import numpy as np import cv2 import migraphx import argparse import os def Preprocessing(pil_img, newW, newH): assert newW > 0 and newH > 0, 'Scale is too small' img_nd = cv2.cvtColor(pil_img, cv2.COLOR_BGR2RGB) # BGR转换为RGB img_nd = cv2.resize(img_nd, (newW, newH)) # 将图像尺寸修改为newW x newH if len(img_nd.shape) == 2: # 获取图像的维度信息 img_nd = np.expand_dims(img_nd, axis=2) # 如果是2维的 扩充为3维 img_trans = img_nd.transpose((2, 0, 1)) # HWC转换为CHW img_trans = np.expand_dims(img_trans, 0) # CHW扩展为NCHW img_trans = np.ascontiguousarray(img_trans) # 保证内存连续存储 img_trans = img_trans.astype(np.float32) # 转换成浮点型数据 if img_trans.max() > 1: img = img_trans / 255.0 # 保证数据处于0-1之间的浮点数 return img def AllocateOutputMemory(model): outputData = {} for key in model.get_outputs().keys(): outputData[key] = migraphx.allocate_gpu(s=model.get_outputs()[key]) return outputData # 对通道维度执行Softmax def softmax(arr): exp_vals = np.exp(arr - np.max(arr, axis=1, keepdims=True)) sum_exp = np.sum(exp_vals, axis=1, keepdims=True) return exp_vals / sum_exp if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--loadMode", type=int,help="0:DeepLabV3 Single Image Sample.\t 1:DeepLabV3 Multiple Image Sample.") parser.add_argument("--enable_offload_copy", action="store_true") precision_group = parser.add_mutually_exclusive_group() precision_group.add_argument("--int8",action="store_true") precision_group.add_argument("--fp16",action="store_true") args = parser.parse_args() loadMode = args.loadMode useInt8 = args.int8 useFP16 = args.fp16 offloadCopy = args.enable_offload_copy #加载图片方式 if loadMode == 0: maxInput={"input":[1,3,513,513]} img = cv2.imread("../Resource/Images/000001.jpg") input_img = Preprocessing(img, 513, 513) else: maxInput={"input":[3,3,513,513]} folder_path = "../Resource/Images/" image_extensions = ('.jpg') image_list = [] for filename in os.listdir(folder_path): # 检查文件是否为图片 if filename.lower().endswith(image_extensions): file_path = os.path.join(folder_path, filename) img = cv2.imread(file_path) image_list.append(Preprocessing(img, 513, 513)) input_img = np.concatenate(image_list,axis=0) # 加载模型 model = migraphx.parse_onnx("../Resource/Models/deeplabv3_resnet101.onnx", map_input_dims=maxInput) # 获取模型输入/输出节点信息 inputs = model.get_inputs() outputs = model.get_outputs() inputName = model.get_parameter_names()[0] inputShape = inputs[inputName].lens() #量化 if useInt8: dic = dict() calibrate_folder_path = "../Resource/Images/" calibrate_image_extensions = ('.jpg') calibrate_image_list = [] for filename in os.listdir(calibrate_folder_path): # 检查文件是否为图片 if filename.lower().endswith(calibrate_image_extensions): file_path = os.path.join(calibrate_folder_path, filename) img = cv2.imread(file_path) calibrate_image_list.append(Preprocessing(img, 513, 513)) calibrate_img = np.concatenate(calibrate_image_list,axis=0) dic[inputName] = migraphx.argument(calibrate_img) calibration = [dic] migraphx.quantize_int8(model, migraphx.get_target("gpu"), calibration) if useFP16: migraphx.quantize_fp16(model) if offloadCopy : # 编译模型 model.compile(migraphx.get_target("gpu"), device_id=0) # device_id: 设置GPU设备,默认为0号设备 # 模型推理 mask = model.run({'input':input_img}) result = mask[0] # 得到第一个输出节点的结果 else: # 编译模型 model.compile(migraphx.get_target("gpu"),offload_copy=False, device_id=0) # device_id: 设置GPU设备,默认为0号设备 modelData = AllocateOutputMemory(model) # 为输出节点分配device内存,用于保存输出数据 modelData[inputName] = migraphx.to_gpu(migraphx.argument(input_img)) # 推理 mask = model.run(modelData) result = migraphx.from_gpu(mask[0]) # 获取第1个输出节点的数据,migraphx.argument类型 # 对通道维度进行softmax softmax_result = softmax(result) # 计算通道维度最大值对应的索引(即类别索引) max_indices = np.argmax(softmax_result, axis=1) # 使用预设颜色 color_map = np.array([ [0, 0, 0], [255, 0, 0], [0, 255, 0], [0, 0, 255], # 0-3类 [255, 255, 0], [255, 0, 255], [0, 255, 255], [128, 0, 0], # 4-7类 [0, 128, 0], [0, 0, 128], [128, 128, 0], [128, 0, 128], # 8-11类 [0, 128, 128], [192, 192, 192], [128, 128, 128], [64, 0, 0], # 12-15类 [0, 64, 0], [0, 0, 64], [64, 64, 0], [64, 0, 64], # 16-19类 [0, 64, 64] # 20类 ], dtype=np.uint8) for i in range(max_indices.shape[0]): flat_index = max_indices[i] rgb_image = color_map[flat_index] # # 将二维的类别索引图直接转换为三维的 RGB 彩色图像 fileName = "Result_"+str(i+1)+".jpg" cv2.imwrite(fileName, rgb_image) # 保存图像分割结果 print("Segmentation results have been saved to Python directory")