import torch from torch.autograd import Variable import utils import dataset from PIL import Image import models.crnn as crnn model_path = './data/crnn.pth' img_path = './data/demo.png' alphabet = '0123456789abcdefghijklmnopqrstuvwxyz' model = crnn.CRNN(32, 1, 37, 256) if torch.cuda.is_available(): model = model.cuda() print('loading pretrained model from %s' % model_path) model.load_state_dict(torch.load(model_path)) converter = utils.strLabelConverter(alphabet) transformer = dataset.resizeNormalize((100, 32)) image = Image.open(img_path).convert('L') image = transformer(image) if torch.cuda.is_available(): image = image.cuda() image = image.view(1, *image.size()) image = Variable(image) model.eval() preds = model(image) _, preds = preds.max(2) preds = preds.transpose(1, 0).contiguous().view(-1) preds_size = Variable(torch.IntTensor([preds.size(0)])) raw_pred = converter.decode(preds.data, preds_size.data, raw=True) sim_pred = converter.decode(preds.data, preds_size.data, raw=False) print('%-20s => %-20s' % (raw_pred, sim_pred))