eps)
return (self.weight * x).to(dtype)
else:
x = residual = x.float() + residual.float()
var = x.pow(2).mean(-1, keepdim=True)
x = x * torch.rsqrt(var + self.eps)
return (self.weight * x).to(dtype), residual.to(dtype)
class LayerNorm(nn.Module):
"""
Layer Normalization.
"""
def __init__(self, dim: int, eps: float = 1e-6):
super().__init__()
self.dim = dim
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim, dtype=torch.float32))
self.bias = nn.Parameter(torch.zeros(dim, dtype=torch.float32))
def forward(self, x: torch.Tensor):
return F.layer_norm(x.float(), (self.dim,), self.weight, self.bias, self.eps).type_as(x)
def precompute_freqs_cis(args: ModelArgs) -> torch.Tensor:
"""
Precomputes frequency-based complex exponential values for rotary positional embeddings.
Args:
args (ModelArgs): Model arguments containing positional embedding parameters.
Returns:
torch.Tensor: Precomputed complex exponential values for positional embeddings.
"""
dim = args.qk_rope_head_dim
seqlen = args.max_seq_len
beta_fast = args.beta_fast
beta_slow = args.beta_slow
base = args.rope_theta
factor = args.rope_factor
def find_correction_dim(num_rotations, dim, base, max_seq_len):
"""
Computes the correction dimension for a given number of rotations in the rotary positional embedding.
Args:
num_rotations (float): Number of rotations to compute the correction for.
dim (int): Dimensionality of the embedding space.
base (float): Base value for the exponential computation.
max_seq_len (int): Maximum sequence length.
Returns:
float: The correction dimension based on the input parameters.
"""
return dim * math.log(max_seq_len / (num_rotations * 2 * math.pi)) / (2 * math.log(base))
def find_correction_range(low_rot, high_rot, dim, base, max_seq_len):
"""
Computes the range of correction dimensions for rotary positional embeddings.
Args:
low_rot (float): Lower bound for the number of rotations.
high_rot (float): Upper bound for the number of rotations.
dim (int): Dimensionality of the embedding space.
base (float): Base value for the exponential computation.
max_seq_len (int): Maximum sequence length.
Returns:
Tuple[int, int]: The range of correction dimensions (low, high), clamped to valid indices.
"""
low = math.floor(find_correction_dim(low_rot, dim, base, max_seq_len))
high = math.ceil(find_correction_dim(high_rot, dim, base, max_seq_len))
return max(low, 0), min(high, dim-1)
def linear_ramp_factor(min, max, dim):
"""
Computes a linear ramp function used to smooth values between a minimum and maximum range.
Args:
min (float): Minimum value for the ramp function.
max (float): Maximum value for the ramp function.
dim (int): Dimensionality of the ramp tensor.
Returns:
torch.Tensor: A tensor of shape (dim,) with values linearly interpolated between 0 and 1,
clamped to the range [0, 1].
"""
if min == max:
max += 0.001
linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
ramp_func = torch.clamp(linear_func, 0, 1)
return ramp_func
freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
if seqlen > args.original_seq_len:
low, high = find_correction_range(beta_fast, beta_slow, dim, base, args.original_seq_len)
smooth = 1 - linear_ramp_factor(low, high, dim // 2)
freqs = freqs / factor * (1 - smooth) + freqs * smooth
t = torch.arange(seqlen)
freqs = torch.outer(t, freqs)
freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
return freqs_cis
def apply_rotary_emb(x: torch.Tensor, freqs_cis: torch.Tensor) -> torch.Tensor:
"""
Applies rotary positional embeddings to the input tensor.
Args:
x (torch.Tensor): Input tensor with positional embeddings to be applied.
freqs_cis (torch.Tensor): Precomputed complex exponential values for positional embeddings.
Returns:
torch.Tensor: Tensor with rotary embeddings applied.
"""
dtype = x.dtype
x = torch.view_as_complex(x.float().view(*x.shape[:-1], -1, 2))
freqs_cis = freqs_cis.view(1, x.size(1), 1, x.size(-1))
y = torch.view_as_real(x * freqs_cis).flatten(3)
return y.to(dtype)
def rotate_activation(x: torch.Tensor) -> torch.Tensor:
assert x.dtype == torch.bfloat16
from fast_hadamard_transform import hadamard_transform
hidden_size = x.size(-1)
return hadamard_transform(x, scale=hidden_size ** -0.5)
class Indexer(torch.nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.dim: int = args.dim
self.n_heads: int = args.index_n_heads
self.n_local_heads = args.index_n_heads // world_size
self.head_dim: int = args.index_head_dim
self.rope_head_dim: int = args.qk_rope_head_dim
self.index_topk: int = args.index_topk
self.q_lora_rank: int = args.q_lora_rank
self.wq_b = Linear(self.q_lora_rank, self.n_heads * self.head_dim)
self.wk = Linear(self.dim, self.head_dim)
self.k_norm = LayerNorm(self.head_dim)
self.weights_proj = Linear(self.dim, self.n_heads, dtype=torch.get_default_dtype())
self.softmax_scale = self.head_dim ** -0.5
self.scale_fmt = args.scale_fmt
self.register_buffer("k_cache", torch.zeros(args.max_batch_size, args.max_seq_len, self.head_dim, dtype=torch.float8_e4m3fn), persistent=False)
self.register_buffer("k_scale_cache", torch.zeros(args.max_batch_size, args.max_seq_len, self.head_dim // block_size, dtype=torch.float32), persistent=False)
def forward(self, x: torch.Tensor, qr: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor]):
bsz, seqlen, _ = x.size()
end_pos = start_pos + seqlen
q = self.wq_b(qr)
q = rearrange(q, 'b s (h d) -> b s h d', d=self.head_dim)
q_pe, q_nope = torch.split(q, [self.rope_head_dim, self.head_dim - self.rope_head_dim], dim=-1)
q_pe = apply_rotary_emb(q_pe, freqs_cis)
q = torch.cat([q_pe, q_nope], dim=-1)
k = self.wk(x)
k = self.k_norm(k)
k_pe, k_nope = torch.split(k, [self.rope_head_dim, self.head_dim - self.rope_head_dim], dim=-1)
k_pe = apply_rotary_emb(k_pe.unsqueeze(2), freqs_cis).squeeze(2)
k = torch.cat([k_pe, k_nope], dim=-1)
q = rotate_activation(q)
k = rotate_activation(k)
q_fp8, q_scale = act_quant(q, block_size, self.scale_fmt)
k_fp8, k_scale = act_quant(k, block_size, self.scale_fmt)
self.k_cache[:bsz, start_pos:end_pos] = k_fp8
self.k_scale_cache[:bsz, start_pos:end_pos] = k_scale
weights = self.weights_proj(x) * self.n_heads ** -0.5
weights = weights.unsqueeze(-1) * q_scale * self.softmax_scale
index_score = fp8_index(q_fp8.contiguous(), weights, self.k_cache[:bsz, :end_pos].contiguous(), self.k_scale_cache[:bsz, :end_pos].contiguous())
if mask is not None:
index_score += mask
topk_indices = index_score.topk(min(self.index_topk, end_pos), dim=-1)[1]
topk_indices_ = topk_indices.clone()
dist.broadcast(topk_indices_, src=0)
assert torch.all(topk_indices == topk_indices_), f"{topk_indices=} {topk_indices_=}"
return topk_indices
def weight_dequant(weight, scale):
shape = weight.shape
assert weight.dim() == 2
weight = weight.view(shape[0] // block_size, block_size, shape[1] // block_size, block_size).transpose(1, 2).contiguous().view(-1, block_size * block_size)
weight = (weight.float() * scale.view(-1, 1).float()).to(torch.get_default_dtype()).view(shape[0] // block_size, shape[1] // block_size, block_size, block_size).transpose(1, 2).contiguous().view(shape)
return weight
class MLA(nn.Module):
"""
Multi-Head Latent Attention (MLA) Layer.
Attributes:
dim (int): Dimensionality of the input features.
n_heads (int): Number of attention heads.
n_local_heads (int): Number of local attention heads for distributed systems.
q_lora_rank (int): Rank for low-rank query projection.
kv_lora_rank (int): Rank for low-rank key/value projection.
qk_nope_head_dim (int): Dimensionality of non-positional query/key projections.
qk_rope_head_dim (int): Dimensionality of rotary-positional query/key projections.
qk_head_dim (int): Total dimensionality of query/key projections.
v_head_dim (int): Dimensionality of value projections.
softmax_scale (float): Scaling factor for softmax in attention computation.
"""
def __init__(self, args: ModelArgs):
super().__init__()
self.dim = args.dim
self.n_heads = args.n_heads
self.n_local_heads = args.n_heads // world_size
self.q_lora_rank = args.q_lora_rank
self.kv_lora_rank = args.kv_lora_rank
self.qk_nope_head_dim = args.qk_nope_head_dim
self.qk_rope_head_dim = args.qk_rope_head_dim
self.qk_head_dim = args.qk_nope_head_dim + args.qk_rope_head_dim
self.v_head_dim = args.v_head_dim
self.wq_a = Linear(self.dim, self.q_lora_rank)
self.q_norm = RMSNorm(self.q_lora_rank)
self.wq_b = ColumnParallelLinear(self.q_lora_rank, self.n_heads * self.qk_head_dim)
self.wkv_a = Linear(self.dim, self.kv_lora_rank + self.qk_rope_head_dim)
self.kv_norm = RMSNorm(self.kv_lora_rank)
self.wkv_b = ColumnParallelLinear(self.kv_lora_rank, self.n_heads * (self.qk_nope_head_dim + self.v_head_dim))
self.wo = RowParallelLinear(self.n_heads * self.v_head_dim, self.dim)
self.softmax_scale = self.qk_head_dim ** -0.5
if args.max_seq_len > args.original_seq_len:
mscale = 0.1 * args.mscale * math.log(args.rope_factor) + 1.0
self.softmax_scale = self.softmax_scale * mscale * mscale
self.indexer = Indexer(args)
self.register_buffer("kv_cache", torch.zeros(args.max_batch_size, args.max_seq_len, self.kv_lora_rank), persistent=False)
self.register_buffer("pe_cache", torch.zeros(args.max_batch_size, args.max_seq_len, self.qk_rope_head_dim), persistent=False)
self.dequant_wkv_b = None
def forward(self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor]):
"""
Forward pass for the Multi-Head Latent Attention (MLA) Layer.
Args:
x (torch.Tensor): Input tensor of shape (batch_size, seq_len, dim).
start_pos (int): Starting position in the sequence for caching.
freqs_cis (torch.Tensor): Precomputed complex exponential values for rotary embeddings.
mask (Optional[torch.Tensor]): Mask tensor to exclude certain positions from attention.
Returns:
torch.Tensor: Output tensor with the same shape as the input.
"""
bsz, seqlen, _ = x.size()
end_pos = start_pos + seqlen
qr = self.q_norm(self.wq_a(x))
q = self.wq_b(qr)
q = q.view(bsz, seqlen, self.n_local_heads, self.qk_head_dim)
q_nope, q_pe = torch.split(q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
q_pe = apply_rotary_emb(q_pe, freqs_cis)
kv = self.wkv_a(x)
kv, k_pe = torch.split(kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
kv = self.kv_norm(kv)
k_pe = apply_rotary_emb(k_pe.unsqueeze(2), freqs_cis)
self.kv_cache[:bsz, start_pos:end_pos] = kv
self.pe_cache[:bsz, start_pos:end_pos] = k_pe.squeeze(2)
if mask is not None: # MHA prefill
q = torch.cat([q_nope, q_pe], dim=-1)
kv = self.wkv_b(kv)
kv = kv.view(bsz, seqlen, self.n_local_heads, self.qk_nope_head_dim + self.v_head_dim)
k_nope, v = torch.split(kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1)
k = torch.cat([k_nope, k_pe.expand(-1, -1, self.n_local_heads, -1)], dim=-1)
scores = torch.einsum("bshd,bthd->bsht", q.float(), k.float()) * self.softmax_scale
# indexer
topk_indices = self.indexer(x, qr, start_pos, freqs_cis, mask)
index_mask = torch.full((bsz, seqlen, seqlen), float("-inf"), device=x.device).scatter_(-1, topk_indices, 0)
index_mask += mask
scores += index_mask.unsqueeze(2)
scores = scores.softmax(dim=-1, dtype=torch.float32)
x = torch.einsum("bsht,bthd->bshd", scores.type_as(x), v)
else: # MHA decode
if self.dequant_wkv_b is None and self.wkv_b.scale is not None:
self.dequant_wkv_b = weight_dequant(self.wkv_b.weight, self.wkv_b.scale)
wkv_b = self.wkv_b.weight if self.dequant_wkv_b is None else self.dequant_wkv_b
wkv_b = wkv_b.view(self.n_local_heads, -1, self.kv_lora_rank)
q_nope = torch.einsum("bshd,hdc->bshc", q_nope, wkv_b[:, :self.qk_nope_head_dim])
scores = (torch.einsum("bshc,btc->bsht", q_nope.float(), self.kv_cache[:bsz, :end_pos].float()) +
torch.einsum("bshr,btr->bsht", q_pe.float(), self.pe_cache[:bsz, :end_pos].float())) * self.softmax_scale
# indexer
topk_indices = self.indexer(x, qr, start_pos, freqs_cis, mask)
index_mask = torch.full((bsz, 1, end_pos), float("-inf"), device=x.device).scatter_(-1, topk_indices, 0)
scores += index_mask.unsqueeze(2)
scores = scores.softmax(dim=-1, dtype=torch.float32)
x = torch.einsum("bsht,btc->bshc", scores.type_as(x), self.kv_cache[:bsz, :end_pos])
x = torch.einsum("bshc,hdc->bshd", x, wkv_b[:, -self.v_head_dim:])
x = self.wo(x.flatten(2))
return x
class MLP(nn.Module):
"""
Multi-Layer Perceptron (MLP) used as a feed-forward layer.
Attributes:
w1 (nn.Module): Linear layer for input-to-hidden transformation.
w2 (nn.Module): Linear layer for hidden-to-output transformation.
w3 (nn.Module): Additional linear layer for feature transformation.
"""
def __init__(self, dim: int, inter_dim: int, reduce_output: bool = True):
"""
Initializes the MLP layer.
Args:
dim (int): Input and output dimensionality.
inter_dim (int): Hidden layer dimensionality.
"""
super().__init__()
self.w1 = ColumnParallelLinear(dim, inter_dim)
self.w2 = RowParallelLinear(inter_dim, dim, reduce_output=reduce_output)
self.w3 = ColumnParallelLinear(dim, inter_dim)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Forward pass for the MLP layer.
Args:
x (torch.Tensor): Input tensor.
Returns:
torch.Tensor: Output tensor after MLP computation.
"""
return self.w2((F.silu(self.w1(x).float()) * self.w3(x).float()).type_as(x))
class Gate(nn.Module):
"""
Gating mechanism for routing inputs in a mixture-of-experts (MoE) model.
Attributes:
dim (int): Dimensionality of input features.
topk (int): Number of top experts activated for each input.
n_groups (int): Number of groups for routing.
topk_groups (int): Number of groups to route inputs to.
score_func (str): Scoring function ('softmax' or 'sigmoid').
route_scale (float): Scaling factor for routing weights.
weight (torch.nn.Parameter): Learnable weights for the gate.
bias (Optional[torch.nn.Parameter]): Optional bias term for the gate.
"""
def __init__(self, args: ModelArgs):
"""
Initializes the Gate module.
Args:
args (ModelArgs): Model arguments containing gating parameters.
"""
super().__init__()
self.dim = args.dim
self.topk = args.n_activated_experts
self.n_groups = args.n_expert_groups
self.topk_groups = args.n_limited_groups
self.score_func = args.score_func
self.route_scale = args.route_scale
self.weight = nn.Parameter(torch.empty(args.n_routed_experts, args.dim))
self.bias = nn.Parameter(torch.empty(args.n_routed_experts, dtype=torch.float32)) if self.dim == 7168 else None
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Forward pass for the gating mechanism.
Args:
x (torch.Tensor): Input tensor.
Returns:
Tuple[torch.Tensor, torch.Tensor]: Routing weights and selected expert indices.
"""
scores = linear(x.float(), self.weight.float())
if self.score_func == "softmax":
scores = scores.softmax(dim=-1)
else:
scores = scores.sigmoid()
original_scores = scores
if self.bias is not None:
scores = scores + self.bias
if self.n_groups > 1:
scores = scores.view(x.size(0), self.n_groups, -1)
if self.bias is None:
group_scores = scores.amax(dim=-1)
else:
group_scores = scores.topk(2, dim=-1)[0].sum(dim=-1)
indices = group_scores.topk(self.topk_groups, dim=-1)[1]
mask = scores.new_ones(x.size(0), self.n_groups, dtype=bool).scatter_(1, indices, False)
scores = scores.masked_fill_(mask.unsqueeze(-1), float("-inf")).flatten(1)
indices = scores.topk(self.topk, dim=-1)[1]
weights = original_scores.gather(1, indices)
if self.score_func == "sigmoid":
weights /= weights.sum(dim=-1, keepdim=True)
weights *= self.route_scale
return weights, indices
class Expert(nn.Module):
"""
Expert layer for Mixture-of-Experts (MoE) models.
Attributes:
w1 (nn.Module): Linear layer for input-to-hidden transformation.
w2 (nn.Module): Linear layer for hidden-to-output transformation.
w3 (nn.Module): Additional linear layer for feature transformation.
"""
def __init__(self, dim: int, inter_dim: int):
"""
Initializes the Expert layer.
Args:
dim (int): Input and output dimensionality.
inter_dim (int): Hidden layer dimensionality.
"""
super().__init__()
self.w1 = Linear(dim, inter_dim)
self.w2 = Linear(inter_dim, dim)
self.w3 = Linear(dim, inter_dim)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Forward pass for the Expert layer.
Args:
x (torch.Tensor): Input tensor.
Returns:
torch.Tensor: Output tensor after expert computation.
"""
return self.w2((F.silu(self.w1(x).float()) * self.w3(x).float()).type_as(x))
class MoE(nn.Module):
"""
Mixture-of-Experts (MoE) module.
Attributes:
dim (int): Dimensionality of input features.
n_routed_experts (int): Total number of experts in the model.
n_local_experts (int): Number of experts handled locally in distributed systems.
n_activated_experts (int): Number of experts activated for each input.
gate (nn.Module): Gating mechanism to route inputs to experts.
experts (nn.ModuleList): List of expert modules.
shared_experts (nn.Module): Shared experts applied to all inputs.
"""
def __init__(self, args: ModelArgs):
"""
Initializes the MoE module.
Args:
args (ModelArgs): Model arguments containing MoE parameters.
"""
super().__init__()
self.dim = args.dim
assert args.n_routed_experts % world_size == 0, f"Number of experts must be divisible by world size (world_size={world_size})"
self.n_routed_experts = args.n_routed_experts
self.n_local_experts = args.n_routed_experts // world_size
self.n_activated_experts = args.n_activated_experts
self.experts_start_idx = rank * self.n_local_experts
self.experts_end_idx = self.experts_start_idx + self.n_local_experts
self.gate = Gate(args)
self.experts = nn.ModuleList([Expert(args.dim, args.moe_inter_dim) if self.experts_start_idx <= i < self.experts_end_idx else None
for i in range(self.n_routed_experts)])
self.shared_experts = MLP(args.dim, args.n_shared_experts * args.moe_inter_dim, reduce_output=False)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Forward pass for the MoE module.
Args:
x (torch.Tensor): Input tensor.
Returns:
torch.Tensor: Output tensor after expert routing and computation.
"""
shape = x.size()
x = x.view(-1, self.dim)
weights, indices = self.gate(x)
y = torch.zeros_like(x, dtype=torch.float32)
counts = torch.bincount(indices.flatten(), minlength=self.n_routed_experts).tolist()
for i in range(self.experts_start_idx, self.experts_end_idx):
if counts[i] == 0:
continue
expert = self.experts[i]
idx, top = torch.where(indices == i)
y[idx] += expert(x[idx]) * weights[idx, top, None]
y += self.shared_experts(x)
if world_size > 1:
dist.all_reduce(y)
return y.type_as(x).view(shape)
class Block(nn.Module):
"""
Transformer block combining attention and feed-forward layers.
Attributes:
attn (nn.Module): Attention layer (MLA).
ffn (nn.Module): Feed-forward network (MLP or MoE).
attn_norm (nn.Module): Layer normalization for attention.
ffn_norm (nn.Module): Layer normalization for feed-forward network.
"""
def __init__(self, layer_id: int, args: ModelArgs):
"""
Initializes the Transformer block.
Args:
layer_id (int): Layer index in the transformer.
args (ModelArgs): Model arguments containing block parameters.
"""
super().__init__()
self.attn = MLA(args)
self.ffn = MLP(args.dim, args.inter_dim) if layer_id < args.n_dense_layers else MoE(args)
self.attn_norm = RMSNorm(args.dim)
self.ffn_norm = RMSNorm(args.dim)
def forward(self, x: torch.Tensor, residual: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor]) -> torch.Tensor:
"""
Forward pass for the Transformer block.
Args:
x (torch.Tensor): Input tensor.
start_pos (int): Starting position in the sequence.
freqs_cis (torch.Tensor): Precomputed complex exponential values for rotary embeddings.
mask (Optional[torch.Tensor]): Mask tensor to exclude certain positions from attention.
Returns:
torch.Tensor: Output tensor after block computation.
"""
if residual is None:
x, residual = self.attn_norm(x), x
else:
x, residual = self.attn_norm(x, residual)
x = self.attn(x, start_pos, freqs_cis, mask)
x, residual = self.ffn_norm(x, residual)
x = self.ffn(x)
return x, residual
class Transformer(nn.Module):
"""
Transformer model with positional embeddings, multiple layers, and output projection.
Attributes:
max_seq_len (int): Maximum sequence length for the transformer.
embed (nn.Module): Embedding layer for input tokens.
layers (torch.nn.ModuleList): List of transformer blocks.
norm (nn.Module): Layer normalization applied after all blocks.
head (nn.Module): Output projection layer mapping to vocabulary size.
freqs_cis (torch.Tensor): Precomputed complex exponential values for rotary embeddings.
"""
def __init__(self, args: ModelArgs):
"""
Initializes the Transformer model.
Args:
args (ModelArgs): Model arguments containing transformer parameters.
"""
global world_size, rank
world_size = dist.get_world_size() if dist.is_initialized() else 1
rank = dist.get_rank() if dist.is_initialized() else 0
Linear.dtype = torch.float8_e4m3fn if args.dtype == "fp8" else torch.bfloat16
Linear.scale_fmt = args.scale_fmt
super().__init__()
self.max_seq_len = args.max_seq_len
self.embed = ParallelEmbedding(args.vocab_size, args.dim)
self.layers = torch.nn.ModuleList()
for layer_id in range(args.n_layers):
self.layers.append(Block(layer_id, args))
self.norm = RMSNorm(args.dim)
# lm_head in the checkpoint is stored in bf16, while the parameter here is stored in fp32 for easier computation of logits later.
self.head = ColumnParallelLinear(args.dim, args.vocab_size, dtype=torch.float32)
self.register_buffer("freqs_cis", precompute_freqs_cis(args), persistent=False)
@torch.inference_mode()
def forward(self, tokens: torch.Tensor, start_pos: int = 0):
"""
Forward pass for the Transformer model.
Args:
tokens (torch.Tensor): Input tensor of token IDs with shape (batch_size, seq_len).
start_pos (int, optional): Starting position in the sequence for rotary embeddings. Defaults to 0.
Returns:
torch.Tensor: Logits tensor of shape (batch_size, vocab_size).
"""
seqlen = tokens.size(1)
freqs_cis = self.freqs_cis[start_pos:start_pos+seqlen]
mask = torch.full((seqlen, seqlen), float("-inf"), device=tokens.device).triu_(1) if seqlen > 1 else None
h, residual = self.embed(tokens), None
for layer in self.layers:
h, residual = layer(h, residual, start_pos, freqs_cis, mask)
h, _ = self.norm(h, residual)
logits = self.head(h[:, -1].float())
if world_size > 1:
all_logits = [torch.empty_like(logits) for _ in range(world_size)]
dist.all_gather(all_logits, logits)
logits = torch.cat(all_logits, dim=-1)
return logits
if __name__ == "__main__":
torch.set_default_dtype(torch.bfloat16)
torch.set_default_device("cuda")
torch.manual_seed(0)
args = ModelArgs()
x = torch.randint(0, args.vocab_size, (2, 128))
model = Transformer(args)
print(model(x).size())
\ No newline at end of file
torch
transformers
safetensors
fast_hadamard_transform
tilelang==0.1.6
\ No newline at end of file
# 模型唯一标识
modelCode=1761
# 模型名称
modelName=deepseek-v3.2-exp_pytorch
# 模型描述
modelDescription=DeepSeek-V3.2
# 应用场景
appScenario=推理,对话问答,制造,金融,教育,广媒
# 框架类型
frameType=pytorch
# 加速卡类型
accelerateType=K100AI
\ No newline at end of file
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment